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1 Potential and En-

tropy Defined By

Caratheodory

Axiom

First of all, we will apply Calatheo-

dory axiomatization to define the po-

tential function and entropy function

of a charged system, let us only pay

attention to the electric field wave equa-

tion of the electromagnetic field gen-

eralized wave equations of this pair

[1, 2], and get its solution at the same

time, whose are as follows, respectively

c2
∂2E
∂t2

+
C
c2
· ∇∂E
∂t
−∇2E = 0, (1)

E = E0 exp[−λk · r(1 + i)].

exp[λωt(1 + i)] (λ is constant)
(2)

We get the average value of this elec-

tric field over a long period of time

〈E(r)〉t =

∫ ∞
0

E(r, t)/tdt

= π/2 E0 exp[−λk · r(1 + i)].

(3)

When this charged particle is coupled

with a charged system, the electric

field would also show wave numbers k

changes. If the distance r between the

particle and the system is a constant.

From Eq.(3), the particle would show

system-dependent potential as indi-

cated below

ϕ =

∫ ∞
0

π/2 E0 exp[−λk · r(1 + i)] · dk

= (−1 + i)π/(4λ) | E0 | r−1,

(4)

in which the first term denotes the

field-generated static potential. Com-

pared with the Coulomb’s potential

ϕc = −q0r−1 [3, 4], we have

q0 = π/(4λ) | E0 |, (5)

ϕc = −q0 r−1. (6)

The Eq.(4) is an periodic potential.

Hence we have Coulomb’s potential

ϕ = −q0 r−1 + iq0 r
−1 = (−1 + i)ϕc,

(7)

If the system’s electric charge Q =

Nq and potential Φ(r, k), the Φ(r, k)
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is a potential function of spatial posi-

tion r and wave number k. We make

electric field in instable state, Ek =

∂Φ/∂k, force Fk = QEk = Q∂Φ/∂k,

then the energy of the particle be-

comes

δE = Q∂Φ/∂k · dk. (8)

From now on, we apply Caratheodory

axiomatization to a system of charged

particles [5], to showed that the po-

tential function and entropy function.

By rewriting Eq.(8) into its compo-

nent form, we get

δE =
n∑
j

QEkj · dkj. (9)

Equation (9) must be multiplied by

a function 1/γ to make it an exact

differential, from Eq.(9) [6] we obtain

1

γ
δE =

1

γ

n∑
j

QEkj · dkj, (10)

in Eq.(10) we get following solution

F = c (c is constant), (11)

make dF = 0, from Eq.(10) then be-

come

dF =
1

γ
δE =

1

γ

n∑
j=1

QEkj · dkj. (12)

Take n = 3 for the spatial component,

made dF = 0, Eq.(11) and Eq.(12)

becomes

dF =
1

γ
(QEk1 · dk1 +QEk2 · dk2+

QEk3 · dk3) = 0.

(13)

and

dF = ∂F/∂k1 · dk1 + ∂F/∂k2 · dk2+

∂F/∂k3 · dk3 = 0,

(14)

the dF is a exact differential, let’s

compare Eq.(13) with Eq.(14) to get

the following equations

(∂F/∂k1)/QEk1 = (∂F/∂k2)/QEk2 =

(∂F/∂k3)/QEk3 = 1/γ.

(15)

For this case in which exist two in-

dependent systems, let’s say system

1 with energy E1 and system 2 with

energy E2 to make their exact differ-

ential, multiply by 1/γ1 and 1/γ2, re-

spectively, which are as follows

dF1 =
1

γ1
δE1, dF2 =

1

γ2
δE2. (16)
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Let’s merge the two systems into one,

their coupled potentials should be

equal, when the two systems reach

the equilibrium state of the poten-

tial. In the new system formed by

the afore-listed two we have

dF =
1

γ
δE . (17)

Let τ be a variable of systems 1 and 2

in the equilibrium process, we get the

following from Eq.(16) and Eq.(17)

from energy conservation

dF =
δE
γ

=
δE1 + δE2

γ
=

γ1
γ
dF1 +

γ2
γ
dF2,

(18)

and

dF = ∂F/∂F1dF1 + ∂F/∂F2dF2+

∂F/∂τdτ,

(19)

comparing Eq.(18) with Eq.(19), we

get

∂F/∂F1 = γ1/γ, ∂F/∂F2 = γ2/γ

and ∂F/∂τ = 0.

