
Computationally efficient differenceless derivatives with equidistant steps and it's
applications

Yuri Mahotin
email: yuri.mahotin@yahoo.com

Computationally efficient differenceless derivatives with equidistant steps have been
developed, which makes it possible to calculate an unlimited number of derivatives. The
new algorithm can be applied in various fields of science and technology. As an
example, we provide step-by-step instructions on how to improve the accuracy of the
predicted trajectory of a flying missile.

Derivatives, and especially numerical derivatives, are widely used in mathematics, physics,
applied sciences, and almost anywhere where they are needed. Differenceless derivatives with
equidistant steps were presented in work [1]. The basic equation for calculating n derivatives, written in
matrix form is

(
(∑ i2

)h
1
2 !

(∑ i3
)h2 1

3 !
(∑ i4

)h3 ...
1
n !

(∑ in+1
)hn

(∑ i3
)h

1
2!

(∑ i4
)h2 1

3 !
(∑ i5

)h3 ...
1
n !

(∑ in+2
)hn

(∑ i4
)h

1
2 !

(∑ i5
)h2 1

3 !
(∑ i6

)h3 ...
1
n!

(∑ in+3
)hn

...

(∑ in+1)h
1
2 !

(∑ in+2)h2 1
3!

(∑ in+3)h3 ...
1
n!

(∑ in+n)hn
)(

f '

f ' '

f ' ' '

...
f (n)

)=(
∑ (iΔ f (ih))

∑ (i2
Δ f (ih))

∑ (i3
Δ f (ih))

...

∑ (in
Δ f (ih))

) (1)

where h is step size for derivatives estimation, Δ f (h)= f (x0+h)− f (x0) , x0 is the point at which

derivatives are calculated, n - number of derivatives, ∑ ()→∑
i=1

m

() , m - the number of points for which

the inequality m≥n must be satisfied. One of the significant inconveniences of using expression (1) in
practice is that for each new value of h it is necessary to find the inverse matrix or re-solve the system
of linear equations, which can be time-consuming for a large value of n . We will transform this
expression into a form most convenient for solving practical problems.

We will limit ourselves to the special case of equation (1) when the number of points m is equal

to the number of derivatives n , and therefore the symbol ∑ ()→∑
i=1

n

() . First, let's look at the left side

of equation (1). For brevity of description, we introduce the vector of derivatives

d (x0)=(f '
(x0) , f ' '

(x0) , f ' ' '
(x0), ... , f (n)

(x0))
T

. we define two matrices H and S

1

H=(
h 0 0 ... 0

0 h2 0 ... 0
0 0 h3 ... 0
...
0 0 0 ... hn

) , S=(
(∑ i2

)
1
2 !

(∑ i3
)

1
3 !

(∑ i4
) ...

1
n!

(∑ in+1
)

(∑ i3
)

1
2 !

(∑ i4
)

1
3 !

(∑ i5
) ...

1
n!

(∑ in+2
)

(∑ i 4
)

1
2 !

(∑ i5
)

1
3 !

(∑ i6
) ...

1
n!

(∑ in+3
)

...

(∑ in+1)
1
2!

(∑ in+2)
1
3 !

(∑ in+3) ...
1
n!

(∑ in+n)
)

Then the left side of the equation can be written as SH d (x0) . Now we transform the right side of the
equation, for this we introduce the vector
Δ f (h)=(f (x0+h)−f (x0), f (x0+2h)− f (x0) , f (x0+3 h)−f (x0) , ..., f (x0+nh)−f (x0))

