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Abstract. We continue with the development of the theory of problems and

their solutions spaces [1] and [2]. We introduce and study the notion of verifi-
cation and resolution time complexity of solutions and problem spaces.

1. Background

In [2] and [1] the theory of problems and their solution spaces was studied.
Let X denotes a solution (resp. answer) to problem Y (resp. question). Then we
call the collection of all problems to be solved to provide solution X to problem
Y the problem space induced by providing solution X to problem Y . We denote
this space with PY (X). If K is any subspace of the space PY (X), then we denote
this relation with K ⊆ PY (X). If the space K is a subspace of the space PY (X)
with K 6= PY (X), then we write K ⊂ PY (X). We say problem V is a sub-problem
of problem Y if providing a solution to problem Y furnishes a solution to problem
V . If V is a sub-problem of the problem Y , then we write V ≤ Y . If V is a
sub-problem of the problem Y and V 6= Y , then we write V < Y and we call V a
proper sub-problem of Y .
Similarly, Let X denotes a solution (resp. answer) to problem Y (resp. question).
Then we call the collection of all solutions to problems obtained as a result of
providing the solution X to problem Y the solution space induced by providing
solution X to problem Y . We denote this space with SY (X). If K is any subspace
of the space SY (X), then we denote this relation with K ⊂ SY (X). We make the
assignment T ∈ SY (X) if solution T is also a solution in this space.
Let V be a problem. Then we say V is reducible if there exists a proper sub-
problem of V with no proper sub-problem. On the other hand, we say problem
V is irreducible if every proper sub-problem of V has a proper sub-problem. Let
{Yi}i≥1 be the sequence of all the sub-problems of V . Then we say V is regular if

· · · ≤ Y3 ≤ Y2 ≤ Y1 ≤ V.

We say it is irregular if there exists sub-problems Yj and Yk of V such that Yj 6≤ Yk
and Yk 6≤ Yj . We say problem Y is equivalent to problem V if providing solution to
problem Y also provides a solution to problem V and conversely providing a solution
to problem V also provides a solution to problem Y . We denote the equivalence
with V ≡ Y . We say X and U are alternative solutions to Y if and only if U and
X both solves Y . We denote this relation with X ⊥ U or U ⊥ X.
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2. The time complexity

In this section we study the notion of time complexity of problem and solution
spaces.

Definition 2.1. The resolution complexity of problem T by providing solution U
that solves T is the algorithmic time required to generate solution U for problem
T . We denote this complexity with Cr(T,U).

Definition 2.2. The verification complexity of a solution U to problem T is the
algorithmic time required to check solution U for correctness. We denote this
complexity with Cv(T,U).

Definition 2.3. Let T be a problem with solution U . We say the time complexity
with respect to problem T with solution U is in equilibrium if Cr(T,U) = Cv(T,U).

It is important to declare that the time complexity is not unique to problems and
solutions. More precisely, it is indeed possible that the resolution time complexity
and the verification time complexity may differ quite significantly among equivalent
problems and alternative solutions. Consequently, it may not be possible to extend
an equilibrium to equivalent problems and alternative solutions. Let us suppose
that Cr(T1, U1) <∞ and Cv(T1, U1) <∞ with T1 ≡ T2 (equivalent problems) then
U1 ⊥ U2 (alternative solution). It is possible that

Cr(T1, U1) 6= Cr(T2, U1)

and

Cv(T1, U1) 6= Cv(T2, U1)

and similarly

Cr(T2, U2) 6= Cr(T2, U1)

and

Cv(T2, U2) 6= Cv(T2, U1).

Hence if Cr(T1, U1) = Cv(T1, U1) and T1 ≡ T2 then the equilibrium

Cr(T2, U2) = Cv(T2, U2)

may only hold under certain condition. We begin by verifying that time complexity
can be ordered up to sub-problems and sub-solutions of a given problem.

Proposition 2.1. Let T be a problem with solution U . Let {Ti}i≥1 and {Ui}i≥1
denotes the sequence of all sub-problems and sub-solutions of T and U , respectively.
If Cr(T,U) <∞ and Cv(T,U) <∞, then we have

Cr(Ti, Ui) < Cr(T,U)

and

Cv(Ti, Ui) < Cv(T,U)

for each i ≥ 1.

Proof. Since Cr(T,U) <∞ and Cv(T,U) <∞ and

Cr(T,U) :=
∑
i≥1

Cr(Ti, Ui)
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and

Cv(T,U) :=
∑
i≥1

Cv(Ti, Ui)

the inequality follows easily. �

Remark 2.4. In cases where we do not want to make a reference to the solution and
a problem in the notation of the resolution and the verification time complexity, we
will write for simplicity Cr(T ) and Cv(U). We will adopt this notation in situations
where a reference to a problem or a solution turns out to be irrelevant.

Proving the existence of equilibrium of time complexity of problems is by no
means an easy endeavour. In the sequel we prove that assuming equilibrium in the
time complexity can be passed down to sub-problems and sub-solutions. We make
these ideas formal in the proposition below.

