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Abstract
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1 Introduction:

The Natario warp drive appeared for the first time in 2001.([1]).Although the idea of the warp dive as a
spacetime distortion that allows a spaceship to travel faster than light predated the Natario work by 7
years Natario introduced in 2001 the new concept of a propulsion vector to define or to generate a warp
drive spacetime.

This propulsion vector nX uses the form nX = Xiei where Xi are the shift vectors responsible for the
spaceship propulsion or speed and ei are the Canonical Basis of the Coordinates System where the shift
vectors are based or placed.

Natario (See pg 5 in [1]) defined a warp drive vector nX = vs ∗ (dx) where vs is the constant speed
of the warp bubble and ∗(dx) is the Hodge Star taken over the x-axis of motion in Polar Coordinates(See
pg 4 in [1]).(see Appendix D about Polar Coordinates).The final form of the original Natario warp drive
vector is given by nX = vs ∗ d(r cos θ).However Polar Coordinates are not real tridimensional 3D coordi-
nates since it uses only the two Canonical Basis er and eθ.

The Hodge Star actually must be taken over the product (xvs) giving the expression nX = ∗(xvs) =
vs ∗ (dx) + x ∗ (dvs) but due to a constant speed vs the term x ∗ d(vs) = 0.In this work we examine
what happens with the Natario vector when the velocity is variable and then the term x ∗ d(vs) no longer
vanishes.Remember that a real warp drive must accelerate or de-accelerate in order to be accepted as a
physical valid model.

Natario used Polar Coordinates(See pg 4 in [1]) but for a real 3D Spherical Coordinates another warp
drive vector must be calculated.Remember that a real spaceship is a tridimensional 3D object inserted
inside a tridimensional 3D warp bubble that must be defined in real 3D Spherical Coordinates.The final
form of the Hodge Star for this warp drive vector is calculated no longer over ∗d(r cos θ) but instead over
∗d(r sinφ cos θ) since this form uses all the tridimensional 3D Canonical Basis er,eθ and eφ.(see Appendix
E about tridimensional 3D Spherical Coordinates).

In this work we present the new warp drive vector in tridimensional 3D Spherical Coordinates for both
constant nX = vs ∗ d(x) or variable speeds nX = vs ∗ (dx) + x ∗ (dvs).

In order to fully understand the idea presented in this work(a new warp drive vector in tridimensional 3D
Spherical Coordinates) acquaintance or familiarity with the Natario original warp drive paper is required
but we provide all the mathematical demonstration QED(Quod Erad Demonstratum) in the Appendices.
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This work is organized as follows:

• A)-Section 2 introduces the original Natario warp drive vector in Polar Coordinates
nX = vs ∗ d(x) for constant speeds.

• B)-Section 3 introduces the original Natario warp drive vector in Polar Coordinates
nX = vs ∗ d(x) + x ∗ (dvs) for variable speeds.

• C)-Section 4 introduces the new warp drive vector in tridimensional 3D Spherical Coordinates
nX = vs ∗ d(x) for constant speeds.

• D)-Section 5 introduces the new warp drive vector in tridimensional 3D Spherical Coordinates
nX = vs ∗ d(x) + x ∗ (dvs) for variable speeds.

We adopted in this work a pedagogical language and a presentation style that perhaps will be considered
as tedious,monotonous, exhaustive or extensive by experienced or seasoned readers and we designated this
work for novices,newcomers,beginners or intermediate students providing in our work all the mathematical
background needed to understand the process Natario used to generate warp drive vectors.

As a matter of fact if a novice,newcomer,beginner or intermediate student not familiarized with the Natario
techniques reads the Natario warp drive paper in first place he(or she) will perhaps feel some difficulties.

We hope our paper is suitable to fill this gap.

Although this work was designed to be independent,self-consistent and self-contained it may be regarded
as a companion work to our work in [9].
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2 The equation of the Natario warp drive vector in polar coordinates
with a constant speed vs

The equation of the Natario vector nX(pg 2 and 5 in [1]) is given by:

nX = Xrer + Xθeθ (1)

With the contravariant shift vector components Xrs and Xθ given by:(see pg 5 in [1])(see also Appendix
A for details )

Xrs = 2vsn(rs) cos θ (2)

Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ (3)

Considering a valid n(rs) as a Natario shape function being n(rs) = 1
2 for large rs(outside the warp

bubble) and n(rs) = 0 for small rs(inside the warp bubble) while being 0 < n(rs) < 1
2 in the walls of the

warp bubble also known as the Natario warped region(pg 5 in [1]):

We must demonstrate that the Natario warp drive vector given above satisfies the Natario requirements
for a warp bubble defined by:

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nX = vs(t) ∗ dx with X = vs for a large value of
rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg
4 in [1])(see Appendix G for an explanation about this statement)

Natario in its warp drive uses the polar coordinates rs and θ.In order to simplify our analysis we con-
sider motion in the x− axis or the equatorial plane rs where θ = 0 sin(θ) = 0 and cos(θ) = 1.(see pgs 4,5
and 6 in [1]).