T and the matrix

 J=(
1 2 3 ... n
1 22 32 ... n2

1 23 33 ... n3

...
1 2n 3n ... nn

)
In the newly introduced notations, equation (1) is written as SH d (x0)=J Δ f (h) . Formally the

solution to this equation is d (x0)=H
−1S−1 J Δ f (h) . Next, we define the matrix G=S−1J and finally

write the solution to equation (1) in the form d (x0)=H
−1G Δ f (h) . We will note the important

advantages of the obtained solution. Firstly, the calculation of derivatives is reduced to simple
arithmetic operations, multiplying a matrix by a vector. Secondly, the inverse matrix H can be easily
found analytically. Thirdly, the matrix G does not depend on the step size h and point x0 , and does not
depend on the function f (x) , and therefore, for a given number of unknown derivatives n , it is
sufficient to calculate the matrix G once and use it for different functions and steps. For the
convenience of subsequent presentation, we will rewrite the last equation in expanded form

(
f '
(x0)

f ' '
(x0)

f ' ' '
(x0)

...
f (n)

(x0)
)=(

1
h

0 0 ... 0

0
1

h2 0 ... 0

0 0
1
h3 ... 0

...

0 0 0 ...
1
hn

)(
g11 g12 g13 ... g1 n

g21 g22 g23 ... g2 n

g31 g32 g33 ... g3 n

...
gn 1 gn2 gn 3 ... gnn

)(
f (x0+h)−f (x0)

f (x0+2 h)−f (x0)

f (x0+3 h)−f (x0)

...
f (x0+nh)−f (x0)

) (2)

Where matrix G is represented by elements of matrix gij .
We will give some examples for expression (2) for small values of unknown derivatives n . Our

presentation will be detailed enough to be understood by both students and engineers, as well as people
interested in mathematics. All formulas obtained below can be easily implemented in C and other

2

programming languages. We will start with the simplest case, let two points x0 and x0+h be given, then
n=1 , substituting these values into expression (2) we get

f '
(x)=

1
h
(f (x0+h)−f (x0)) (3)

These are simple forward difference approximations of the first derivative, but we are not interested in
this, we need to calculate derivatives of the highest possible order. This can be seen as a side effect, for
n=1 the expression (2) is not a matrix expression. For all other cases n>1 we have developed a C
program to calculate the matrix G for arbitrary values of n , however there are limitations here which
we will discuss as we go along. If three points x0 , x0+h and x0+2h are given, then n=2 and expression
(2) has the form

(
f '
(x0)

f ' '
(x0))=(

1
h

0

0
1

h2)(2.0 −0.5
−2.0 1.0)(

f (x0+h)−f (x0)

f (x0+2 h)−f (x0)) (4)

and allows us to calculate two derivatives. For four points x0 , x0+h , x0+2h and x0+3 h , three
derivatives are calculated using the following expression

(
f '
(x0)

f ' '
(x0)

f ' ' '
(x0)

)=(
1
h

0 0

0
1

h2 0

0 0
1
h3

)(3.0 −1.5
1
3

−5.0 4.0 −1.0
3.0 −3.0 1.0

)(
f (x0+h)−f (x0)

f (x0+2 h)−f (x0)

f (x0+3 h)−f (x0)
) (5)

In the following example the number of points is 5 which allows us to calculate four derivatives

(
f '
(x0)

f ' '
(x0)

f ' ' '
(x0)

f (4)
(x0)

)=(
1
h

0 0 0

0
1

h2 0 0

0 0
1
h3 0

0 0 0
1
h4

)(
4.00 −3.00 1.33 −0.25

−8.66 9.50 −4.66 0.92
9.00 −12.0 7.00 −1.50

−4.00 6.00 −4.00 1.00
)(

f (x0+h)−f (x0)

f (x0+2 h)−f (x0)

f (x0+3 h)−f (x0)

f (x0+4 h)−f (x0)
) (6)

When calculating expression (6) we encountered an unexpected problem - numerical noise. We have
rounded all values to two decimal places. For a more complete understanding of this problem,
Appendix A presents the values of the elements of matrix G written in C. We used 64-bit floating
point arithmetic, and what surprised us was that even for such a small 4x4 matrix, errors appeared
when calculating the inverse matrix. To calculate five derivatives, expression (2) looks like

3

(
f '
(x0)

f ' '
(x0)

f ' ' '
(x0)

f (4)
(x0)

f (5)
(x0)