Proposition 2.2. Let T be a regular problem with solution U such that for any
sub-problems Ti, Tj with i 6= j, then Cr(Ti, Ui) 6= Cv(Tj , Uj). If Cr(T,U) = Cv(T,U),
then there exists Q ≤ T (Q a sub-problem of T ) and L ≤ U (L a sub-solution of
U) that solves Q such that Cr(Q,L) = Cv(Q,L).

Proof. Suppose T is a regular problem with solution U . Let {Ti}i≥1 be the sequence
of all sub-problems of T with corresponding sequence of solutions {Ui}i≥1. Suppose
on the contrary that Cr(Ti, Ui) = Cv(Ti, Ui) for each i ≥ 1. By virtue of the
regularity of T , we can arrange the sequence of sub-problems and sub-solutions in
the following way T1 ≥ T2 ≥ · · · and the corresponding sequence of sub-solutions
U1 ≥ U2 ≥ · · · , where each preceding Ti is a sub-problem of Ti−1 and similarly each
Ui is a sub-solution for Ui−1. Since problem T is said to be solved by providing
a solution to each of the sub-problems, we find under the assumption Cr(T,U) =
Cv(T,U), that

Cr(T,U) =
∑
i≥1

Cr(Ti, Ui) =
∑
i≥1

Cv(Ti, Ui) = Cv(T,U).

Now suppose on the contrary that Cr(T1, U1) 6= Cv(T1, U1), then under the regularity
condition, it follows that ∑

i≥2

Cr(Ti, Ui) 6=
∑
i≥2

Cv(Ti, Ui)

since providing a solution to all sub-problems of T2 solves problem T2. Under the
requirement that Cr(Ti, Ui) 6= Cv(Tj , Uj) for all i 6= j, it follows that

Cr(T,U) =
∑
i≥1

Cr(Ti, Ui) 6=
∑
i≥1

Cv(Ti, Ui) = Cv(T,U)

violating the assumption that Cr(T,U) = Cv(T,U). �

Theorem 2.5. Let T be a regular problem with a solution K. If M is the max-
imal sub-problem of T with a solution L and Cr(M,L) � polynomial time and
Cr(T,K) = Cv(T,K), then Cv(T,K)� polynomial time.
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Proof. Suppose T is a regular problem and let {Ti}i≥1 denotes the sequence of
all sub-problems of T with corresponding sequence of sub-solutions {Ki}i≥1 where
each Ki solves Ti. We can arrange the sequence of sub-problems in the following
way: T1 ≥ T2 ≥ · · · where T1 := M is the maximal sub-problem of T and where
each sub-problem Ti is a sub-problem of Ti−1 for i ≥ 2. Since problem T is solved
by solving each of the sub-problems in the sequence, we can write

Cr(T,K) =
∑
i≥1

Cr(Ti,Ki)

= Cr(T1,K1) +
∑
i≥2

Cr(Ti,Ki).

By the regularity of problem T , we see that∑
i≥2

Cr(Ti,Ki) = Cr(T1,K1)� polynomial time.

Thus Cr(T,K) � polynomial time. Under the equality Cr(T,K) = Cv(T,K),
we deduce that Cv(T,K) � polynomial time, which completes the proof of the
theorem. �

Remark 2.6. Theorem 2.5 is an important ingredient for exploring a deep under-
standing of the P=NP problem. It purports that once there exist an equilibrium
of time complexity of a given problem, it suffices to only investigate the resolution
complexity of the maximal sub-problem for a class of well-behaved problems which
we refer to as regular problems, introduced and studied in [2].

Although the task of proving equilibrium of resolution and verification time
complexity can be very hard, we can often carry out this process from bottom-
up. That is to say, proving equilibrium of time complexity for sub-problems can
be extended to time complexity equilibrium of the actual problem. The following
proposition exemplifies that principle.

Proposition 2.3. Let Y be a problem with solution X and let {Yi}i≥1 and {Xi}i≥1
denotes the sequence of all proper sub-problems and a solutions to sub-problems of
Y . If Cr(Yi, Xi) = Cv(Yi, Xi) for each i ≥ 1, then Cr(Y,X) = Cv(Y,X).

Proof. The sequences {Yi}i≥1 and {Xi}i≥1 denotes the sequence of all proper sub-
problems and a solutions to sub-problems of Y , respectively. Since the solution
to problem Y is furnished solving each of the sub-problems in {Yi}1≥1, it follows
under the assumption Cr(Yi, Xi) = Cv(Yi, Xi) for each i ≥ 1 that

Cr(Y,X) =
∑
i≥1

Cr(Yi, Xi) =
∑
i≥1

Cv(Yi, Xi) = Cv(Y,X).

�

We now obtain an important characterization of irreducible problems, a class of
problems introduced and studied in [2].

Theorem 2.7. If X is an irreducible problem, then Cr(X) = ∞ or X is not
solvable.



