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1 The main result

Theorem 1.1. Let N = 4 · 3n − 1 where n ≥ 0. Let Si = S3
i−1 − 3Si−1 with S0 = 6 . Then N is

prime iff Sn ≡ 0 (mod N) .

Proof. The sequence ⟨Si⟩ is a reccurence relation with a closed-form solution. Let ω = 3+
√
8

and ω̄ = 3−
√
8 . It then follows by induction that Si = ω3i + ω̄3i for all i :

S0 = ω30 + ω̄30 = (3 +
√
8) + (3−

√
8) = 6

Sn = S3
n−1 − 3Sn−1 =

=
(
ω3n−1

+ ω̄3n−1
)3

− 3
(
ω3n−1

+ ω̄3n−1
)
=

= ω3n + 3ω2·3n−1
ω̄3n−1

+ 3ω3n−1
ω̄2·3n−1

+ ω̄3n − 3ω3n−1 − 3ω̄3n−1
=

= ω3n + 3ω3n−1
(ωω̄)3

n−1
+ 3ω̄3n−1

(ωω̄)3
n−1

+ ω̄3n − 3ω3n−1 − 3ω̄3n−1
=

= ω3n + ω̄3n

The last step uses ωω̄ = (3 +
√
8)(3−

√
8) = 1 .

Necessity
If N is prime then Sn is divisible by 4 · 3n − 1 .

For n = 0 we have N = 3 and S0 = 6 , so N | S0, otherwise since 4 · 3n − 1 ≡ 11 (mod 12)

for odd n ≥ 1 it follows from properties of the Legendre symbol that
(

3
N

)
= 1 . This means that

3 is a quadratic residue modulo N . By Euler’s criterion, this is equivalent to 3
N−1

2 ≡ 1 (mod N)

. Since 4 · 3n − 1 ≡ 3 (mod 8) for odd n ≥ 1 it follows from properties of the Legendre symbol
that

(
2
N

)
= −1 . This means that 2 is a quadratic nonresidue modulo N . By Euler’s criterion,

this is equivalent to 2
N−1

2 ≡ −1 (mod N) .
Combining these two equivalence relations yields

72
N−1

2 =
(
2

N−1
2

)3 (
3

N−1
2

)2

≡ (−1)3(1)2 ≡ −1 (mod N)

Let σ = 3
√
8 and define X as the ring X = {a+b

√
8 | a, b ∈ ZN} . Then in the ring X , it follows

that
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(12 + σ)N = 12N + 3N
(√

8
)N

=

= 12 + 3 · 8N−1
2 ·

√
8 =

= 12 + 3(−1)
√
8 =

= 12− σ ,
where the first equality uses the Binomial Theorem in a finite field, and the second equality uses
Fermat’s little theorem.

The value of σ was chosen so that ω =
(12 + σ)2

72
. This can be used to compute ω

N+1
2 in the ring

X as

ω
N+1

2 =
(12 + σ)N+1

72
N+1

2

=

=
(12 + σ)(12 + σ)N

72 · 72N−1
2

=

=
(12 + σ)(12− σ)

−72
=

= −1.
Next, multiply both sides of this equation by ω̄

N+1
4 and use ωω̄ = 1 which gives

ω
N+1

2 ω̄
N+1

4 = −ω̄
N+1

4

ω
N+1

4 + ω̄
N+1

4 = 0

ω
4·3n−1+1

4 + ω̄
4·3n−1+1

4 = 0

ω3n + ω̄3n = 0

Sn = 0

Since Sn is 0 in X it is also 0 modulo N .

Sufficiency
If Sn is divisible by 4 · 3n − 1 then 4 · 3n − 1 is prime.

For n = 0 we have N = 3 and S0 = 6 , so N | Sn and N is prime, otherwise consider the
sequences:
U0 = 0, U1 = 1, Un+1 = 6Un − Un−1

V0 = 2, V1 = 6, Vn+1 = 6Vn − Vn−1

The following equations can be proved by induction:
(1) : Vn = Un+1 − Un−1

(2) : Un =
(3 +

√
8)n − (3−

√
8)n√

32
(3) : Vn = (3 +

√
8)n + (3−

√
8)n

(4) : Um+n = UmUn+1 − Um−1Un

One can show if Sn ≡ 0 (mod (4 · 3n − 1)):
U2·3n = U3nV3n ≡ 0 (mod (4 · 3n − 1))

U3n ̸≡ 0 (mod (4 · 3n − 1))

Theorem 1.2. With a, b ∈ Z let f(x) = x2 − ax+ b , ∆ = a2 − 4b and let n be a positive integer
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with gcd(n, 2b) = 1 and
(
∆

n

)
= −1. If F is an even divisor of n+ 1 and

VF/2 ≡ 0 (mod n) , gcd(VF/2q, n) = 1 for every odd prime q | F,

then every prime p dividing n satisfies p ≡
(
∆

p

)
(mod F ). In particular if F >

√
n + 1 then

n is prime.

One can show if Sn ≡ 0 (mod (4 · 3n − 1)) the conditions from Theorem 1.2. are fulfilled ,
hence 4 · 3n − 1 is prime.

■

2 Generalization

Let N = 4 ·pn−1 , where n ≥ 1 and p is an odd prime. Let Si = Dp(Si−1, 1) with S0 = 6 , where
Dn(x, 1) denotes nth Dickson polynomial. Then N is prime if and only if Sn ≡ 0 (mod N) .
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