)=(
1
h

0 0 0 0

0
1
h2 0 0 0

0 0
1
h3 0 0

0 0 0
1

h4
0

0 0 0 0
1
h5

)(
5.00 −5.00 3.33 −1.25 0.20

−12.8 17.8 −13.0 5.08 0.83
17.7 −29.5 25.5 −10.2 1.75

−14.0 26.0 −24.0 11.0 −2.0
5.00 −10.0 10.0 −5.00 1.00

)(
Δ f (h)

Δ f (2 h)

Δ f (3 h)

Δ f (4 h)

Δ f (5 h)
) (7)

More precise values of the elements of the matrix G can be found in Appendix B. For the following
example n=6 we provide formula in a different form, The elements of the matrix G can be found in
Appendix C. Here we will make one remark, if in our presentation the indices of the elements of
vectors and matrices start with 1, then in the Appendices the indices start with 0.

(
f '
(x0)

f ' '
(x0)

f ' ' '
(x0)

f (4)
(x0)

f (5)
(x0)

f (6)
(x0)

)=(
1
h

0 0 0 0 0

0
1

h2 0 0 0 0

0 0
1
h3 0 0 0

0 0 0
1
h4 0 0

0 0 0 0 0 0

0 0 0 0 0
1
h6

)(
g11 g12 g13 g14 g15 g16

g21 g22 g23 g24 g25 g26

g31 g32 g33 g34 g35 g36

g41 g42 g43 g44 g45 g46

g51 g52 g53 g54 g55 g56

g61 g62 g63 g64 g65 g66

)(
f (x0+h)−f (x0)

f (x0+2 h)−f (x0)

f (x0+3 h)−f (x0)

f (x0+4 h)−f (x0)

f (x0+5 h)−f (x0)

f (x0+6 h)−f (x0)

) (8)

For the other two examples n=7 and n=8 we do not give formulas, as they do not fit on the page,
however the matrices G can be found in the Appendices D and E. We limited ourselves to n=8 due to
the very large numerical noise. After conducting research we found a simple explanation for this fact.

Consider the matrix element S in the lower right corner for the next value n=9 ,
1
n!

(∑
i=1

9

in+n
) . Let's

write the sum as (1+218+...+918). We use 64-bit floating point arithmetic with an accuracy of about 16
digits after the decimal point, for an example see any Appendix. Thus, the sum from 1 to 9 is replaced
by the sum from 2 to 9, but then a completely different matrix S is obtained, and consequently, the
solutions of the system of equations will not be the values of the derivatives.

4

To check if we made any
mistakes when obtaining the
formulas presented above,
we wrote a C program for
calculating derivatives
based on formulas (3-8) and
using the G matrices from
Appendices A, B, C, D, E.
First of all, we are interested
in the accuracy of
calculating derivatives for a
large value of n=8 and a
larger number of
derivatives. As usual we
took the exponential
function exp(x) at the point
x0=0 where all derivatives

are equal to one. The
calculation results are
shown in Figure 1.The

lower black curve is the accuracy of the first derivative, the curve just above is the accuracy of the
second derivative, and so on up to the last brown curve is the accuracy of the eighth derivative. Some
conclusions from the results obtained. As the derivative number increases, the calculation error
increases. The optimal step for calculating the derivatives hopt , defined as the minimum of the curves
shown, is about 0.03, hopt≈0.03 , and is the same for all eight derivatives. The optimal step is quite
large and this is a very good property. Let us recall that the optimal step for forward difference
approximation is about 4-8, and it is a very small value. A large optimal step is preferable to use when
calculating derivatives from measured data, sometimes we will call this as extraction of derivatives
from measured data.

