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Computationally efficient  differenceless derivatives with equidistant steps have been
developed, which makes it possible to calculate an unlimited number of derivatives. The
new  algorithm  can  be  applied  in  various  fields  of  science  and  technology.  As  an
example, we provide step-by-step instructions on how to improve the accuracy of the
predicted trajectory of a flying missile.

Derivatives, and especially numerical derivatives, are widely used in mathematics, physics, 
applied sciences, and almost anywhere where they are needed. Differenceless derivatives with 
equidistant steps were presented in work [1]. The basic equation for calculating n derivatives, written in
matrix form is

(
(∑ i2

)h
1
2 !

(∑ i3
)h2 1

3 !
(∑ i4

)h3 ...
1
n !

(∑ in+1
)hn

(∑ i3
)h

1
2!

(∑ i4
)h2 1

3 !
(∑ i5

)h3 ...
1
n !

(∑ in+2
)hn

(∑ i4
)h

1
2 !

(∑ i5
)h2 1

3 !
(∑ i6

)h3 ...
1
n!

(∑ in+3
)hn

... ... ... ... ...

(∑ in+1)h
1
2 !

(∑ in+2)h2 1
3!

(∑ in+3)h3 ...
1
n!

(∑ in+n)hn
)(

f '

f ' '

f ' ' '

...
f (n)

)=(
∑ ( iΔ f (ih))

∑ (i2
Δ f ( ih))

∑ (i3
Δ f ( ih))

...

∑ (in
Δ f (ih))

) (1)

where h is step size for derivatives estimation, Δ f (h)= f (x0+h)− f (x0) , x0  is the point at which 

derivatives are calculated, n - number of derivatives, ∑ ()→∑
i=1

m

() , m - the number of points for which 

the inequality m≥n must be satisfied. One of the significant inconveniences of using expression (1) in 
practice is that for each new value of h it is necessary to find the inverse matrix or re-solve the system 
of linear equations, which can be time-consuming for a large value of n . We will transform this 
expression into a form most convenient for solving practical problems.

We will limit ourselves to the special case of equation (1) when the number of points m is equal 

to the number of derivatives n , and therefore the symbol ∑ ()→∑
i=1

n

() . First, let's look at the left side 

of equation (1). For brevity of description, we introduce the vector of derivatives

d ( x0)=( f '
( x0) , f ' '

( x0) , f ' ' '
(x0), ... , f (n )

(x0))
T

. we define two matrices H  and S
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Then the left side of the equation can be written as SH d ( x0) . Now we transform the right side of the 
equation, for this we introduce the vector
Δ f (h)=( f (x0+h)−f (x0), f (x0+2h)− f (x0) , f (x0+3 h)−f (x0) , ..., f (x0+nh)−f (x0))

T  and the matrix

 J=(
1 2 3 ... n
1 22 32 ... n2

1 23 33 ... n3

... ... ... ... ...
1 2n 3n ... nn

)
In the newly introduced notations, equation (1) is written as SH d ( x0)=J Δ f (h) . Formally the 

solution to this equation is d ( x0)=H
−1S−1 J Δ f (h) . Next, we define the matrix G=S−1J and finally 

write the solution to equation (1) in the form d ( x0)=H
−1G Δ f (h) . We will note the important 

advantages of the obtained solution. Firstly, the calculation of derivatives is reduced to simple 
arithmetic operations, multiplying a matrix by a vector. Secondly, the inverse matrix H can be easily 
found analytically. Thirdly, the matrix G does not depend on the step size h and point x0 , and does not 
depend on the function f (x) , and therefore, for a given number of unknown derivatives n , it is 
sufficient to calculate the matrix G once and use it for different functions and steps. For the 
convenience of subsequent presentation, we will rewrite the last equation in expanded form 
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Where matrix G  is represented by elements of matrix gij .
We will give some examples for expression (2) for small values of unknown derivatives n . Our

presentation will be detailed enough to be understood by both students and engineers, as well as people 
interested in mathematics. All formulas obtained below can be easily implemented in C and other 
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programming languages. We will start with the simplest case, let two points x0 and x0+h be given, then
n=1 , substituting these values into expression (2) we get

f '
(x )=

1
h
(f ( x0+h)−f (x0)) (3)