In a 1 + 1 spacetime the equatorial plane we get¿:

nX = Xrer (4)

The contravariant shift vector component Xrs is then:

Xrs = 2vsn(rs) (5)

Remember that Natario(pg 4 in [1]) defines the x axis as the axis of motion.Inside the bubble n(rs) = 0
resulting in a Xrs = 0 and outside the bubble n(rs) = 1

2 resulting in a Xrs = vs and this illustrates the
Natario definition for a warp drive spacetime.See Appendix D
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3 The equation of the Natario warp drive vector in polar coordinates
with a variable speed vs due to a constant acceleration a

The equation of the Natario vector nX is given by:

nX = Xtet + Xrer + Xθeθ (6)

The contravariant shift vector components Xt,Xrs and Xθ of the Natario vector are defined by(see
Appendices B and C):

Xt = 2n(rs)rscosθa (7)

Xrs = 2[2n(rs)2 + rsn′(rs)]atcosθ (8)

Xθ = −2n(rs)at[2n(rs) + rsn′(rs)] sin θ (9)

Considering a valid n(rs) as a Natario shape function being n(rs) = 1
2 for large rs(outside the warp

bubble) and n(rs) = 0 for small rs(inside the warp bubble) while being 0 < n(rs) < 1
2 in the walls of the

warp bubble also known as the Natario warped region(pg 5 in [1]):

We must demonstrate that the Natario warp drive vector given above satisfies the Natario requirements
for a warp bubble defined by:

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of
rs defined by Natario as the interior of the warp bubble and nX = vs(t) ∗ dx + x ∗ dvs with X = vs for a
large value of rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the
warp bubble.(pg 4 in [1])(see Appendix G for an explanation about this statement)

Natario in its warp drive uses the polar coordinates rs and θ.In order to simplify our analysis we con-
sider motion in the x− axis or the equatorial plane rs where θ = 0 sin(θ) = 0 and cos(θ) = 1.(see pgs 4,5
and 6 in [1]).

In a 1 + 1 spacetime the equatorial plane we get¿:

nX = Xtet + Xrer (10)

Xt = 2n(rs)rsa (11)

Xrs = 2[2n(rs)2 + rsn′(rs)]at (12)

The variable velocity vs due to a constant acceleration a is given by the following equation:

vs = 2n(rs)at (13)

Remember that Natario(pg 4 in [1]) defines the x axis as the axis of motion.Inside the bubble n(rs) = 0
resulting in a vs = 0 and outside the bubble n(rs) = 1

2 resulting in a vs = at as expected from a variable
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velocity vs in time t due to a constant acceleration a.Since inside and outside the bubble n(rs) always
possesses the same values of 0 or 1

2 then the derivative n′(rs) of the Natario shape function n(rs) is zero and
the shift vector Xrs = 2[2n(rs)2]at with Xrs = 0 inside the bubble and Xrs = 2[2n(rs)2]at = 2[21

4 ]at =
at = vs outside the bubble and this illustrates the Natario definition for a warp drive spacetime.See
Appendix D
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4 The equation of the new warp drive vector in tridimensional 3D
spherical coordinates with a constant speed vs

The equation of the new warp drive vector in tridimensional 3D spherical coordinates with a constant
speed vs nX is given by:

nX = Xrer + Xθeθ + Xφeφ (14)

With the contravariant shift vector components Xrs, Xθ and Xφ given by:
(see Appendix J for details )

Xr = vs(t)[sinφ][2f(r) cosθ] (15)

Xθ = −vs(t)[sinφ][2f(r) + rf ′(r)] sin θ] (16)

Xφ = [vs(t)cosφ][cotθ[2(f(r)) + (rf ′(r))] (17)

Considering a valid f(r) as a shape function being f(r) = 1
2 for large r(outside the warp bubble) and

f(r) = 0 for small rs(inside the warp bubble) while being 0 < f(r) < 1
2 in the walls of the warp bubble

also known as the warped region:

We must demonstrate that our warp drive vector satisfies the Natario criteria for a warp drive defined
by:

any warp drive vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small
value of r defined by Natario as the interior of the warp bubble and nX = vs(t) ∗ dx with X = vs for a
large value of r defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the
warp bubble.(pg 4 in [1])(see Appendix G for an explanation about this statement)

Natario in its warp drive uses the polar coordinates r and θ.In order to simplify our analysis we con-
sider motion in the x − axis(like Natario did) or the equatorial plane x − y in r where θ = 0 sin(θ) = 0
and cos(θ) = 1.(see pgs 4,5 and 6 in [1]).Also the equatorial plane x− y makes an angle of 90 degrees with
the z − axis so sinφ = 1 and cosφ = 0.

Then the contravariant components reduces to:

Xr = vs(t)[sinφ][2f(r) cosθ] → Xr = vs(t)[2f(r)] → sin φ = 1 → cosθ = 1 (18)

Xθ = −vs(t)[sinφ][2f(r) + rf ′(r)] sin θ] = 0 → sinφ = 1 → sin θ = 0 (19)

Xφ = [vs(t)cosφ][cotθ[2(f(r)) + (rf ′(r))] = 0 → cosφ = 0 (20)

Remember that Natario(pg 4 in [1]) defines the x axis as the axis of motion.Inside the bubble f(r) = 0
resulting in a Xr = 0 and outside the bubble f(r) = 1

2 resulting in a Xr = vs and this illustrates the
Natario definition for a warp drive spacetime.See Appendix E
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Only in tridimensional motion the results becomes different.As a matter of fact we have three different
situations to consider in this case:

• 1)-inside the warp bubble f(r) = 0

• 2)-outside the warp bubble f(r) = 1
2

• 3)-in the warp bubble walls 0 < f(r) < 1
2

• A)-situation inside the bubble:

The contravariant components reduces to:

Xr = vs(t)[sinφ][2f(r) cosθ] = 0 → f(r) = 0 (21)

Xθ = −vs(t)[sinφ][2f(r) + rf ′(r)] sin θ] = 0 → f(r) = 0 (22)

Xφ = [vs(t)cosφ][cotθ[2(f(r)) + (rf ′(r))] = 0 → f(r) = 0 (23)

Inside the bubble the shape function f(r) is constant and always zero so its derivatives vanishes too:

• B)-situation outside the bubble:

The contravariant components reduces to:

Xr = vs(t)[sinφ][2f(r) cosθ] = vs(t)[sinφ][ cosθ] → f(r) =
1
2

(24)

Xθ = −vs(t)[sinφ][2f(r) + rf ′(r)] sin θ] = −vs(t)[sinφ][sin θ] → f(r) =
1
2

(25)

Xφ = [vs(t)cosφ][cotθ[2(f(r)) + (rf ′(r))] = [vs(t)cosφ][cotθ] → f(r) =
1
2

(26)

Outside the bubble the shape function f(r) is constant and always 1
2 so its derivatives vanishes too:

• C)-situation in the warp bubble walls:

The contravariant components are:

Xr = vs(t)[sinφ][2f(r) cosθ] (27)

Xθ = −vs(t)[sinφ][2f(r) + rf ′(r)] sin θ] (28)

Xφ = [vs(t)cosφ][cotθ[2(f(r)) + (rf ′(r))] (29)

In the warp bubble walls the shape function f(r) varies between 0 < f(r) < 1
2 so its derivatives do not

vanishes:
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5 The equation of the new warp drive vector in tridimensional 3D
spherical coordinates with a variable speed vs due to a constant ac-
celeration a

The equation of the new warp drive vector in tridimensional 3D spherical coordinates with a variable speed
vs due to a constant acceleration a nX is given by:

nX = Xtet + Xrer + Xθeθ + Xφeφ (30)

With the contravariant shift vector components Xt,Xrs, Xθ and Xφ given by:
(see Appendices K and L for details )

Xt = 2(rf(r)a))(sinφ)(cos θ) (31)

Xr = (2at)[2f(r)2 + (rf ′(r))](sinφ)(cos θ) (32)

Xθ = −(2f(r)at)[2f(r) + rf ′(r)](sinφ)(sin θ) (33)

Xφ = (2f(r)at)[2f(r) + (rf ′(r))](cosφ)(cotθ) (34)

Considering a valid f(r) as a shape function being f(r) = 1
2 for large r(outside the warp bubble) and

f(r) = 0 for small rs(inside the warp bubble) while being 0 < f(r) < 1
2 in the walls of the warp bubble

also known as the warped region:

We must demonstrate that our warp drive vector satisfies the Natario criteria for a warp drive defined
by:

any warp drive vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small
value of r defined by Natario as the interior of the warp bubble and nX = vs(t) ∗ dx + x ∗ dvs(t) with
X = vs for a large value of r defined by Natario as the exterior of the warp bubble with vs(t) being the
speed of the warp bubble.(pg 4 in [1])(see Appendix G for an explanation about this statement)

Natario in its warp drive uses the polar coordinates r and θ.In order to simplify our analysis we con-
sider motion in the x − axis(like Natario did) or the equatorial plane x − y in r where θ = 0 sin(θ) = 0
and cos(θ) = 1.(see pgs 4,5 and 6 in [1]).Also the equatorial plane x− y makes an angle of 90 degrees with
the z − axis so sinφ = 1 and cosφ = 0.Then the contravariant components reduces to:

Xt = 2(rf(r)a))(sinφ)(cos θ) → Xt = 2(rf(r)a)) → sinφ = 1 → cos θ = 1 (35)

Xr = (2at)[2f(r)2 + (rf ′(r))](sinφ)(cos θ) → Xr = (2at)[2f(r)2 + (rf ′(r))] → sinφ = 1 → cos θ = 1 (36)

Xθ = −(2f(r)at)[2f(r) + rf ′(r)](sinφ)(sin θ) = 0 → sinφ = 1 → sin θ = 0 (37)

Xφ = (2f(r)at)[2f(r) + (rf ′(r))](cosφ)(cotθ) = 0 → cos φ = 0 (38)
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The remaining contravariant components are:

Xt = 2(rf(r)a))(sinφ)(cos θ) → Xt = 2(rf(r)a)) → sinφ = 1 → cos θ = 1 (39)

Xr = (2at)[2f(r)2 + (rf ′(r))](sinφ)(cos θ) → Xr = (2at)[2f(r)2 + (rf ′(r))] → sinφ = 1 → cos θ = 1 (40)

nX = Xtet + Xrer (41)

Xt = 2rf(r)a (42)

Xrs = 2[2f(r)2 + rf ′(r)]at (43)

The variable velocity vs due to a constant acceleration a is given by the following equation:

vs = 2f(r)at (44)

Remember that Natario(pg 4 in [1]) defines the x axis as the axis of motion.Inside the bubble f = 0
resulting in a vs = 0 and outside the bubble f = 1

2 resulting in a vs = at as expected from a variable
velocity vs in time t due to a constant acceleration a.Since inside and outside the bubble f(r) always
possesses the same values of 0 or 1

2 then the derivative f ′(r) of the shape function f(r) is zero and the
shift vector Xrs = 2[2f(r)2]at with Xr = 0 inside the bubble and Xrs = 2[2f(r)2]at = 2[21