Next, we will consider some aspects of the use of differenceless derivatives for solving applied
problems. One of the pressing problems in the real world is predicting the trajectories of various
moving objects. For example, an aircraft needs to know the predicted flight path, especially during
strong winds, during autopilot, during landing and autolanding. Recently, smart car have become
widely used, they calculate the trajectory, and the more accurately the predicted trajectory is, the
smarter the car becomes. For ocean-going vessels it is also necessary to know the predicted trajectory,
especially in rough stormy weather, when docking and, just in case, to avoid colliding with an
oncoming vessel. Of course, let's not forget about interceptor missiles. Nowadays, there are situations
when the speed of an interceptor missile is less than the speed of the intercepted missile. In this case, it
is necessary to know the predicted trajectories for both missiles very precisely in order to accurately
determine the time and direction of the interceptor missile launch. All these problems can be
generalized by one mathematical methodology, trajectory prediction using differenceless derivatives.
How to calculate these derivatives is described above.

Let's conduct the following thought experiment. Let's assume that the missile moves in a circle
with a radius of 1, in what follows we will use relative units of measurement. The coordinates of a
moving missile are described by the cosine and sine functions. Without loss of generality, we will

5

Figure 1

consider only one coordinate x which is described by the cosine cos (x) . Briefly about how we will
conduct a thought experiment. For two, three, four, ..., nine points of a known flight path, we will
calculate one, two, three, ..., eight derivatives using formula (2). After this, using the Taylor series

f (x)=f (x0)+ f '
(x0)(x−x0)+

1
2 !

f ' '
(x0)(x−x0)

2
+

1
3 !

f ' ' '
(x0)(x−x0)

3
+⋯+

1
n !

f (n)
(x0) (x−x0)

n
(9)

 and the calculated derivatives, we will predict the trajectory of motion. Our goal is to answer the
simple question of whether we can predict the trajectory of a missile. For the experiments we chose a
large value h=−0.1 , the minus sign indicates that we are using known coordinates of the trajectory.

In the simplest experiment, two points x=(0 ,−0.1) are given, the values of the function f (x)
are cos (0) and cos (−0.1) . The first derivative is calculated using formula (3) and the predicted
trajectory using formula (9) for n=1 . The calculation results are shown in Figure 2, the black curve is
the cosine, the two black dots were used to extract the derivative and the red line is the predicted
trajectory. It is easy to see that the predicted trajectory does not look like a cosine at all, and therefore
two points are not enough to predict a circular trajectory.

For three points x=(0 ,−0.1 ,−0.2) only the first two derivatives can be calculated and the
predicted trajectory is shown in Figure 3. The approximation in a small neighborhood of the point x=0
has improved somewhat, but the predictions are also far from cosine, it is only a quadratic function.

6

Figure 2

The results of calculating the predicted trajectory for four points are presented in Figure 4.
There is no difference here from the previous case, but we leave this example for the sake of
completeness.

 The first interesting result we found was when using five points
x=(0 ,−0.1 ,−0.2,−0.3 ,−0.4) , in this case four derivatives were calculated using formula (6). The

7

Figure 3

Figure 4

predicted trajectory, Figure 5, began to resemble a cosine, although the prediction accuracy is still very
poor far from x=0 .

For six points, Figure 6, we obtained a result similar to the previous ones, but with slightly
worse accuracy.

More accurate results are shown by calculations using seven and eight points, Figure 7 and
Figure 8 respectively.

8

Figure 5

Figure 6

And finally, we got the best results using nine points. In this experiment we set the following
values x=(0 ,−01 , ... ,−0.8) . We calculated eight derivatives using the general formula (2) for n=8
and the elements of the matrix G from Appendix E. Using these derivative values, we calculated the
predicted trajectory using expression (9) for x0=0 . The predicted trajectory of motion (red curve) is

9

Figure 7

Figure 8

shown in Figure 9, the nine black dots are the points used to predict the trajectory and the black curve
is the cosine curve plotted for comparison.

This Figure 9 clearly shows that if you know the trajectory of a missile in the −0.8≤x≤0 range, you
can predict the trajectory of the missile with very good accuracy in the −3<x<3 range, or, in other
words, if you know the trajectory of a missile a quarter of a circle, you can predict the trajectory of a
missile half a circle ahead. This is the main result of our thought experiment.