These are simple forward difference approximations of the first derivative, but we are not interested in 
this, we need to calculate derivatives of the highest possible order. This can be seen as a side effect, for
n=1 the expression (2) is not a matrix expression. For all other cases n>1 we have developed a C 
program to calculate the matrix G for arbitrary values of n , however there are limitations here which 
we will discuss as we go along. If three points x0 , x0+h and x0+2h are given, then n=2 and expression
(2) has the form 
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and allows us to calculate two derivatives. For four points x0 , x0+h , x0+2h and x0+3 h , three 
derivatives are calculated using the following expression 
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In the following example the number of points is 5 which allows us to calculate four derivatives 
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) (6)

When calculating expression (6) we encountered an unexpected problem - numerical noise. We have 
rounded all values to two decimal places. For a more complete understanding of this problem, 
Appendix A presents the values of the elements of matrix G  written in C. We used 64-bit floating 
point arithmetic, and what surprised us was that even for such a small 4x4 matrix, errors appeared 
when calculating the inverse matrix. To calculate five derivatives, expression (2) looks like 
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More precise values of the elements of the matrix G  can be found in Appendix B. For the following 
example n=6 we provide formula in a different form, The elements of the matrix G  can be found in 
Appendix C. Here we will make one remark, if in our presentation the indices of the elements of 
vectors and matrices start with 1, then in the Appendices the indices start with 0. 
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For the other two examples n=7 and n=8 we do not give formulas, as they do not fit on the page, 
however the matrices G can be found in the Appendices D and E. We limited ourselves to n=8 due to 
the very large numerical noise. After conducting research we found a simple explanation for this fact. 

Consider the matrix element S  in the lower right corner for the next value n=9 , 
1
n!

(∑
i=1

9

in+n
) . Let's 

write the sum as (1+218+...+918). We use 64-bit floating point arithmetic with an accuracy of about 16 
digits after the decimal point, for an example see any Appendix. Thus, the sum from 1 to 9 is replaced 
by the sum from 2 to 9, but then a completely different matrix S is obtained, and consequently, the 
solutions of the system of equations will not be the values of the derivatives.
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To check if we made any 
mistakes when obtaining the
formulas presented above, 
we wrote a C program for 
calculating derivatives 
based on formulas (3-8) and
using the G matrices from 
Appendices A, B, C, D, E. 
First of all, we are interested
in the accuracy of 
calculating derivatives for a 
large value of n=8 and a 
larger number of 
derivatives. As usual we 
took the exponential 
function exp(x ) at the point
x0=0 where all derivatives 

are equal to one. The 
calculation results are 
shown in Figure 1.The 

lower black curve is the accuracy of the first derivative, the curve just above is the accuracy of the 
second derivative, and so on up to the last brown curve is the accuracy of the eighth derivative. Some 
conclusions from the results obtained. As the derivative number increases, the calculation error 
increases. The optimal step for calculating the derivatives hopt , defined as the minimum of the curves 
shown, is about 0.03, hopt≈0.03 , and is the same for all eight derivatives. The optimal step is quite 
large and this is a very good property. Let us recall that the optimal step for forward difference 
approximation is about 4-8, and it is a very small value. A large optimal step is preferable to use when 
calculating derivatives from measured data, sometimes we will call this as extraction of derivatives 
from measured data.