(20)

It would not be difficult to see from

Eq.(20) that F is irrelevant with a pa-

rameter τ during system 1 and sys-

tem 2 merging into one system, by

taking ∂F/∂τ = 0 or in other words

these proportions ∂(γ l/γ)/∂τ = 0

(l = 1, 2), namely,

∂(γ1/γ)/∂τ = ∂(γ2/γ)/∂τ = 0,

(21)

from Eq.(21) we have

∂(ln γ1)/∂τ = ∂(ln γ2)/∂τ =

∂(ln γ)/∂τ = L(τ),
(22)

the L(τ) is their a common function

of system, consider Eq.(22). We draw

into a function M(Fl) of the variable

Fl from Eq.(20), by taking ∂F/∂τ

= 0 and ∂Fl/∂τ = 0 (l = 1, 2). So

we could write this as

ln γ l =

∫
L(τ)dτ + lnM(Fl), (23)

or

γ l = M(Fl) exp(

∫
L(τ)dτ) (l = 1, 2).

(24)
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Now we may define the electric char-

ged system’s potential function Φ(τ)

Φ(τ) = C exp(

∫
L(τ)dτ)

(C is constant),

(25)

and entropy function S

Sl =
1

C

∫
M(Fl)dFl

dSl =
1

C
M(Fl)dFl (l = 1, 2),

(26)

based on the law of energy conserva-

tion δE = δE1 +δE2 = γ 1dF1 +γ 2dF2,

formulas Eq.(17), Eq.(24),

Eq.(25) and Eq.(26), we have

δE =
2∑
l=1

dSl Φ(τ) =

2∑
l=1

1

C
M(Fl) dFl.[

C exp(

∫
L(τ)dτ)

]
,

(27)

or the system’s entropy

dS = δE/Φ. (28)

By now, we may illustrate the order

motion of the charged particles by us-

ing potential Φ , or by using the sys-

tem’s entropy S. In statistical me-

chanics, the thermodynamical motion

of particles should satisfy the Boltz-

mann equation, the disorder motions

of particles could be represented by

using entropy function S = k
B

lnZ

[7] If temperature T and potential Φ

simultaneously exist in the same sys-

tem, these particles would move re-

spectively in both states of disorder

thermodynamical motion and order

potential motion.

2 Relative Change Rate

of Energy

Now we assume that the system of

a large number of particles move be-

tween two potential environments, in

which the high-potential Φh with en-

ergy QΦh and low-potential Φl with

energy QΦl. System absorb energy

Eh = QΦh from the high-potential en-

vironment state, and release energy

El = QΦl to the low-potential envi-

ronment state, where Q is the total

charge of the system. Thus energy of
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the system change as follows

∆E = Eh − El = QΦh −QΦl. (29)

Let’s draw into relative change rate

of energy of the system, we get

η =
Eh − El
Eh

= 1− El
Eh
. (30)

Take the second term of Eq.(30), mean-

while substitute into the energy E =

QΦ, thus

El
Eh

=
QΦl

QΦh

, (31)

after rearranging out above Eq.(31),

becomes

Eh
Φh

=
El
Φl

, (32)

the exact differential is obtained from

equation (32), we can define the en-

tropy function of the system and cal-

culus for the line integral along the

closed curve, which is as follows

ds =
δE
Φ
,

∮
ds =

Eh
Φh

− El
Φl

= 0. (33)

In addition to above entropy function

of the system, if a particle carries en-

ergy E = ~ω, where the ω is angular

frequency, the ~ is Planck constant.

It still satisfies the energy change ∆E =

Eh − El. So take the second term of

Eq.(30), then we have

Eh
El

=
~ωh
~ωl

, (34)

when rearranged Eq.(34) becomes

Eh
ωh

=
El
ωl
. (35)

Similarly hereafter, we get the exact

differential and the entropy function

of the system, which is

ds =
δE
ω
,

∮
ds =

Eh
ωh
− El
ωl

= 0. (36)

Thus we get two types of exact dif-

ferential and entropy functions of sys-

tem, respectively.

3 Partition, Entropy

of normalized prob-

ability density ρ

In the phase space of the system, we

assume that there is normalized prob-

ability density ρ, expected value E of

energy and entropy function S, which
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are as follows, respectively

1 =

∫ ∞
0

dxNρ, E =

∫ ∞
0

dxNρH

and S = q ln ρ = q

∫ ∞
0

dxNρ ln ρ.