4 ]at = at = vs
outside the bubble and this illustrates the Natario definition for a warp drive spacetime.See Appendix E

Only in tridimensional motion the results becomes different.As a matter of fact we have three different
situations to consider in this case:

• 1)-inside the warp bubble f(r) = 0

• 2)-outside the warp bubble f(r) = 1
2

• 3)-in the warp bubble walls 0 < f(r) < 1
2
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• A)-situation inside the bubble:

The contravariant components reduces to:

Xt = 2(rf(r)a))(sinφ)(cos θ) = 0 → f(r) = 0 (45)

Xr = (2at)[2f(r)2 + (rf ′(r))](sinφ)(cos θ) = 0 → f(r) = 0 (46)

Xθ = −(2f(r)at)[2f(r) + rf ′(r)](sinφ)(sin θ) = 0 → f(r) = 0 (47)

Xφ = (2f(r)at)[2f(r) + (rf ′(r))](cosφ)(cotθ) = 0 → f(r) = 0 (48)

Inside the bubble the shape function f(r) is constant and always zero so its derivatives vanishes too:

• B)-situation outside the bubble:

Xt = 2(rf(r)a)(sinφ)(cos θ) = (ra)(sinφ)(cos θ) → f(r) =
1
2

(49)

Xr = (2at)[2f(r)2 + (rf ′(r))](sinφ)(cos θ) = (at)(sinφ)(cos θ) → f(r) =
1
2

(50)

Xθ = −(2f(r)at)[2f(r) + rf ′(r)](sinφ)(sin θ) = −(at)(sinφ)(sin θ) → f(r) =
1
2

(51)

Xφ = (2f(r)at)[2f(r) + (rf ′(r))](cosφ)(cotθ) = (at)(cosφ)(cotθ) → f(r) =
1
2

(52)

Outside the bubble the shape function f(r) is constant and always 1
2 so its derivatives vanishes too:Hint

for the readers:compare these expressions for Xr,Xθ and Xφ with its similar counterparts for the situation
outside the bubble from the previous section:Can you spot something familiar?or not?.

• C)-situation in the warp bubble walls:

Xt = 2(rf(r)a))(sinφ)(cos θ) (53)

Xr = (2at)[2f(r)2 + (rf ′(r))](sinφ)(cos θ) (54)

Xθ = −(2f(r)at)[2f(r) + rf ′(r)](sinφ)(sin θ) (55)

Xφ = (2f(r)at)[2f(r) + (rf ′(r))](cosφ)(cotθ) (56)

In the warp bubble walls the shape function f(r) varies between 0 < f(r) < 1
2 so its derivatives do not

vanishes:
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6 Conclusion

In this work we introduced a new tridimensional 3D spherical coordinates warp drive vector using the
Natario mathematical techniques.We focused ourselves in the application of the Hodge Star in 3D spheri-
cal coordinates for both constant and variable speeds.

Our focus was concentrated in the Natario methods to obtain a warp drive vector.We know that we
used a language and a presentation method or style that may be regarded as exhaustive tedious and
monotonous for experienced or seasoned readers but we are concerned about beginners,newcomers,novices
or intermediate students not familiarized with the techniques Natario used to develop warp drive vectors
so our extensive mathematical demonstrations QED Quod Erad Demonstratum will benefit this audience
at least we hope.We gave our best efforts trying to accomplish this goal but only this audience will tell in
the future if we succeeded (or not).

The application of the new tridimensional 3D spherical coordinates warp drive vector wether in constant
or variable speeds to the ADM(Arnowitt-Dresner-Misner) formalism equations in General Relativity using
the approach of MTW (Misner-Thorne-Wheeler)resembling the works [10],[11][12] and [13] will appear in
a future work.

A complete study of our new tridimensional 3D spherical coordinates warp drive vector wether in constant
or variable speeds using the techniques of the rate-of-strain stress tensor as described in pgs 354 and 355
in [8] or Natario in pg 5 in [1] will also appear in a future work.
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7 Appendix A:differential forms,Hodge star and the mathematical demon-
stration of the Natario vectors nX = −vs ∗ dx and nX = vs ∗ dx for a
constant speed vs in a R3 space basis-Polar Coordinates

This appendix is being written for novice or newcomer students on Warp Drive theory still not acquainted
with the methods Natario used to arrive at the final expression of the Natario Vector nX

The Canonical Basis of the Hodge Star in spherical coordinates can be defined as follows(see pg 4 in
[1],eq 3.72 pg 69(a)(b) in [2]):

er ≡
∂

∂r
∼ dr ∼ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dθ ∧ dϕ) (57)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ (r sin θdϕ) ∧ dr ∼ r sin θ(dϕ ∧ dr) (58)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (59)

From above we get the following results

dr ∼ r2 sin θ(dθ ∧ dϕ) (60)

rdθ ∼ r sin θ(dϕ ∧ dr) (61)

r sin θdϕ ∼ r(dr ∧ dθ) (62)

Note that this expression matches the common definition of the Hodge Star operator * applied to the
spherical coordinates as given by(see eq 3.72 pg 69(a)(b) in [2]):

∗dr = r2 sin θ(dθ ∧ dϕ) (63)

∗rdθ = r sin θ(dϕ ∧ dr) (64)

∗r sin θdϕ = r(dr ∧ dθ) (65)

Back again to the Natario equivalence between polar and cartezian coordinates(pg 5 in [1]):