Next, we will consider some aspects of the use of differenceless derivatives for solving applied 
problems. One of the pressing problems in the real world is predicting the trajectories of various 
moving objects. For example, an aircraft needs to know the predicted flight path, especially during 
strong winds, during autopilot, during landing and autolanding. Recently, smart car have become 
widely used, they calculate the trajectory, and the more accurately the predicted trajectory is, the 
smarter the car becomes. For ocean-going vessels it is also necessary to know the predicted trajectory, 
especially in rough stormy weather, when docking and, just in case, to avoid colliding with an 
oncoming vessel. Of course, let's not forget about interceptor missiles. Nowadays, there are situations 
when the speed of an interceptor missile is less than the speed of the intercepted missile. In this case, it 
is necessary to know the predicted trajectories for both missiles very precisely in order to accurately 
determine the time and direction of the interceptor missile launch. All these problems can be 
generalized by one mathematical methodology, trajectory prediction using differenceless derivatives. 
How to calculate these derivatives is described above.

Let's conduct the following thought experiment. Let's assume that the missile moves in a circle 
with a radius of 1, in what follows we will use relative units of measurement. The coordinates of a 
moving missile are described by the cosine and sine functions. Without loss of generality, we will 
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consider only one coordinate x which is described by the cosine cos (x) . Briefly about how we will 
conduct a thought experiment. For two, three, four, ..., nine points of a known flight path, we will 
calculate one, two, three, ..., eight derivatives using formula (2). After this, using the Taylor series 

f ( x )=f ( x0 )+ f '
( x0 )(x−x0)+

1
2 !

f ' '
( x0 )(x−x0)

2
+

1
3 !

f ' ' '
( x0 )(x−x0)

3
+⋯+

1
n !

f ( n)
( x0 ) (x−x0)

n
(9)

 and the calculated derivatives, we will predict the trajectory of motion. Our goal is to answer the 
simple question of whether we can predict the trajectory of a missile. For the experiments we chose a 
large value h=−0.1 , the minus sign indicates that we are using known coordinates of the trajectory.

In the simplest experiment, two points x=(0 ,−0.1) are given, the values of the function f (x)  
are cos (0) and cos (−0.1) . The first derivative is calculated using formula (3) and the predicted 
trajectory using formula (9) for n=1 .  The calculation results are shown in Figure 2, the black curve is 
the cosine, the two black dots were used to extract the derivative and the red line is the predicted 
trajectory. It is easy to see that the predicted trajectory does not look like a cosine at all, and therefore 
two points are not enough to predict a circular trajectory. 

For three points x=(0 ,−0.1 ,−0.2) only the first two derivatives can be calculated and the 
predicted trajectory is shown in Figure 3. The approximation in a small neighborhood of the point x=0 
has improved somewhat, but the predictions are also far from cosine, it is only a quadratic function. 
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The results of calculating the predicted trajectory for four points are presented in Figure 4. 
There is no difference here from the previous case, but we leave this example for the sake of 
completeness.

 The first interesting result we found was when using five points
x=(0 ,−0.1 ,−0.2,−0.3 ,−0.4) , in this case four derivatives were calculated using formula (6). The 
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predicted trajectory, Figure 5, began to resemble a cosine, although the prediction accuracy is still very 
poor far from x=0 .

For six points, Figure 6, we obtained a result similar to the previous ones, but with slightly 
worse accuracy.

More accurate results are shown by calculations using seven and eight points, Figure 7 and 
Figure 8 respectively.
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And finally, we got the best results using nine points. In this experiment we set the following 
values x=(0 ,−01 , ... ,−0.8) . We calculated eight derivatives using the general formula (2) for n=8
and the elements of the matrix G from Appendix E. Using these derivative values, we calculated the 
predicted trajectory using expression (9) for x0=0 . The predicted trajectory of motion (red curve) is 
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shown in Figure 9, the nine black dots are the points used to predict the trajectory and the black curve 
is the cosine curve plotted for comparison.

