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Abstract

This document presents a new method for solving constrained optimization
problems, an alternative to the Lagrange multipliers. We introduce the Vector
Product Approach for Optimization Resolution (VPAOR), which uses properties
of vector products to simplify optimization problems. Our results demonstrate that
this approach is an alternative to traditional methods, offering an effective solution
for various problems.

1 Introduction

Constrained optimization problems are essential in various fields such as logistics,
economics, and engineering. Traditionally, Lagrange multipliers are used to solve these
problems by transforming constraints into penalties within the objective function. How-
ever, this method has limitations, particularly when dealing with constraints and is not
easily solvable by individuals with relatively lower mathematical knowledge. Thus, this
new method could be beneficial to a broader audience.

1.1 Objectives of the Contribution

In this document, we introduce the Vector Product Approach for Optimization Reso-
lution (VPAOR). This method relies on concepts from vector products and the implicit
function theorem to reformulate constrained optimization problems. We aim to show that
this approach offers greater flexibility and simplifies calculations compared to traditional
methods while maintaining efficiency and accuracy.

1.2 Contributions and Structure of the Document

The document is structured as follows:

� Section 2 : Review of traditional methods for constrained optimization, including
Lagrange multipliers.
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1.2.1 Introduction

The method of Lagrange multipliers is a technique used to find the optimal points
of a function under constraints. This method allows converting a constrained opti-
mization problem into an unconstrained problem by introducing a Lagrange multi-
plier.

1.2.2 Problem Formulation

Let f(x1, x2, . . . , xn) be an objective function that we wish to optimize (maximize
or minimize) under the constraint g(x1, x2, . . . , xn) = 0. We introduce a Lagrange
multiplier λ and define the Lagrange function L as follows:

L(x1, x2, . . . , xn, λ) = f(x1, x2, . . . , xn) + λ · g(x1, x2, . . . , xn).

1.2.3 Optimality Conditions

To find the optimal points, we solve the following system of equations:

∇L = 0,

where ∇L is the gradient of L with respect to the variables x1, x2, . . . , xn and λ.
This translates to the following equations:

∂L
∂xi

= 0 for i = 1, 2, . . . , n, (1)

∂L
∂λ

= g(x1, x2, . . . , xn) = 0. (2)

1.2.4 Example

Consider the problem of maximizing f(x, y) = xy under the constraint g(x, y) =
x2 + y2 − 1 = 0. The Lagrange function is:

L(x, y, λ) = xy + λ(x2 + y2 − 1).

The optimality conditions are:

∂L
∂x

= y + λ · 2x = 0, (3)

∂L
∂y

= x+ λ · 2y = 0, (4)

∂L
∂λ

= x2 + y2 − 1 = 0. (5)

� Section 3 : Detailed presentation of the Vector Product Approach for Optimization
Resolution (VPAOR).
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1.2.5 Implicit Function Theorem

Implicit Function Theorem

Let f be a differentiable function on an open set Λ ⊂ R2 such that f(a, b) = 0 with
∂f
∂y
(a, b) ̸= 0. Then there exists an open set U ⊂ R containing a, an open set V ⊂ R

containing b, and a function φ : U → V such that

f(x, φ(x)) = 0, ∀x ∈ U, and φ(a) = b

∂f

∂y
(x, φ(x)) ̸= 0, for all x ∈ U, and y = φ(x),

Therefore,
max f(x, y)Rn×R subject to g(x, y) = 0

∂f

∂x
(x, φ(x)) + ω.(x)

∂g

∂y
(x, φ(x)) = 0

∂g

∂x
(x, φ(x)) + ω.(x)

∂g

∂y
(x, φ(x)) = 0

⟨∇f(x, φ(x))⟩ ≥ 0 = ⟨∇g(x, φ(x))⟩/⟨ 1

φ(x)
⟩

Thus we can conclude that

∇f(n, φ(n)) is collinear to ∇g(n, φ(n))

� Conclusion and Future Perspectives: VPAOR represents an alternative to
the Lagrange multiplier theorem. We are moving towards researching solutions to
complex problems and also problems with non-differentiable functions.

2 Methodology

2.1 Development of the Vector Approach

The Vector Approach for Optimization Resolution (VPAOR) relies on concepts from
vector geometry and the theory of implicit functions. Given the collinearity of functions
as indicated by the implicit function theorem stated above, we use the zero vector product
for collinear vectors to arrive at the following formula by NDAO.

2.2 Demonstration and Tests

2.2.1 Functions with 2 Variables

⟨∇f(x, φ(x))⟩ and 1

φ(x)
⟩ = 0 = ⟨∇g(x, φ(x))⟩/⟨ 1

φ(x)
⟩

The φ functions are derived.
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Therefore, we can conclude that

∇f(x, φ(x)) is collinear to ∇g(x, φ(x))

⇒ det (∇f(x, φ(x)),∇g(x, φ(x))) = 0∣∣∣∣∣ ∂g∂x ∂g
∂y

∂f
∂x

∂f
∂y

∣∣∣∣∣ = 0

Thus, for finding x and y, we have the following relation:

NDAO’s Formula

∂g

∂x

∂f

∂y
=

∂g

∂y

∂f

∂x

Example
Consider the problem of maximizing f(x, y) = xy under the constraint g(x, y) =

x2 + y2 − 1 = 0. (Example 1.2.4) According to NDAO’s formula we have:

∂g

∂x

∂f

∂y
=

∂g

∂y

∂f

∂x

For this problem, we get:
2y2 = 2x2 ⇒ x2 = y2

This is the first relation between y and x without using the Lagrange multiplier. Just
replace it in g(x, y) = 0 to find the values of x and y.

2.2.2 Generalization

3 Variables
∇f(x, y, φ(x, y)) is collinear to ∇g(x, y, φ(x, y))

Using the zero vector product between 2 collinear vectors, we arrive at the following
relation by projecting the 2 vectors onto a coordinate system:

Generalized NDAO’s Formula

∂f

∂xi

∂g

∂xj

=
∂f

∂xj

∂g

∂xi

3 Conclusion

In conclusion, we can assert that VPAOR will allow a broader audience to understand
the significance of this optimization problem by relying on a single relation.
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