Our study is limited to nine derivatives due to the fact that we use 64-bit floating point
arithmetic, but if one use high-precision floating-point arithmetic when calculating the G matrix, one
can calculate an unlimited number of derivatives. The calculations themselves according to expression
(8) can be performed with normal precision, since matrix G is a well-defined matrix.

CONCLUSION
We have developed a methodology, computationally efficient differenceless derivatives with

equidistant steps, which allows us to calculate an unlimited number of derivatives. Calculating
derivatives comes down to performing simple arithmetic operations, multiplying a n×n matrix by a
vector of function values of dimension n , the function values can be either from other calculations or
from measurements. The new methodology can be used to solve various applied problems. We found
that the predicted trajectory of the flying missile shows a very high prediction accuracy, which is
difficult to achieve for other methods. The new method of calculating derivatives has only one
drawback: it requires equidistant steps, which suggests the need for further research on differenceless
derivatives with non-equidistant steps.

ABOUT COPYRIGHT
The results of this work may be freely used for educational and commercial purposes.

Publication of this article is permitted for any journals and media. Please do not ask for money for
publication or republication of this work.

10

Figure 9

REFERENCES
1. Yuri Mahotin, Differenceless derivatives with equidistant steps, viXra:2401.0127, 2024

ABOUT AUTHOR
Yuri Mahotin. Currently on sabbatical due to health problems, unemployed. His current interests
include the theory of dark matter and dark energy, as well as the theory and application of
differenceless derivatives. Previously, he worked at Oracle Corp., Silvaco, Inc., Synopsys, Inc., and in
Russia and the former USSR. He graduated from the Physics and Engineering Department of the
Novosibirsk Electrotechnical Institute in 1984.

APPENDIX A
G[0][0] = +4.0000000000000027e+00;
G[0][1] = -3.0000000000000044e+00;
G[0][2] = +1.3333333333333361e+00;
G[0][3] = -2.5000000000000061e-01;
G[1][0] = -8.6666666666666750e+00;
G[1][1] = +9.5000000000000124e+00;
G[1][2] = -4.6666666666666741e+00;
G[1][3] = +9.1666666666666829e-01;
G[2][0] = +9.0000000000000089e+00;
G[2][1] = -1.2000000000000014e+01;
G[2][2] = +7.0000000000000098e+00;
G[2][3] = -1.5000000000000018e+00;
G[3][0] = -4.0000000000000044e+00;
G[3][1] = +6.0000000000000071e+00;
G[3][2] = -4.0000000000000044e+00;
G[3][3] = +1.0000000000000009e+00;

APPENDIX B
G[0][0] = +4.9999999999997167e+00;
G[0][1] = -4.9999999999995302e+00;
G[0][2] = +3.3333333333329325e+00;
G[0][3] = -1.2499999999998241e+00;
G[0][4] = +1.9999999999996843e-01;
G[1][0] = -1.2833333333332373e+01;
G[1][1] = +1.7833333333331737e+01;
G[1][2] = -1.2999999999998639e+01;
G[1][3] = +5.0833333333327353e+00;
G[1][4] = -8.3333333333322912e-01;
G[2][0] = +1.7749999999998384e+01;
G[2][1] = -2.9499999999997318e+01;
G[2][2] = +2.4499999999997712e+01;
G[2][3] = -1.0249999999998995e+01;
G[2][4] = +1.7499999999998241e+00;
G[3][0] = -1.3999999999998535e+01;
G[3][1] = +2.5999999999997566e+01;

11

https://vixra.org/pdf/2401.0127v2.pdf

G[3][2] = -2.3999999999997925e+01;
G[3][3] = +1.0999999999999087e+01;
G[3][4] = -1.9999999999998419e+00;
G[4][0] = +4.9999999999994191e+00;
G[4][1] = -9.9999999999990354e+00;
G[4][2] = +9.9999999999991775e+00;
G[4][3] = -4.9999999999996385e+00;
G[4][4] = +9.9999999999993605e-01;