This Figure 9 clearly shows that if you know the trajectory of a missile in the −0.8≤x≤0 range, you 
can predict the trajectory of the missile with very good accuracy in the −3<x<3 range, or, in other 
words, if you know the trajectory of a missile a quarter of a circle, you can predict the trajectory of a 
missile half a circle ahead. This is the main result of our thought experiment.

Our study is limited to nine derivatives due to the fact that we use 64-bit floating point 
arithmetic, but if one use high-precision floating-point arithmetic when calculating the G matrix, one 
can calculate an unlimited number of derivatives. The calculations themselves according to expression 
(8) can be performed with normal precision, since matrix G is a well-defined matrix.

CONCLUSION
We have developed a methodology, computationally efficient differenceless derivatives  with 

equidistant steps, which allows us to calculate an unlimited number of derivatives. Calculating 
derivatives comes down to performing simple arithmetic operations, multiplying a n×n matrix by a 
vector of function values of dimension n , the function values can be either from other calculations or 
from measurements. The new methodology can be used to solve various applied problems. We found 
that the predicted trajectory of the flying missile shows a very high prediction accuracy, which is 
difficult to achieve for other methods. The new method of calculating derivatives has only one 
drawback: it requires equidistant steps, which suggests the need for further research on differenceless  
derivatives with non-equidistant steps.

ABOUT COPYRIGHT
The results of this work may be freely used for educational and commercial purposes. 

Publication of this article is permitted for any journals and media. Please do not ask for money for 
publication or republication of this work.
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APPENDIX A
G[0][0] = +4.0000000000000027e+00;
G[0][1] = -3.0000000000000044e+00;
G[0][2] = +1.3333333333333361e+00;
G[0][3] = -2.5000000000000061e-01;
G[1][0] = -8.6666666666666750e+00;
G[1][1] = +9.5000000000000124e+00;
G[1][2] = -4.6666666666666741e+00;
G[1][3] = +9.1666666666666829e-01;
G[2][0] = +9.0000000000000089e+00;
G[2][1] = -1.2000000000000014e+01;
G[2][2] = +7.0000000000000098e+00;
G[2][3] = -1.5000000000000018e+00;
G[3][0] = -4.0000000000000044e+00;
G[3][1] = +6.0000000000000071e+00;
G[3][2] = -4.0000000000000044e+00;
G[3][3] = +1.0000000000000009e+00;

APPENDIX B
G[0][0] = +4.9999999999997167e+00;
G[0][1] = -4.9999999999995302e+00;
G[0][2] = +3.3333333333329325e+00;
G[0][3] = -1.2499999999998241e+00;
G[0][4] = +1.9999999999996843e-01;
G[1][0] = -1.2833333333332373e+01;
G[1][1] = +1.7833333333331737e+01;
G[1][2] = -1.2999999999998639e+01;
G[1][3] = +5.0833333333327353e+00;
G[1][4] = -8.3333333333322912e-01;
G[2][0] = +1.7749999999998384e+01;
G[2][1] = -2.9499999999997318e+01;
G[2][2] = +2.4499999999997712e+01;
G[2][3] = -1.0249999999998995e+01;
G[2][4] = +1.7499999999998241e+00;
G[3][0] = -1.3999999999998535e+01;
G[3][1] = +2.5999999999997566e+01;

11

https://vixra.org/pdf/2401.0127v2.pdf


G[3][2] = -2.3999999999997925e+01;
G[3][3] = +1.0999999999999087e+01;
G[3][4] = -1.9999999999998419e+00;
G[4][0] = +4.9999999999994191e+00;
G[4][1] = -9.9999999999990354e+00;
G[4][2] = +9.9999999999991775e+00;
G[4][3] = -4.9999999999996385e+00;
G[4][4] = +9.9999999999993605e-01;