(37)

By calculating the variation with La-

grangian multipliers α and µρ, the

Eq.(37) become∫ ∞
0

[αH+µρ−(q+q ln ρ)]dxNδρ = 0,

(38)

therefore, we get

µρ − q + αH − q ln ρ = 0. (39)

Adjust Eq.(39), then the above for-

mula becomes

ρ = exp[(µρ − q)/q] exp(αH/q).

(40)

The integral Eq.(40) is given

exp[(q−µρ)/q] =

∫ ∞
0

exp(αH/q)dxN .

(41)

By Eq.(41), we define the partition

function of the system

Z = exp[(q − µρ)/q]. (42)

Let’s take the logarithm of Eq.(42),

then Eq.(41) becomes

µρ − q = −q lnZ. (43)

Substitute Eq.(43) into Eq.(39), so

−q lnZ + αH − q ln ρ = 0. (44)

Above equation is multiplied by po-

tential function Φ, the energy relation

of the system is obtained

−qΦ lnZ+αΦH− qΦ ln ρ = 0. (45)

In the system with a large number of

charged particles there is free energy

F , internal energy U and potential

energy ΦS, they has energy relation

as follows

F + U − ΦS = 0. (46)

Let’s compare Eq.(45) with Eq.(46),

we have

F = −qNΦ lnZ and α = 1/Φ.

(47)

In Eq.(33), when the energy is divided

by the potential function, we defined
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the entropy function of the particle,

which is as following formula

S =
F

NΦ
= −q lnZ. (48)

From now on, let us consider an-

other type of energy E = ~ω, again

starting with the normalized proba-

bility density of the system, the ex-

pected value of the energy and the

entropy function, which are as respec-

tively

1 =

∫ ∞
0

dxNρ, E =

∫ ∞
0

dxNρH

and S = ~ ln ρ =

∫ ∞
0

dxN~ ρ ln ρ.

(49)

Similarly, the following is obtained

from Eq.(49), by calculating the vari-

ation and multiplying with Lagrangian

multipliers α′ and µρ, there are

∫ ∞
0

[α′H+µρ−(~+~ ln ρ)]dxNδρ = 0.

(50)

Similarly to the calculation pro-

cess of Eq.(38) and Eq.(39), we re-

arrange Eq.(50) to get its probability

density

ρ = exp[(µρ − ~)/~] exp(α′H/~),

(51)

then we integral Eq.(51), namely

exp[(~−µρ)/~] =

∫ ∞
0

exp(α′H/~)dxN .

(52)

From this, we can define the par-

tition function of the particle as

Z = exp[(~− µρ)/~] or µρ − ~ =

− ~ lnZ,

(53)

from Eq.(50) and Eq.(53), and re-

arrange, we get

−~ lnZ + α′H − ~ ln ρ = 0. (54)

If we multiply the angular frequency

ω by equation above, then the energy

of the particle is equal to

−~ω lnZ+α′ωH−~ω ln ρ = 0. (55)
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Similarly, there is the following en-

ergy relation of the particle, where

the U is internal energy, the F is free

energy, the other ωS is the quantum

energy, which is as follows

F + U − ωS = 0. (56)

By Eq.(36) we assume that the en-

ergy relation still be satisfied in the

system of this particle. Compare

Eq.(55) with Eq.(56), can yet define

entropy function. In addition the La-

grangian multiplier of the energy is

obtained, which is as follows

S =
F

ω
= −~ lnZ andα′ = 1/ω.

(57)

So far we defined two kinds of par-

tition functions and entropy functions

of the particles, respectively, in terms

of the probability.

4 Lagrangian Multi-

plier 1/qΦ 1/~ω the

Partition Function

and Entropy

Function

If a system is composed of a large

number of countable particles, we clas-

sify the particles so that each part has

Ni particles, and assume that in Ni

per each of particles has an energy

pic. Total energy of the system is E ,

which are as follows

N =
∑
i

Ni, E =
∑
i

Ni pi c, (58)

we subdivide the phase space Ω of

the system into ν units. In per unit

volume, where the ν has Ni particles,

and set its probability gi. Then prob-

ability of the system is

W = Πi
N !

Ni!
gNi
i . (59)

Applying the Stirling’s approximate
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formula lnN ! ' (N+1/2) lnN−N+

1/2 ln (2π) [8], whenNi � 1 by Eq.(59)

becomes

δ lnW =
∑
i

(ln gi − lnNi)δNi = 0.