APPENDIX C
G[0][0] = +5.9999999999994253e+00;
G[0][1] = -7.4999999999980353e+00;
G[0][2] = +6.6666666666632288e+00;
G[0][3] = -3.7499999999968678e+00;
G[0][4] = +1.1999999999985440e+00;
G[0][5] = -1.6666666666645646e-01;
G[1][0] = -1.7399999999997824e+01;
G[1][1] = +2.9249999999992419e+01;
G[1][2] = -2.8222222222208813e+01;
G[1][3] = +1.6499999999987708e+01;
G[1][4] = -5.3999999999942716e+00;
G[1][5] = +7.6111111111030993e-01;
G[2][0] = +2.8999999999995605e+01;
G[2][1] = -5.7624999999984475e+01;
G[2][2] = +6.1999999999972317e+01;
G[2][3] = -3.8374999999974513e+01;
G[2][4] = +1.2999999999988084e+01;
G[2][5] = -1.8749999999982663e+00;
G[3][0] = -3.0999999999994586e+01;
G[3][1] = +6.8499999999980659e+01;
G[3][2] = -8.0666666666631954e+01;
G[3][3] = +5.3499999999967926e+01;
G[3][4] = -1.8999999999984986e+01;
G[3][5] = +2.8333333333311259e+00;
G[4][0] = +1.9999999999996110e+01;
G[4][1] = -4.7499999999985974e+01;
G[4][2] = +5.9999999999974712e+01;
G[4][3] = -4.2499999999976566e+01;
G[4][4] = +1.5999999999989036e+01;
G[4][5] = -2.4999999999983942e+00;
G[5][0] = -5.9999999999987308e+00;
G[5][1] = +1.4999999999995394e+01;
G[5][2] = -1.9999999999991665e+01;
G[5][3] = +1.4999999999992262e+01;
G[5][4] = -5.9999999999963674e+00;
G[5][5] = +9.9999999999945643e-01;

APPENDIX D
G[0][0] = +6.9999999997593108e+00;

12

G[0][1] = -1.0499999999263041e+01;
G[0][2] = +1.1666666665445398e+01;
G[0][3] = -8.7499999988086063e+00;
G[0][4] = +4.1999999993124177e+00;
G[0][5] = -1.1666666664484353e+00;
G[0][6] = +1.4285714282726758e-01;
G[1][0] = -2.2299999998942848e+01;
G[1][1] = +4.3949999996758372e+01;
G[1][2] = -5.2722222216845026e+01;
G[1][3] = +4.0999999994750787e+01;
G[1][4] = -2.0099999996969011e+01;
G[1][5] = +5.6611111101488518e+00;
G[1][6] = -6.9999999986777084e-01;
G[2][0] = +4.2533333330774980e+01;
G[2][1] = -9.8224999992144021e+01;
G[2][2] = +1.2966666665362308e+02;
G[2][3] = -1.0604166665392506e+02;
G[2][4] = +5.3599999992639638e+01;
G[2][5] = -1.5408333330995220e+01;
G[2][6] = +1.9333333330131381e+00;
G[3][0] = -5.5499999995998351e+01;
G[3][1] = +1.4199999998769647e+02;
G[3][2] = -2.0316666664622147e+02;
G[3][3] = +1.7599999998001653e+02;
G[3][4] = -9.2499999988451265e+01;
G[3][5] = +2.7333333329663731e+01;
G[3][6] = -3.4999999994981863e+00;
G[4][0] = +4.9166666662585889e+01;
G[4][1] = -1.3499999998743922e+02;
G[4][2] = +2.0583333331244538e+02;
G[4][3] = -1.8833333331290675e+02;
G[4][4] = +1.0349999998819067e+02;
G[4][5] = -3.1666666662913713e+01;
G[4][6] = +4.1666666661519685e+00;
G[5][0] = -2.6999999997495880e+01;
G[5][1] = +7.7999999992284827e+01;
G[5][2] = -1.2499999998716196e+02;
G[5][3] = +1.1999999998744008e+02;
G[5][4] = -6.8999999992736377e+01;
G[5][5] = +2.1999999997691134e+01;
G[5][6] = -2.9999999996831548e+00;
G[6][0] = +6.9999999992905577e+00;
G[6][1] = -2.0999999997812420e+01;
G[6][2] = +3.4999999996357900e+01;
G[6][3] = -3.4999999996435484e+01;
G[6][4] = +2.0999999997938005e+01;
G[6][5] = -6.9999999993445101e+00;

