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Abstract

This paper contains re�ections on how Newton's classical inverse-square
law of gravitation corresponds to both Einstein's theory of special rel-
ativity adapted for an accelerated object, as well as Einstein's theory
of general relativity for the free-fall of an object in a curved spacetime.
Using a model described in detail in a related paper, viXra:2409.0004,
it is shown that space and time are regular in the neighbourhood of a
static point mass, and that a black hole and event horizon are mathe-
matical artefacts. In addition, since gravity does not diverge to in�nity
as masses approach each other, there is no singularity at the coordinate
origin.

1 Introduction
Newton's law of gravitation, Einstein's theory of special relativity (SR)
and Einstein's theory of general relativity (GR) are three di�erent the-
ories, but - if they are going to be used to provide a good physical
description of gravitational motion - they must correspond with each
other in situations where they overlap in their range of applicability.
The three theories are certainly not the same or easily reconciled with
each other. They are conceptually di�erent. Even fundamental quan-
tities such as time are not necessarily the same in the three theories.
This paper is intended to clarify some of the di�erences and establish
where they are equivalent.

In Newtonian or classical physics, denoting time as τ , this is the time
we normally use. It is called absolute time, because it doesn't depend
on anything else, such as motion or gravity, and it is considered to be
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the same everywhere. For example, the time on the Sun at this instant
(now) is the same as it is here on Earth, except that we see the Sun as it
was 8 minutes ago, due to the time it takes for information in the form
of light to reach the Earth. The velocity of a body is given by dr/dτ
and its acceleration d2r/dτ 2, where dr is an increment of distance and
dτ an increment of time.

Special relativity (SR) considers the relative motion of two inertial
or force-free frames of reference. A coordinate frame is imagined to have
clocks positioned everywhere that are synchronised with each other to
read the same time, which is called the coordinate time t. We can
imagine ourselves as an observer in this frame equipped with one of
these clocks, so the coordinate time in SR corresponds to time as we
measure it where we are. In this sense, we are stationary and the other
inertial frame is moving relative to us, but due to Einstein's postulate
of the invariance of the speed of light, an identical clock in the moving
frame will tick at a di�erent rate from our coordinate frame clock. This
di�erent time rate - which is slower than the coordinate time rate - is
called the proper time, here t′. The name - proper time - is perhaps a
bad translation into English from the German word Eigenzeit, which
means own time or self time. There is nothing proper about it in the
sense of being correct or right. Minkowski showed that due to Einstein's
postulate, the three spatial coordinates and time could be considered
mathematically as a �at four-dimensional spacetime manifold with a
symmetry referred to as Lorentzian covariance. SR was not initially
conceived to deal with accelerations but, as I shall show later, it can
indeed be adapted to describe situations where accelerated motion in
a gravitational �eld occurs.

General relativity (GR), where gravity is involved, is di�erent again.
An observer can now be imagined to be situated in a coordinate frame
of reference which would have been present before any object causing
gravity via spacetime curvature is inserted into the space. Alterna-
tively, you could imagine the coordinate frame as an uncurved frame
very distant from the mass causing gravity. Now imagine two identical
clocks that are not moving relative to each other, one on Earth and
the other on a satellite above the Earth. These two clocks will tick at
di�erent rates, not like in SR due to relative motion, but due to the
curvature of time, an e�ect called gravitational time dilation. The time
on the satellite clock may also be called the proper time t′; it runs at a
faster rate, because it is at a higher gravitational potential. As a prin-
ciple, clocks always show the proper time. In GR, a four-dimensional
spacetime manifold is also adopted as in SR, but in GR it is curved
or distorted, and the path of a particle is calculated using Hamilton's
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principle of least action, which involves extremising the path between
two points in spacetime, which also extremises the proper time. Thus,
in GR, the physical quantities involved are proper quantities (not co-
ordinate quantities), such as the proper velocity ṙ = dr/dt′, and the
proper acceleration r̈ = d2r/dt′2.

2 Predictions
The question to be answered is: how do these various quantities relate
to each other when we attempt to use the correspondence principle to
compare them in a situation where a test body is moving in a gravita-
tional �eld? We shall always be considering here a test particle with a
small mass m falling radially towards a much greater point mass M .

2.1 Classically
In Newtonian mechanics, the radial acceleration a is given by a =
d2r/dτ 2 = −GM/r2. Referred to zero an in�nite distance from M ,
the potential energy of the test mass is then −GmM/r, and its kinetic
energy, 1

2
mv2 = GmM/r, or v2 = 2GM/r, where v = dr/dτ . We see

that both v and a →∞ for r → 0.