(60)

By Lagrangian multipliers α
E

and

µ, from Eq.(58) and Eq.(60), with cal-

culating its variation, which is as fol-

lowing

∑
i

(α
E
pic− µ− ln gi/Ni)δNi = 0,

(61)

Ni = gi exp(−α
E
pic) exp(µ), (62)

hence, we have

N =
∑
i

Ni =

exp(µ)
∑
i

gi exp(−α
E
pic).

(63)

By the Eq.(63) let us define the

partition function Z [9], to get

Z =
∑
i

gi exp(−α
E
pic). (64)

As thus, the Lagrangian multiplier

of particles number is

exp(µ) = N/Z. (65)

From this, we rewrite the number

of particles as

Ni = N/Z gi exp(−α
E
pic). (66)

Now the above equation of the dif-

ferential form can be written from

Eq.(66), as follows

Ni dpi = N/Z gi exp(−α
E
pic) dpi.

(67)

And we had known

N/Z gi exp(−α
E
pic) dpi = (68)

d[piN/Z gi exp(−α
E
pic)]+

N/Z α
E
pi c gi exp(−α

E
pic) dpi.

Let us compute the integral on the

left-hand side of Eq.(68) to obtain the

total number of the particles of the

system as
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N =

∫
Ni dpi =∫

N
1

Z
gi exp(−α

E
pic) dpi.

(69)

The integral of the equation (69)

can be written as the following is given

N =

∫
−1

α
E
c
N
∂ lnZ

∂pi
dpi =

−1

α
E
c
N lnZ + a. (let constant a=0)

(70)

Now for let us compute the inte-

gral to the right-hand side of Eq.(68),

the expected value of the energy pc is

obtained , we get

Nα
E
〈pc〉 =

Nα
E

∫ ∞
0

p c
1

Z
gi exp(−α

E
pc) dp.

(71)

According to Eq.(69) and Eq.(71),

we can get the relation between the

total number of particles of the sys-

tem, and the expected value of the

energy pc, as show below

N = Nα
E
〈pc〉. (72)

Owing to total electric charge of

the system is Q = Nq , we have the

potential energy E =QΦ = NqΦ [10],

thus the average energy of individual

particles becomes

〈ε〉 = E/N = qΦ, (73)

for the same particle, we think of

that if particle energy ε meet the dual

forms ε = pc = qΦ. then average

energy 〈ε〉 = 〈pc〉, would be

〈ε〉 = 〈pc〉 = qΦ. (74)

Therefore formula Eq.(72) becomes

α
E

=
1

qΦ
. (75)

By now, the α
E

= 1/(qΦ) is La-

grangian multiplier of the energy, the

Eq.(64) and Eq.(66) may be rewritten

so that number ofNi particles and the

partition function Z as become

Z =
∑
i

gi exp(−pic
qΦ

), (76)

Ni =
N

Z
gi exp(−pic

qΦ
). (77)
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This is the Lagrangian multiplier α
E

=

1/(qΦ) of the number of the charged

particles in the statistical sense, which

will play a vitally important role in

the forthcoming discussion. By Eq.(70)

we get

N =
−1

α
E
c
N lnZ = N qΦ

−1

c
lnZ.

(78)

From Eq.(33) the energy E divided by

the potential function Φ, then the en-

tropy function of the particle by

Eq.(78) as

S =
E
Φ

= q
−1

c
lnZ. (79)

In Eq.(64), when the energy pc is re-

placed by energy ~ω, so the partition

function of the system becomes

Z =
∑
i

gi exp(−~ωi
qΦ

). (80)

Similarly to Eq.(71), the expected value

of energy ~ω can be obtained from

the following equation

N = N αq 〈~ω〉 =

N αq

∫ ∞
0

~ω
1

Z
gi exp(−α

E
~ω) dω,

(81)

by Eq.(81) to get

αq =
1

〈~ω〉
. (82)

Thus the entropy function of the

particle may be obtained from Eq.(70).

By Eq.(74) dual energy relation let

qΦ = pc = ~ω, thus set α
E

= αq,

which the energy is the following equa-

tion namely

−1

αqc
N lnZ = N 〈~ω〉 −1

c
lnZ. (83)

In the Eq.(36) we have defined the

exact differential or quantum entropy,

where divide the energy ε = ~ω by

the angular frequency ω. Then the

entropy function of the particle from

Eq.(83) is

S =
E

N〈ω〉
= ~
−1

c
lnZ. (84)