∂

∂x
∼ dx = d(r cos θ) = cos θdr−r sin θdθ ∼ r2 sin θ cos θdθ∧dϕ+r sin2 θdr∧dϕ = d

(
1
2
r2 sin2 θdϕ

)
(66)
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Look that

dx = d(r cos θ) = cos θdr − r sin θdθ (67)

Or

dx = d(r cos θ) = cos θdr − sin θrdθ (68)

Applying the Hodge Star operator * to the above expression:

∗dx = ∗d(r cos θ) = cos θ(∗dr)− sin θ(∗rdθ) (69)

∗dx = ∗d(r cos θ) = cos θ[r2 sin θ(dθ ∧ dϕ)]− sin θ[r sin θ(dϕ ∧ dr)] (70)

∗dx = ∗d(r cos θ) = [r2 sin θ cos θ(dθ ∧ dϕ)]− [r sin2 θ(dϕ ∧ dr)] (71)

We know that the following expression holds true(see eq 3.79 pg 70(a)(b) in [2]):

dϕ ∧ dr = −dr ∧ dϕ (72)

Then we have

∗dx = ∗d(r cos θ) = [r2 sin θ cos θ(dθ ∧ dϕ)] + [r sin2 θ(dr ∧ dϕ)] (73)

And the above expression matches exactly the term obtained by Natario using the Hodge Star operator
applied to the equivalence between cartezian and spherical coordinates(pg 5 in [1]).

Now examining the expression:

d

(
1
2
r2 sin2 θdϕ

)
(74)

We must also apply the Hodge Star operator to the expression above

And then we have:

∗d
(

1
2
r2 sin2 θdϕ

)
(75)

∗d
(

1
2
r2 sin2 θdϕ

)
∼ 1

2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] +
1
2
r2 sin2 θ ∗ d[(dϕ)] (76)

According to eq 3.90 pg 74(a)(b) in [2] the term 1
2r2 sin2 θ ∗ d[(dϕ)] = 0

This leaves us with:

1
2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] ∼ 1
2
r22 sin θ cos θ(dθ ∧ dϕ) +

1
2

sin2 θ2r(dr ∧ dϕ) (77)
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1
2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] ∼ 1
2
r22 sin θ cos θ(dθ ∧ dϕ) +

1
2

sin2 θ2r(dr ∧ dϕ) (78)

Because and according to eqs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.2 pg 68(a)(b) in [2]:

∗d(α + β) = dα + dβ (79)

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 2 99K ∗d(fα) = df ∧ α + f ∧ dα (80)

∗d(dx) = d(dy) = d(dz) = 0 (81)

From above we can see for example that

∗d[(sin2 θ)dϕ] = d(sin2 θ) ∧ dϕ + sin2 θ ∧ ddϕ = 2sinθ cos θ(dθ ∧ dϕ) (82)

∗[d(r2)dϕ] = 2rdr ∧ dϕ + r2 ∧ ddϕ = 2r(dr ∧ dϕ) (83)

And then we derived again the Natario result of pg 5 in [1]

r2 sin θ cos θ(dθ ∧ dϕ) + r sin2 θ(dr ∧ dϕ) (84)

Now we will examine the following expression equivalent to the one of Natario pg 5 in [1] except that
we replaced 1

2 by the function f(r) :

∗d[f(r)r2 sin2 θdϕ] (85)

From above we can obtain the next expressions

f(r)r2 ∗ d[(sin2 θ)dϕ] + f(r) sin2 θ ∗ [d(r2)dϕ] + r2 sin2 θ ∗ d[f(r)dϕ] (86)

f(r)r22sinθ cos θ(dθ ∧ dϕ) + f(r) sin2 θ2r(dr ∧ dϕ) + r2 sin2 θf ′(r)(dr ∧ dϕ) (87)

2f(r)r2sinθ cos θ(dθ ∧ dϕ) + 2f(r)r sin2 θ(dr ∧ dϕ) + r2 sin2 θf ′(r)(dr ∧ dϕ) (88)
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2f(r)r2sinθ cos θ(dθ ∧ dϕ) + 2f(r)r sin2 θ(dr ∧ dϕ) + r2 sin2 θf ′(r)(dr ∧ dϕ) (89)

Comparing the above expressions with the Natario definitions of pg 4 in [1]):

er ≡
∂

∂r
∼ dr ∼ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dθ ∧ dϕ) (90)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ (r sin θdϕ) ∧ dr ∼ r sin θ(dϕ ∧ dr) ∼ −r sin θ(dr ∧ dϕ) (91)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (92)

We can obtain the following result:

2f(r) cosθ[r2sinθ(dθ ∧ dϕ)] + 2f(r) sinθ[r sin θ(dr ∧ dϕ)] + f ′(r)r sin θ[r sin θ(dr ∧ dϕ)] (93)

2f(r) cosθer − 2f(r) sinθeθ − rf ′(r) sin θeθ (94)

∗d[f(r)r2 sin2 θdϕ] = 2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ (95)

Defining the Natario Vector as in pg 5 in [1] with the Hodge Star operator * explicitly written :

nX = vs(t) ∗ d
(
f(r)r2 sin2 θdϕ

)
(96)

nX = −vs(t) ∗ d
(
f(r)r2 sin2 θdϕ

)
(97)