2.2 Using SR
Next, SR was not conceived for accelerated motion, but nevertheless
we can make some deductions about free-fall. A free-falling object
in a gravitational �eld is force-free, and so it is in an inertial frame,
except that the velocity keeps increasing according to the principle of
conservation of energy. Firstly, write the four-force on a co-moving
particle as the rate of change of momentum in the proper frame:

F̃ =
dp̃

dt′
=

(
iP

c
, ~F

)
(1)

where P is power, given by P = dE/dt′, and E is the energy. We then
write

F̃ .s̃ =
(

iP

c
, F

)
.(ic dt, dr) = −P dt + F dr = 0 (2)

for conservation of energy. Now rearrange this as P dt = F dr and we
have

dE

dt′
dt = −GmM

r2
dr (3)

where the term on the right is Newton's law for the gravitational force,
and m is the rest mass of the free-falling particle. This expression

3



represents the di�erential gain in kinetic energy balanced against the
di�erential loss in potential energy. In SR we have the following expres-
sion relating proper time increments dt′, coordinate time increments dt
and the relative speed v:

dt′2 = dt2 − dr2/c2 (4)

or
dt′

dt
=

√
1− v2/c2 =

1

γ
(5)

where v = dr/dt is the coordinate velocity. This gives

γ dE = −GmM

r2
dr (6)

We then have
γ dγ = −GM

c2

dr

r2
(7)

which on integration from ∞→ r gives

v2 =
2GM

r

(
1 +

2GM

c2r

)−1

(8)

This expression describes how the coordinate velocity v of a free-falling
object changes with distance r as it approaches the gravitational mass
M . When r is large the Newtonian expression, v2 = 2GM/r, is recov-
ered, but as r decreases, the velocity starts to lag behind the classical
result, reaching a limiting value of c. Writing the constant quantity
2GM/c2 = α, this may be rewritten as

v2

c2
=

α

r

(
1 +

α

r

)−1

=
α

r + α
(9)

and by di�erentiating this expression, the coordinate acceleration of
free-fall is

d2r

dt2
= v

dv

dr
= −1

2
c2 α

(r + α)2
(10)

This does not diverge to in�nity but reaches a constant value of−c4/4GM
for r → 0.

On the other hand, it can be shown by rearranging the metric that
the proper velocity is given by

ṙ2

c2
=

v2

c2

(
1− v2

c2

)−1

(11)
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which, using Equation 9, gives

ṙ2

c2
=

α

r
(12)

Thus, the proper velocity dr/dt′ does diverge to in�nity as r → 0. This
is obvious really, because, when the coordinate speed approaches c as
r → 0, the proper clock stops ticking.

2.3 Using GR
The �rst person to obtain a solution for the gravitational �eld outside
a point mass using general relativity (GR) was Karl Schwarzschild in
1916 [1], less than a year after Albert Einstein published his GR theory
[2]. Due to subsequent work by Droste [3], Weyl [4], and in particular
Hilbert [5], a spacetime increment ds̃ is usually written in spherical
polar coordinates (t, r, θ, φ) in the form:

ds̃2 = c2dt′2 = Ac2dt2 −B dr2 − r2(dθ2 + sin2 θ dφ2) (13)

where A and B are radially dependent functions describing the curva-
ture of the time and radial metric coe�cients, respectively, and r is a
radial coordinate, traditionally called the Schwarzschild radial coordi-
nate in honour of Schwarzschild's name. However, as I shall explain
later, r in the metric is not identical to the true radial coordinate dis-
tance from the point mass M .

Next, the calculus of variations is used to obtain geodesic equations
for the four coordinate variables (t, r, θ, φ) with the proper time t′ as
the Lagrangian parameter that extremises the path of a particle in the
curved spcetime. This procedure is explained in detail in another paper
[6] that could be read in conjunction with this paper, as well as in many
standard textbooks.

Knowing the geodesic equations immediately enables the equation
of free-fall motion to be determined, viz.

r̈ +
A′

2B
c2ṫ2 +

B′

2B
ṙ2 = 0 (14)

where r̈ ( = d2r/dt′2) is the proper acceleration, ṙ (= dr/dt′) is the
proper velocity, A′ = dA/dr and B′ = dB/dr. Using the radial part of
the metric in Equation 13 to eliminate ṫ (with dθ = dφ = 0), we can
then reformulate Equation 14 to read:

r̈ +
A′

2AB
c2 +

(
A′

2A
+

B′

2B

)
ṙ2 = 0 (15)
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The functions A and B are found using Einstein's �eld equations
of GR for the vacuum outside the point mass. This involves obtaining
the Christo�el curvature components from the geodesic equations to
obtain the Ricci tensor components, which are then all set to zero (see
any textbook on gravitation), with the result that