So far, we derived Lagrangian mul-

tipliers of energy, as well as two classes

of partition functions and their corre-

sponding entropy functions.
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5 Distributions, Par-

titions and Critical

States of Countable

Particles of a Sys-

tem

We assume that there is an i-th par-

ticle coupled with a large number of

other particles, which potential en-

ergy qϕi satisfiers the dual energy re-

lation qϕi = pic. If the Ni countable

particles are distributed in a Gi cell

of the phase space. Thus the first

particle has Gi distribution pattern,

the second particle has Gi − a distri-

bution pattern, and so on, with the

final term is Gi − (Ni − a), where a

is constant. Let’s suppose that the

gi is probability of these Ni particles,

so the total number of the particles,

whole energy and probability of the

system are as follows, respectively

N =
∑
i

Ni, E =
∑
i

Ni pic, (85)

by the L.Brillouin statistical meth-

ods [11], we get

W = (86)

Πi
[Gi(Gi − a)...(Gi − (Ni − 1)a)]

Ni!
gNi
i

= Πi
Gi!

Ni!(Gi −Nia)!
gNi
i .

From expanding the above prob-

abilities formula, according to Stir-

ling’s approximation formula [12, 13],

and calculate the variation of these

equations, apply the Lagrangian mul-

tipliers α
E

and µ, respectively, we have

∑
i

[(ln
Gi

Ni

− a) + ln gi + α
E
pic−

µ]δNi = 0.

(87)

Let us rearrange the Eq.(87), so

that the number of particles is as fol-

lows
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Ni = Gi gi/[exp(−α
E
pic+ µ) + a gi]

(a = ±1).

(88)

For ease of calculation, let’s say

x = exp(−α
E
pic+µ) and expand the

generating function to get

Ni =
Gi

a
− 1

a2g2i
Gi gi x. (89)

From this, the phase space Ω and

the total number of particles of the

system are obtained as follows

Ω = Σi
Gi

a

and N = Σia
2g2iNi = ΣiGi gi x.

(90)

by Eq.(90) the second term, let’s

rewrite the total number of the par-

ticles in the system to get

N = ΣiGi gi exp(−α
E
pic) exp(µ).

(91)

Now we can define the partition

function of the system as

Z = ΣiGi gi exp(−α
E
pic). (92)

By Eq.(91) and Eq.(92), thus we

get the Lagrangian multiplier of num-

ber of particles

exp(µ) =
N

Z
. (93)

From Eq.(70) and Eq.(75), the re-

lation between partition function and

the energy as

−1

α
E
c

lnZ = qΦ
−1

c
lnZ (α

E
=

1

qΦ
).

(94)

In a countable particles system,

let the energy is divided by the po-

tential function, we introduce into the

entropy function from Eq.(33) and

Eq.(94), to get

S =
E
Φ

= q
−1

c
lnZ. (95)

However, when the particle has dual

relation of energy pic = ~ωi, by Eq.(92)

the partition function of the system
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can be written as

Z = ΣiGi gi exp(−α
E
~ω). (96)

The i-th particle of the Gi cell of

phase space carry the energy pic. This

particle concurrent also has thermo-

dynamic kinetic energy p2i /(2m) in tem-

perature T , we get

E1 =
∑
i

Ni p
2
i /(2m), E2 =

∑
i

Nipic

N =
∑
i

Ni.

(97)

The following probabilities are the

identical as in Eq.(86), if the Ni par-

ticles distribute in Gi cell of the phase

space. Therefore, Ni particles would

have the probability W as below

W = (98)

Πi
[Gi(Gi − a)...(Gi − (Ni − 1)a)]

Ni!
gNi
i

= Πi
Gi!

Ni!(Gi −Nia)!
gNi
i .

In the same way, according to Stir-

ling’s approximation formula, calcu-

late the variation of these equations

and with the Lagrangian multipliers

β, α
E

and µ, respectively, we have

∑
i

[(ln
Gi

Ni

− a) + ln gi − β
p2i

(2m)
+

α
E
pic− µ]δNi = 0,

(99)

set β = 1/(kT ), α
E

= 1/(qΦ).

We know that the thermal motion of

these particles is disordered motion,

thus take the Lagrangian multiplier

to get a negative sign β = −1/kT .

Whereas for the motion of these par-

ticles in the potential field is an or-

dered motion, thus we should take

plus sign the α
E

= +1/qΦ. By Eq.(99)

we make a rearrangement as

Ni = Gi gi /[exp(
p2i

2mkT
−

pic

qΦ
+ µ) + agi],

(100)

take a = 1,−1, we have

Ni = Gi gi /[exp(
p2i

2mkT
−pic
qΦ

+µ)±gi]

(101)

There are both temperature T and

potential functions Φ in the system.
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From Eq.(100) we get Bose and Fermi

statistical distributions of number of

particles. For ease of calculation, let’s

say y = exp(−β p2i /2m+ α
E
pi c) and

expand the generating function to get

Ω = Σi
Gi

a

N = Σia
2g2iNi = ΣiGi gi y exp(µ).