ON THE TIME COMPLEXITY OF PROBLEM AND SOLUTION SPACES 5

Proof. Suppose X is an irreducible problem and assume the contrary that Cr(X) <
∞ and that X is solvable. Since X is irreducible, each sub-problem Xj ≤ X has
a proper sub-problem, and problem X has infinitely many proper sub-problems
Xi < X. Thus

Cr(X) :=

∞∑
i=1

Cr(Xi) <∞

since problem X is solved by providing a solution to each of the sub-problems. This
implies that for any ε > 0, there exists some N := N(ε) such that for all i ≥ N we
have

∞∑
i=N

Cr(Xi) < ε.

That is, Cr(Xi) −→ 0 as i −→ ∞. This means the algorithmic time required to
solve infinitely many proper sub-problems of problem X converges to zero, which
violates the assumption that X is solvable. �

The difficulty of proving equilibrium of time complexity of a given problem may
be made easier depending on its structure. Irregular problems seem to be very
difficult to understand and unfortunately most problems fall into this category.
It is however much easier to establish an equilibrium for a class of well behaved
problems that fall into the category of reducible and regular problems. It turns out
that once equilibrium is reached for the finest form of this problem, then equilibrium
will certainly be attained for the actual problem. We make this discussion formal
in the following results.

Theorem 2.8 (extension principle). Let T be a regular and a reducible problem
with solution U . If Tk is a sub-problem of T with solution Uk such that there exist
no Tj ∈ {Ti}i≥1 with Tj 6< Tk and that Cr(Tk, Uk) = Cv(Tk, Uk), then Cr(T,U) =
Cv(T,U).

Proof. Suppose T is a regular problem with solution U and let {Ti}i≥1 be the
sequence of all sub-problems of T with the corresponding sequence of solutions
{Ui}i≥1, where each Ui solves Ti for each i ≥ 1. Since T is reducible, it has a
sub-problem with no proper sub-problem. Let Tk be this sub-problem of T , then
by the regularity of T , we can arrange the sequence of all sub-problems of T in the
following way:

Tk ≤ Tk−1 ≤ Tk−2 ≤ · · · ≤ T1
with

Uk ≤ Uk−1 ≤ Uk−2 ≤ · · ·U1

where each Ti is a sub-problem of Ti−1 and Ui is a sub-solution of Ui−1. Under
the equilibrium Cr(Tk, Uk) = Cv(Tk, Uk) and since problem Tk−1 is solved by pro-
viding a solution to all of its proper sub-problems, it follows that Cr(Tk−1, Uk−1) =
Cv(Tk−1, Uk−1). Similarly, problem Tk−2 is solved by providing a solution to all of
its sub-problems and it follows that

Cr(Tk−2, Uk−2) = Cr(Tk, Uk) + Cr(Tk−1, Uk−1)

= Cv(Tk, Uk) + Cv(Tk−1, Uk−1)

= Cv(Tk−2, Uk−2).

We can iterate this process to reach the equilibrium Cr(T,U) = Cv(T,U). �
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Corollary 2.1. Let T be a regular and a reducible problem with solution U . Let
Tk is a sub-problem of T with solution Uk such that there exist no Tj ∈ {Ti}i≥1
with Tj 6< Tk and that Cr(Tk, Uk) = Cv(Tk, Uk). If Cv(T,U) � polynomial time
then Cr(T,U)� polynomial time.

Proof. It follows from Theorem 2.8 that Cr(T,U) = Cv(T,U) so that under the
hypothesis Cv(T,U)� polynomial time then Cr(T,U)� polynomial time. �

Remark 2.9. Corollary 2.1 suggests that under a certain mild condition, if a certain
class of well-behaved problems have a solution that are easy to verify for correctness
then they must also be easy to solve at the same level.

3. The time complexity of problem and solution spaces

In this section, we study the notion of time complexity on problem and solutions
spaces, as opposed to a specific problem and its solution.

Definition 3.1. Let PY (X) and SY (X) be the problem and solution spaces induced
by providing solution X to problem Y . Then by the resolution complexity of the
problem space PY (X), we mean the sum of each resolution complexity of each
problem in the space. For each problem T ∈ PY (X) there exists a solution L ∈
SY (X) that solves T . We denote the resolution complexity of the space with

Pr
Y (X) :=

∑
T∈PY (X)
L∈SY (X)

Cr(T, L)

and the verification complexity with

SvY (X) :=
∑

L∈SY (X)
T∈PY (X)

Cv(T, L).

Proposition 3.1. Let PY (X) and SY (X) be the problem and solution spaces in-
duced by providing solution X to problem Y . If for each T ∈ PY (X) and each
L ∈ SY (X) that solves T , Cr(T, L) = Cv(T, L) then Pr

Y (X) = SvY (X).

Proof. This follows trivially from the proof of Proposition 2.3. �

This phase of the project is much focused on the time complexity of problems
and their solutions, given its profound relation with the well studied P vs NP
problem in computer science. The theory as developed in [2] and [1] bears some
connection to classical abstract algebra, module theory and functional analysis. As
such certain concepts that appears in those areas could have their corresponding
analogue in this theory and could offer a better understanding of the problem. The
notion of compactness, density, convexity and boundedness could have their
appropriate analogue in this theory, all of which are relegated to subsequent studies.
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