A =
1

B
= 1− α

r
(16)

where α is a constant of integration.
To �nd α in terms of physical quantities, such as Newton's gravita-

tional constant G and the mass of the object causing gravity M , it is
customary to make use of Newton's law of gravitation, in what is called
a weak-�eld approximation. Substituting B = 1/A, from Equation 16
into the free-fall equation of motion (Equation 15), we obtain:

r̈ +
A′c2

2
= 0 (17)

Then, using A′ = α/r2 by di�erentiating Equation 16, we obtain

r̈ = −
1
2
αc2

r2
(18)

The result appears to show correspondence with the inverse-square law
behaviour of Newton's law of gravitation, in which free-fall acceleration
is −GM/r2, giving α = 2GM/c2, which is a positive quantity known
variously as the gravitational radius or Schwarzschild radius; α turns
out to represent only a small distance, about 2.9 km for a star the mass
of the Sun and 8.7 mm for Earth. However, for a supermassive object,
such as the centre of the Milky Way galaxy it could be approximately
12 million kilometres.

Since α is positive (as opposed to being negative), the solution in
Equation 16 predicts that A and B change sign at this radial coordinate
r = α. For a point (or highly compacted) mass with physical radius
less than α, it therefore seems that a discontinuity occurs in spacetime.
The distance α de�nes what is now called the event horizon, inside
which the point mass is obscured as a black hole.

Next, by integrating Equation 17 one obtains the proper velocity of
free-fall ṙ, which may be written as

ṙ2

c2
= 1− A (19)

and inserting the solution A = 1− α/r we obtain
ṙ2

c2
=

α

r
(20)
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This predicts ṙ → c for r → α and ṙ →∞ for r → 0.
The same GR solution also makes a prediction for the coordinate

velocity. This can also be derived from the radial part of the metric:

dt′2 = A dt2 −B dr2/c2 (21)

Rearranging this in two ways (writing γ = dt/dt′) gives

1

γ2
= A−B

u2

c2
(22)

where u = dr/dt is the GR coordinate velocity, and

1 = Aγ2 −B
ṙ

c2
(23)

We thus obtain
u2

c2
=

Aṙ2/c2

(1 + Bṙ2/c2)
(24)

Substituting ṙ2/c2 = 1− A and B = 1/A we �nally obtain

u2

c2
= (1− A)A2 =

α

r

(
1− α

r

)2

(25)

This is a very strange result, because it suggests that the coordinate
velocity goes to zero as r → α. As a distant observer, we would then
presumably see falling objects stop for ever at the event horizon. This
surely cannot be correct?

3 Discussion and further theory
Historically, Schwarzschild [1] recognised there was a mathematical dis-
continuity in hisGR solution for a point mass, but by de�ning a suitable
auxiliary radial coordinate he forced the discontinuity to be at the ori-
gin, since he believed it to be non-physical. Shortly afterwards Droste
[3] and Weyl [4] provided a solution, but restricted the range of r to
r > α. Subsequently, Hilbert [5] extended Droste and Weyl's solution
to the region r < α on the grounds that a coordinate transformation
does not alter the physics of the situation, and GR is supposed to be a
generally covariant theory. It is essentially Hilbert's solution allowing
for a change in sign of A and B, that is accepted today

However, in a previous related paper [6] I showed there is a sim-
ple explanation that falsi�es the irregular behaviour of spacetime. The
geometry of Newton's inverse-square law of gravitation is undeniably
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strictly Euclidean (or �at), i.e. spatial curvature plays no part in New-
tonian gravity. On the other hand, GR explains gravity through the
curvature of both space and time. Logically, then, to relate Newton's
law with GR to obtain correspondence, we must recognise that Newto-
nian gravity is that contribution to gravity resulting exclusively from
the curvature of time. In comparing GR with Newton's law it is there-
fore incorrect to use the reciprocity of space and time curvature dictated
by GR. We have to write B = 1, as for a Euclidean space, and then
the equation of free-fall from Equation 15 becomes modi�ed to read

r̈ +
A′

2A

(
c2 + ṙ2

)
= 0 [B = 1] (26)

Solving this di�erential equation and inserting Newtonian expres-
sions for free-fall acceleration and velocity as before then gives the
following expression for A:

A =
(
1 +

α

r

)−1

; α = 2GM/c2 (27)

where the constant of integration α is again equal to 2GM/c2. Thus, we
have quanti�ed the insight that the gravitational force or acceleration
in Newton's law relates strictly to the curvature of the time coordinate
in GR.

Now writing the Schwarzschild radial coordinate in the GR solution
of Equation 16 as r∗, so as not to confuse the two coordinates, we may
write

A = 1− α

r∗
=

(
1 +

α

r

)−1

(28)

from which it follows that

r∗ = r + α (29)

The di�erence between r∗ and r is extremely small when they are very
much greater than α, and distinguishing between the two then becomes
irrelevant. But when r is of the order of α the situation is crucially
di�erent. While the range of r goes from zero to ∞, the range of r∗

is from α to ∞. The spacetime manifold does not exist for r∗ < α;
Hilbert's extension to r∗ < α is therefore meaningless, and there is no
event horizon.