APPENDIX C
G[0][0] = +5.9999999999994253e+00;
G[0][1] = -7.4999999999980353e+00;
G[0][2] = +6.6666666666632288e+00;
G[0][3] = -3.7499999999968678e+00;
G[0][4] = +1.1999999999985440e+00;
G[0][5] = -1.6666666666645646e-01;
G[1][0] = -1.7399999999997824e+01;
G[1][1] = +2.9249999999992419e+01;
G[1][2] = -2.8222222222208813e+01;
G[1][3] = +1.6499999999987708e+01;
G[1][4] = -5.3999999999942716e+00;
G[1][5] = +7.6111111111030993e-01;
G[2][0] = +2.8999999999995605e+01;
G[2][1] = -5.7624999999984475e+01;
G[2][2] = +6.1999999999972317e+01;
G[2][3] = -3.8374999999974513e+01;
G[2][4] = +1.2999999999988084e+01;
G[2][5] = -1.8749999999982663e+00;
G[3][0] = -3.0999999999994586e+01;
G[3][1] = +6.8499999999980659e+01;
G[3][2] = -8.0666666666631954e+01;
G[3][3] = +5.3499999999967926e+01;
G[3][4] = -1.8999999999984986e+01;
G[3][5] = +2.8333333333311259e+00;
G[4][0] = +1.9999999999996110e+01;
G[4][1] = -4.7499999999985974e+01;
G[4][2] = +5.9999999999974712e+01;
G[4][3] = -4.2499999999976566e+01;
G[4][4] = +1.5999999999989036e+01;
G[4][5] = -2.4999999999983942e+00;
G[5][0] = -5.9999999999987308e+00;
G[5][1] = +1.4999999999995394e+01;
G[5][2] = -1.9999999999991665e+01;
G[5][3] = +1.4999999999992262e+01;
G[5][4] = -5.9999999999963674e+00;
G[5][5] = +9.9999999999945643e-01;

APPENDIX D
G[0][0] = +6.9999999997593108e+00;
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G[0][1] = -1.0499999999263041e+01;
G[0][2] = +1.1666666665445398e+01;
G[0][3] = -8.7499999988086063e+00;
G[0][4] = +4.1999999993124177e+00;
G[0][5] = -1.1666666664484353e+00;
G[0][6] = +1.4285714282726758e-01;
G[1][0] = -2.2299999998942848e+01;
G[1][1] = +4.3949999996758372e+01;
G[1][2] = -5.2722222216845026e+01;
G[1][3] = +4.0999999994750787e+01;
G[1][4] = -2.0099999996969011e+01;
G[1][5] = +5.6611111101488518e+00;
G[1][6] = -6.9999999986777084e-01;
G[2][0] = +4.2533333330774980e+01;
G[2][1] = -9.8224999992144021e+01;
G[2][2] = +1.2966666665362308e+02;
G[2][3] = -1.0604166665392506e+02;
G[2][4] = +5.3599999992639638e+01;
G[2][5] = -1.5408333330995220e+01;
G[2][6] = +1.9333333330131381e+00;
G[3][0] = -5.5499999995998351e+01;
G[3][1] = +1.4199999998769647e+02;
G[3][2] = -2.0316666664622147e+02;
G[3][3] = +1.7599999998001653e+02;
G[3][4] = -9.2499999988451265e+01;
G[3][5] = +2.7333333329663731e+01;
G[3][6] = -3.4999999994981863e+00;
G[4][0] = +4.9166666662585889e+01;
G[4][1] = -1.3499999998743922e+02;
G[4][2] = +2.0583333331244538e+02;
G[4][3] = -1.8833333331290675e+02;
G[4][4] = +1.0349999998819067e+02;
G[4][5] = -3.1666666662913713e+01;
G[4][6] = +4.1666666661519685e+00;
G[5][0] = -2.6999999997495880e+01;
G[5][1] = +7.7999999992284827e+01;
G[5][2] = -1.2499999998716196e+02;
G[5][3] = +1.1999999998744008e+02;
G[5][4] = -6.8999999992736377e+01;
G[5][5] = +2.1999999997691134e+01;
G[5][6] = -2.9999999996831548e+00;
G[6][0] = +6.9999999992905577e+00;
G[6][1] = -2.0999999997812420e+01;
G[6][2] = +3.4999999996357900e+01;
G[6][3] = -3.4999999996435484e+01;
G[6][4] = +2.0999999997938005e+01;
G[6][5] = -6.9999999993445101e+00;
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G[6][6] = +9.9999999990967581e-01;
APPENDIX E