We can get finally the latest expressions for the Natario Vector nX also shown in pg 5 in [1]

nX = 2vs(t)f(r) cosθer − vs(t)[2f(r) + rf ′(r)] sin θeθ (98)

nX = −2vs(t)f(r) cosθer + vs(t)[2f(r) + rf ′(r)] sin θeθ (99)
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8 Appendix B:differential forms,Hodge star and the mathematical demon-
stration of the Natario vectors nX = −vs ∗ dx and nX = vs ∗ dx for a
constant speed vs or for the first term vs ∗ dx from the Natario vec-
tor nX = vs ∗ dx + x ∗ dvs(a variable speed) in a R4 space basis-Polar
Coordinates

This appendix is being written for novice or newcomer students on Warp Drive theory still not acquainted
with the methods Natario used to arrive at the final expression of the Natario Vector nX

The Canonical Basis of the Hodge Star in spherical coordinates can be defined as follows(see pg 4 in
[1],eqs 3.135 and 3.137 pg 82(a)(b) in [2],eq 3.74 pg 69(a)(b) in [2])(see pg 47 eqs 2.67 to 2.70 and pg 92 in
[3]):

er ≡
∂

∂r
∼ dr ∼ dt ∧ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dt ∧ dθ ∧ dϕ) (100)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ dt ∧ (r sin θdϕ) ∧ dr ∼ r sin θ(dt ∧ dϕ ∧ dr) (101)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dt ∧ dr ∧ (rdθ) ∼ r(dt ∧ dr ∧ dθ) (102)

From above we get the following results

dr ∼ r2 sin θ(dt ∧ dθ ∧ dϕ) (103)

rdθ ∼ r sin θ(dt ∧ dϕ ∧ dr) (104)

r sin θdϕ ∼ r(dt ∧ dr ∧ dθ) (105)

Note that this expression matches the common definition of the Hodge Star operator * applied to the
spherical coordinates as given by(see eq 3.74 pg 69(a)(b) in [2]):

∗dr = r2 sin θ(dt ∧ dθ ∧ dϕ) (106)

∗rdθ = r sin θ(dt ∧ dϕ ∧ dr) (107)

∗r sin θdϕ = r(dt ∧ dr ∧ dθ) (108)

Back again to the Natario equivalence between polar and cartezian coordinates(pg 5 in [1]):

∂

∂x
∼ dx = d(r cos θ) = cos θdr−r sin θdθ ∼ r2 sin θ cos θdt∧dθ∧dϕ+r sin2 θdt∧dr∧dϕ = d

(
1
2
r2 sin2 θdϕ

)
(109)
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Look that

dx = d(r cos θ) = cos θdr − r sin θdθ (110)

Or

dx = d(r cos θ) = cos θdr − sin θrdθ (111)

Applying the Hodge Star operator * to the above expression:

∗dx = ∗d(r cos θ) = cos θ(∗dr)− sin θ(∗rdθ) (112)

∗dx = ∗d(r cos θ) = cos θ[r2 sin θ(dt ∧ dθ ∧ dϕ)]− sin θ[r sin θ(dt ∧ dϕ ∧ dr)] (113)

∗dx = ∗d(r cos θ) = [r2 sin θ cos θ(dt ∧ dθ ∧ dϕ)]− [r sin2 θ(dt ∧ dϕ ∧ dr)] (114)

We know that the following expression holds true(see eq 3.79 pg 70(a)(b) in [2])):

dϕ ∧ dr = −dr ∧ dϕ (115)

Then we have

∗dx = ∗d(r cos θ) = [r2 sin θ cos θ(dt ∧ dθ ∧ dϕ)] + [r sin2 θ(dt ∧ dr ∧ dϕ)] (116)

And the above expression matches exactly the term obtained by Natario using the Hodge Star operator
applied to the equivalence between cartezian and spherical coordinates(pg 5 in [1]).

Now examining the expression:

d

(
1
2
r2 sin2 θdϕ

)
(117)

We must also apply the Hodge Star operator to the expression above

And then we have:

∗d
(

1
2
r2 sin2 θdϕ

)
(118)

∗d
(

1
2
r2 sin2 θdϕ

)
∼ 1

2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] +
1
2
r2 sin2 θ ∗ d[(dϕ)] (119)

According to eq 3.90 pg 74(a)(b) in [2] the term 1
2r2 sin2 θ ∗ d[(dϕ)] = 0

This leaves us with:

1
2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] ∼ 1
2
r22 sin θ cos θ(dt ∧ dθ ∧ dϕ) +

1
2

sin2 θ2r(dt ∧ dr ∧ dϕ) (120)
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1
2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] ∼ 1
2
r22 sin θ cos θ(dt ∧ dθ ∧ dϕ) +

1
2

sin2 θ2r(dt ∧ dr ∧ dϕ) (121)

Because and according to eqs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.3 pg 68(a)(b) in [2]::

∗d(α + β) = dα + dβ (122)

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 3 99K ∗d(fα) = df ∧ α− f ∧ dα (123)

∗d(dx) = d(dy) = d(dz) = 0 (124)

From above we can see for example that

∗d[(sin2 θ)dϕ] = dt ∧ d(sin2 θ) ∧ dϕ− dt ∧ sin2 θ ∧ ddϕ = 2sinθ cos θ(dt ∧ dθ ∧ dϕ) (125)

∗[d(r2)dϕ] = 2rdt ∧ dr ∧ dϕ− dt ∧ r2 ∧ ddϕ = 2r(dt ∧ dr ∧ dϕ) (126)

And then we derived again the Natario result of pg 5 in [1]

r2 sin θ cos θ(dt ∧ dθ ∧ dϕ) + r sin2 θ(dt ∧ dr ∧ dϕ) (127)