The solution A = (1 + α/r)−1; B = 1 does not accurately satisfy
Einstein's vacuum �eld equations of GR, since Newton's inverse-square
law of gravity only describes that aspect of gravity caused exclusively by
the curvature of the time coordinate (and not space), and this is man-
ifestly dominant for most cases we consider, such as planetary motion.
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However, space curvature becomes signi�cant when speeds approach
the speed of light, and distances to the central mass become small,
and this will modify gravity from being purely Newtonian. GR then
describes correctly phenomena that Newton's law does not describe,
such as the perihelion rotation of the planet Mercury, and the bend-
ing of starlight passing near the Sun. To satisfy GR, we thus require
B = 1/A, as before, but the Schwarzschild radial coordinate must be
replaced by (r + α).

We then obtain for the proper velocity:

ṙ2

c2
= 1− A =

α

r + α
(30)

This means we have ṙ → c for r → 0, which contrasts fundamentally
with the black hole solution, where

ṙ2

c2
= 1− A =

α

r

which gives ṙ → c for r → α, and ṙ → ∞ for r → 0. The solution
presented here thus predicts a limiting free-fall proper velocity of c, in
contrast to the other theories that predict in�nite velocity as r → 0.
Furthermore, in my model the radial free-fall acceleration is given by

r̈ = −1

2
c2 α

(r + α)2
= − GM

(r + 2GM/c2)2
(31)

which shows classical Newtonian behaviour −GM/r2 for r À α but
deviates (decreases) from inverse-square law behaviour for r of the order
of α.

4 Further discussion
Looking back to Subsection 2.2, we see that the coordinate velocity
prediction using SR (Equation 9) is identical to the proper velocity
prediction in GR using my model (Equation 30). How can this be true?
To show it makes sense, I shall use what may be called a heuristic
argument, as follows (i.e. proceeding by rules that are loosely de�ned).

Write the radial part of the metric in GR (i.e. with dθ, dφ = 0),
bracketed as

c2dt′2 = c2(
√

Adt)2 − (
√

B dr)2 (32)
and make the following substitutions:

dT =
√

Adt ; d% =
√

Bdr (33)
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We then have
c2dt′2 = c2dT 2 − d%2 (34)

which now resembles a spacetime element in SR in terms of coordi-
nates T and %. Writing the proper velocity in SR as %̇ = d%/dt′ and
the coordinate velocity as v = d%/dT , we then have the following rela-
tionships:

%̇ =
d%

dt′
=

√
Bdr

dt′
=
√

B ṙ (35)

and
v =

d%

dT
=

√
B dr√
A dt

=

√
B u√
A

(36)

where u = dr/dt is the coordinate velocity in GR.
I have already shown in GR in Equation 19 that

ṙ2

c2
= 1− A (37)

which gives
%̇2

c2
= B(1− A) (38)

I have also shown in GR that
u2

c2
= A2(1− A) (39)

Therefore we have
v2

c2
= AB(1− A) (40)

Now use the point mass solution with B = 1/A and we then have the
following relationships between the proper and coordinate velocities in
GR compared with their proper and coordinate equivalents in SR for
this free-fall thought experiment:

ṙ2

c2
= 1− A ;

u2

c2
= A2(1− A) (41)

%̇2

c2
=

1− A

A
;

v2

c2
= 1− A (42)

Comparing the last two sets of equations, the point I have wanted to
prove is that the proper velocity ṙ in GR is equivalent to the coordinate
velocity v in SR, which is why Equations 9 and 30 agree with each other.

Finally, the coordinate velocity in GR from my model is given by
u2

c2
= A2(1− A) =

αr2

(r + α)3
(43)
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This quantity falls to zero as r → 0, which is interesting, because it
supports the prediction in my model that gravity disappears as masses
approach each other intimately, and that the traditionally expected
singularity at the origin is in fact non-existent.

5 Conclusion
It has been shown here how SR can be interpreted for the case of free-
fall, and how the various physical quantities in Newton's law, SR and
GR correspond to each other for the case of a test object falling towards
a point mass. The deductions outlined here deviate markedly from the
current paradigm. The idea of a black hole and event horizon, although
a mathematical possibility, has been shown to be non-physical by cor-
rect correspondence of Newton's law in conjunction with Einstein's
GR theory. The present model shows that gravity does not diverge to
in�nity as masses approach each other, which removes the physically
inexplicable issue of a singularity in spacetime.
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