G[0][0] = +8.0000000134147236e+00;
G[0][1] = -1.4000000043652339e+01;
G[0][2] = +1.8666666748177008e+01;
G[0][3] = -1.7500000095553037e+01;
G[0][4] = +1.1200000072013843e+01;
G[0][5] = -4.6666667007329892e+00;
G[0][6] = +1.1428571520993387e+00;
G[0][7] = -1.2500000110276233e-01;
G[1][0] = -2.7485714350214927e+01;
G[1][1] = +6.2100000209853206e+01;
G[1][2] = -8.9022222614030497e+01;
G[1][3] = +8.6375000459282958e+01;
G[1][4] = -5.6400000346133041e+01;
G[1][5] = +2.3811111274852408e+01;
G[1][6] = -5.8857143301388533e+00;
G[1][7] = +6.4821429101857575e-01;
G[2][0] = +5.8166666843304903e+01;
G[2][1] = -1.5294166724125918e+02;
G[2][2] = +2.3910000107267780e+02;
G[2][3] = -2.4283333459066375e+02;
G[2][4] = +1.6303333428088612e+02;
G[2][5] = -7.0125000448249352e+01;
G[2][6] = +1.7566666788286511e+01;
G[2][7] = -1.9541666811837786e+00;
G[3][0] = -8.7733333659403556e+01;
G[3][1] = +2.5481666772717645e+02;
G[3][2] = -4.2880000197960248e+02;
G[3][3] = +4.5804166898690767e+02;
G[3][4] = -3.1813333508188475e+02;
G[3][5] = +1.4015000082717779e+02;
G[3][6] = -3.5733333557764126e+01;
G[3][7] = +4.0291666934572277e+00;
G[4][0] = +9.5833333751684123e+01;
G[4][1] = -2.9833333469377345e+02;
G[4][2] = +5.3250000253922508e+02;
G[4][3] = -5.9666666964266994e+02;
G[4][4] = +4.3016666890936358e+02;
G[4][5] = -1.9500000106094058e+02;
G[4][6] = +5.0833333621216298e+01;
G[4][7] = -5.8333333676746406e+00;
G[5][0] = -7.3000000362844659e+01;
G[5][1] = +2.3900000117978382e+02;
G[5][2] = -4.4700000220184893e+02;
G[5][3] = +5.2250000258047453e+02;
G[5][4] = -3.9100000194459636e+02;
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G[5][5] = +1.8300000091992547e+02;
G[5][6] = -4.9000000249609002e+01;
G[5][7] = +5.7500000297986844e+00;
G[6][0] = +3.5000000193388480e+01;
G[6][1] = -1.1900000062872745e+02;
G[6][2] = +2.3100000117331717e+02;
G[6][3] = -2.8000000137502246e+02;
G[6][4] = +2.1700000103617563e+02;
G[6][5] = -1.0500000049017922e+02;
G[6][6] = +2.9000000133013600e+01;
G[6][7] = -3.5000000158706825e+00;
G[7][0] = -8.0000000482245532e+00;
G[7][1] = +2.8000000156767751e+01;
G[7][2] = -5.6000000292537699e+01;
G[7][3] = +7.0000000342815810e+01;
G[7][4] = -5.6000000258332605e+01;
G[7][5] = +2.8000000122208689e+01;
G[7][6] = -8.0000000331629053e+00;
G[7][7] = +1.0000000039563020e+00;
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