(102)

Now we can define the partition func-

tion of the system, we get

Z = ΣiGi gi exp(−β p2i /2m+α
E
pi c).

(103)

Thus Lagrangian multiplier of num-

ber of these particles is

exp(µ) =
N

Z
. (104)

When take a = 0, for the system con-

currently exist temperature T and po-

tential function Φ, by Eq.(100) the

Boltzmann statistical distribution be-

comes

Ni = Gi gi / exp(
p2i

2mkT
− pic

qΦ
+ µ).

(105)

By the Eq.(103), we can define parti-

tion function of the system Z

Z = ΣiGi gi exp(−β p2i
(2m)

+ α
E
pic).

(106)

Then, by Eq(105) and Eq.(106) the

Lagrangian multiplier of number of

particles becomes

exp(µ) =
N

Z
. (107)

If there is temperature of critical state

T = T0 in the system , then the equi-

librium state of the system has p2i /2mkT0 =

pic/qΦ, and thus making exp(p2i /2mkTo−

pic/qΦ) = 1. thus, from Eq.(100)

these particles will be distributed as

follows

Ni = Gi gi /[exp(µ) + agi], (108)

By Eq.(108) total number of particles

of the system, we have

N = ΣiGi gi /[exp(µ) + agi]. (109)

Let us calculate integrate of Eq.(100)

N =

∫ ∞
0

Nidp =

∫ ∞
0

4πvp2gi
h3

1

exp(
p2

2mkT
− p c

qΦ
+ µ) + agi

dp.

(110)
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When these particles place in the po-

tential Φ, their motion will be ordered

state, if the system’s temperature T →

0, these particles disordered thermal

motions would also approach ordered

state. Namely, the particles would

stay in the ground state. These par-

ticles of spin 1 would locate in the

identical phase cell, would show the

follows:

N =
1

exp (
p2

2mkT
− p c

qΦ
)− gi

+

∫ ∞
0

4πvp2gi
h3

1

exp(
p2

2mkT
− p c

qΦ
+ µ)− gi

dp.

(111)

For concurrent existence of tempera-

ture T and potential Φ in the system,

and these particles at spin 1/2, hence

we have the following particle num-

ber:

N =

∫ ∞
0

4πvp2gi
h3

1

exp(
p2

2mkT
− p c

qΦ
+ µ) + gi

dp.

(112)

It is not difficult to see that in a sys-

tem is composed of charged particles,

in the environment potential Φ there

is the probability distribution of the

particles ordered motion. However, if

in the system these particles are elec-

trically neutral or at potential Φ =

0 the potential energy qΦ = 0, the

motion of these particles will be in a

state of the thermal motion of disor-

der. In other words that when ex-

ists only temperature T in the sys-

tem, these particles only have ther-

modynamic kinetic energy, they are

normally the Boltzmann, Bose and

Fermi probability statistical distribu-

tion, the numbers of particle is as fol-

lows

Ni =
4πvp2gi
h3

1

exp(
p2

2mkT
+ µ) + agi

(a=0, -1,1).

(113)

In this paper, we apply the

Caratheodory axiomatization to de-
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fined the potential function and en-

tropy function of the system. We in-

troduce the relative rate of change of

energy and its corresponding entropy

function. Based on the probability

distribution density, by number of par-

ticles and expectations value of en-

ergy in the system, to calculate the

variation. From multiplying of La-

grangian multipliers, we derived the

parameters of energy 1/(qΦ) and par-

ticle’s number exp(µ). Another, the

partition function and the entropy func-

tion of the system are also defined.

The whole entropy function of the sys-

tem has been polymerization become

S = kB lnZt + q(−1/c) lnZc +

~(−1/c) lnZq , where they are respec-

tively, the kB lnZt is thermodynamic

entropy, the q(−1/c) lnZc is entropy

of the system of charged particles and

the ~(−1/c) lnZq is entropy of quan-

tum of the system. When concurrent

exist of temperature T and potential

Φ in the system, with the L.Brillouin

statistical method of phase space to

obtained probability distribution of num-

ber of particles, and the distribution

of the particles of critical state in tem-

perature T = T0.
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