Now we will examine the following expression equivalent to the one of Natario pg 5 in [1] except that
we replaced 1

2 by the function f(r) :

∗d[f(r)r2 sin2 θdϕ] (128)

From above we can obtain the next expressions

f(r)r2 ∗ d[(sin2 θ)dϕ] + f(r) sin2 θ ∗ [d(r2)dϕ] + r2 sin2 θ ∗ d[f(r)dϕ] (129)

f(r)r22sinθ cos θ(dt ∧ dθ ∧ dϕ) + f(r) sin2 θ2r(dt ∧ dr ∧ dϕ) + r2 sin2 θf ′(r)(dt ∧ dr ∧ dϕ) (130)

2f(r)r2sinθ cos θ(dt ∧ dθ ∧ dϕ) + 2f(r)r sin2 θ(dt ∧ dr ∧ dϕ) + r2 sin2 θf ′(r)(dt ∧ dr ∧ dϕ) (131)
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2f(r)r2sinθ cos θ(dt ∧ dθ ∧ dϕ) + 2f(r)r sin2 θ(dt ∧ dr ∧ dϕ) + r2 sin2 θf ′(r)(dt ∧ dr ∧ dϕ) (132)

Comparing the above expressions with the Natario definitions of pg 4 in [1]):

er ≡
∂

∂r
∼ dr ∼ dt ∧ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dt ∧ dθ ∧ dϕ) (133)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ dt ∧ (r sin θdϕ) ∧ dr ∼ r sin θ(dt ∧ dϕ ∧ dr) ∼ −r sin θ(dt ∧ dr ∧ dϕ) (134)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dt ∧ dr ∧ (rdθ) ∼ r(dt ∧ dr ∧ dθ) (135)

We can obtain the following result:

2f(r) cosθ[r2sinθ(dt∧ dθ∧ dϕ)]+2f(r) sinθ[r sin θ(dt∧ dr∧ dϕ)]+ f ′(r)r sin θ[r sin θ(dt∧ dr∧ dϕ)] (136)

2f(r) cosθer − 2f(r) sinθeθ − rf ′(r) sin θeθ (137)

∗d[f(r)r2 sin2 θdϕ] = 2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ (138)

Defining the Natario Vector as in pg 5 in [1] with the Hodge Star operator * explicitly written :

nX = vs(t) ∗ d
(
f(r)r2 sin2 θdϕ

)
(139)

nX = −vs(t) ∗ d
(
f(r)r2 sin2 θdϕ

)
(140)

We can get finally the latest expressions for the Natario Vector nX also shown in pg 5 in [1]

nX = 2vs(t)f(r) cosθer − vs(t)[2f(r) + rf ′(r)] sin θeθ (141)

nX = −2vs(t)f(r) cosθer + vs(t)[2f(r) + rf ′(r)] sin θeθ (142)
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9 Appendix C:differential forms,Hodge star and the mathematical demon-
stration of the Natario vector nX = ∗(vsx) = vs ∗ dx + x ∗ dvs for a
variable speed vs and a constant acceleration a in Polar Coordinates

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of r
defined by Natario as the interior of the warp bubble and nX = vs(t) ∗ dx with X = vs for a large value of
r defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg
4 in [1])(see Appendix G for an explanation about this statement)

In the Appendices A and B we gave the mathematical demonstration of the Natario vector nX = vs ∗ dx
in the R3 and R4 space basis when the velocity vs is constant.Hence the complete expression of the Hodge
star that generates the Natario vector nX for a constant velocity vs is given by:

nX = ∗(vsx) = vs ∗ (dx) (143)

∗dx = ∗d(rcosθ) = ∗d
(

1
2
r2 sin2 θdϕ

)
= ∗d[f(r)r2 sin2 θdϕ] (144)

The equation of the Natario vector nX(pg 2 and 5 in [1]) is given by:

nX = Xrer + Xθeθ (145)

nX = 2vs(t)f(r) cosθer − vs(t)[2f(r) + rf ′(r)] sin θeθ (146)

With the contravariant shift vector components explicitly given by:

Xr = 2vsf(r) cos θ (147)

Xθ = −vs(2f(r) + (r)f ′(r)) sin θ (148)

Because due to a constant speed vs the term x ∗ d(vs) = 0.Now we must examine what happens when
the velocity is variable and then the term x ∗ d(vs) no longer vanishes.Remember that a real warp drive
must accelerate or de-accelerate in order to be accepted as a physical valid model.The complete expression
of the Hodge star that generates the Natario vector nX for a variable velocity vs is now given by:

nX = ∗(vsx) = vs ∗ (dx) + x ∗ (dvs) (149)
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In order to study the term x ∗ d(vs) we must introduce a new Canonical Basis for the coordinate time
in the R4 space basis defined as follows:(see eqs 10.102 and 10.103 pgs 363(a)(b) and 364(a)(b) in [2] with
the terms S = u = 11,eq 3.74 pg 69(a)(b) in [2],eqs 11.131 and 11.133 with the term m = 02 pg 417(a)(b)
in [2].)(see pg 47 eqs 2.67 to 2.70 and pg 92 in [3]):

et ≡
∂

∂t
∼ dt ∼ dr ∧ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dr ∧ dθ ∧ dϕ) (150)

dt ∼ r2 sin θ(dr ∧ dθ ∧ dϕ) (151)