13

G[6][6] = +9.9999999990967581e-01;
APPENDIX E

G[0][0] = +8.0000000134147236e+00;
G[0][1] = -1.4000000043652339e+01;
G[0][2] = +1.8666666748177008e+01;
G[0][3] = -1.7500000095553037e+01;
G[0][4] = +1.1200000072013843e+01;
G[0][5] = -4.6666667007329892e+00;
G[0][6] = +1.1428571520993387e+00;
G[0][7] = -1.2500000110276233e-01;
G[1][0] = -2.7485714350214927e+01;
G[1][1] = +6.2100000209853206e+01;
G[1][2] = -8.9022222614030497e+01;
G[1][3] = +8.6375000459282958e+01;
G[1][4] = -5.6400000346133041e+01;
G[1][5] = +2.3811111274852408e+01;
G[1][6] = -5.8857143301388533e+00;
G[1][7] = +6.4821429101857575e-01;
G[2][0] = +5.8166666843304903e+01;
G[2][1] = -1.5294166724125918e+02;
G[2][2] = +2.3910000107267780e+02;
G[2][3] = -2.4283333459066375e+02;
G[2][4] = +1.6303333428088612e+02;
G[2][5] = -7.0125000448249352e+01;
G[2][6] = +1.7566666788286511e+01;
G[2][7] = -1.9541666811837786e+00;
G[3][0] = -8.7733333659403556e+01;
G[3][1] = +2.5481666772717645e+02;
G[3][2] = -4.2880000197960248e+02;
G[3][3] = +4.5804166898690767e+02;
G[3][4] = -3.1813333508188475e+02;
G[3][5] = +1.4015000082717779e+02;
G[3][6] = -3.5733333557764126e+01;
G[3][7] = +4.0291666934572277e+00;
G[4][0] = +9.5833333751684123e+01;
G[4][1] = -2.9833333469377345e+02;
G[4][2] = +5.3250000253922508e+02;
G[4][3] = -5.9666666964266994e+02;
G[4][4] = +4.3016666890936358e+02;
G[4][5] = -1.9500000106094058e+02;
G[4][6] = +5.0833333621216298e+01;
G[4][7] = -5.8333333676746406e+00;
G[5][0] = -7.3000000362844659e+01;
G[5][1] = +2.3900000117978382e+02;
G[5][2] = -4.4700000220184893e+02;
G[5][3] = +5.2250000258047453e+02;
G[5][4] = -3.9100000194459636e+02;

14

G[5][5] = +1.8300000091992547e+02;
G[5][6] = -4.9000000249609002e+01;
G[5][7] = +5.7500000297986844e+00;
G[6][0] = +3.5000000193388480e+01;
G[6][1] = -1.1900000062872745e+02;
G[6][2] = +2.3100000117331717e+02;
G[6][3] = -2.8000000137502246e+02;
G[6][4] = +2.1700000103617563e+02;
G[6][5] = -1.0500000049017922e+02;
G[6][6] = +2.9000000133013600e+01;
G[6][7] = -3.5000000158706825e+00;
G[7][0] = -8.0000000482245532e+00;
G[7][1] = +2.8000000156767751e+01;
G[7][2] = -5.6000000292537699e+01;
G[7][3] = +7.0000000342815810e+01;
G[7][4] = -5.6000000258332605e+01;
G[7][5] = +2.8000000122208689e+01;
G[7][6] = -8.0000000331629053e+00;
G[7][7] = +1.0000000039563020e+00;

15