The Hodge star operator defined for the coordinate time is given by:(see eq 3.74 pg 69(a)(b) in [2]):

∗dt = r2 sin θ(dr ∧ dθ ∧ dϕ) (152)

The valid expression for a variable velocity vs(t) in the Natario warp drive spacetime due to a constant
acceleration a must be given by:

vs = 2f(r)at (153)

Because and considering a valid f(r) as a Natario shape function being f(r) = 1
2 for large r(outside

the warp bubble where X = vs(t) and nX = vs(t) ∗ dx + x ∗ d(vs(t))) and f(r) = 0 for small r(inside
the warp bubble where X = 0 and nX = 0) while being 0 < f(r) < 1

2 in the walls of the warp bub-
ble also known as the Natario warped region(pgs 4 and 5 in [1]) and considering also that the Natario
warp drive is a ship-frame based coordinates system(a reference frame placed in the center of the warp
bubble where the ship resides-or must reside!!) then an observer in the ship inside the bubble sees every
point inside the bubble at the rest with respect to him because inside the bubble vs(t) = 0 because f(r) = 0.

To illustrate the statement pointed above imagine a fish inside an aquarium and the aquarium is floating in
the surface of a river but carried out by the river stream.The stream varies its velocity with time.The warp
bubble in this case is the aquarium and the walls of the aquarium are the walls of the warp bubble-Natario
warped region.An observer in the margin of the river would see the aquarium passing by him at a large
speed considering a coordinates system(a reference frame) placed in the margin of the river but inside the
aquarium the fish is at the rest with respect to his local neighborhoods.Then for the fish any point inside
the aquarium is at the rest with respect to him because inside the aquarium vs = 2f(r)at with f(r) = 0
and consequently giving a vs(t) = 0.Again with respect to the fish the fish ”sees” the margin passing by
him with a large relative velocity.The margin in this case is the region outside the bubble ”seen” by the
fish with a variable velocity vs(t) = v1 in the time t1 and vs(t) = v2 in the time t2 because outside the
bubble the generic expression for a variable velocity vs is given by vs = 2f(r)at and outside the bubble
f(r) = 1

2 giving a generic expression for a variable velocity vs as vs(t) = at and consequently a v1 = at1
in the time t1 and a v2 = at2 in the time t2.Then the variable velocity in not only a function of time
alone but must consider also the position of the bubble where the measure is being taken wether inside or
outside the bubble.So the velocity must also be a function of r.Its total differential is then given by:

dvs = 2[atf ′(r)dr + f(r)tda + f(r)adt] (154)

1These terms are needed to deal with the Robertson-Walker equation in Cosmology using differential forms.We dont need
these terms here and we can make S = u = 1

2This term is needed to describe the Dirac equation in the Schwarzschild spacetime we dont need the term here so we can
make m = 1.Remember also that here we consider geometrized units in which c = 1
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Applying the Hodge star to the total differential dvs we get:

∗dvs = 2[atf ′(r) ∗ dr + f(r)t ∗ da + f(r)a ∗ dt] (155)

But we consider here the acceleration a a constant.Then the term f(r)tda = 0 and in consequence
f(r)t ∗ da = 0.This leaves us with:

∗dvs = 2[atf ′(r) ∗ dr + f(r)a ∗ dt] (156)

∗dvs = 2[atf ′(r) ∗ dr + f(r)a ∗ dt] = 2[atf ′(r)r2 sin θ(dt ∧ dθ ∧ dϕ) + f(r)ar2 sin θ(dr ∧ dθ ∧ dϕ)] (157)

∗dvs = 2[atf ′(r) ∗ dr + f(r)a ∗ dt] = 2[atf ′(r)er + f(r)aet] (158)

The complete expression of the Hodge star that generates the Natario vector nX for a variable velocity
vs is given by:

nX = ∗(vsx) = vs ∗ (dx) + x ∗ d(vs) (159)

The term ∗dx was obtained in the Appendices A and B as follows:(see pg 5 in [1])

∗dx = 2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ (160)

The complete expression of the Hodge star that generates the Natario vector nX for a variable velocity
vs is now given by:

nX = ∗(vsx) = vs(2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ) + x(2[atf ′(r)er + f(r)aet]) (161)

But remember that we are in polar coordinates(pg 4 in [1]) in which x = rcosθ(see pg 5 in [1]) (see also
Appendix D)and this leaves us with:

nX = ∗(vsx) = vs(2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ) + rcosθ(2[atf ′(r)er + f(r)aet]) (162)

But we know that vs = 2f(r)at.Hence we get:

nX = ∗(vsx) = 2f(r)at(2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ) + rcosθ(2[atf ′(r)er + f(r)aet]) (163)

Then we can start with a warp bubble initially at the rest using the Natario vector shown above and
accelerate the bubble to a desired speed of 200 times faster than light.When we achieve the desired speed
we turn off the acceleration and keep the speed constant.The terms due to the acceleration now disappears
and we are left again with the Natario vector for constant speeds shown below:

nX = 2vs(t)f(r) cosθer − vs(t)[2f(r) + rf ′(r)] sin θeθ (164)
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Working some algebra with the Natario vector for variable velocities we get:

nX = ∗(vsx) = 2f(r)at(2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ) + rcosθ(2[atf ′(r)er + f(r)aet]) (165)

nX = 4f(r)2at cosθer − 2f(r)at[2f(r) + rf ′(r)] sin θeθ + 2atf ′(r)rcosθer + 2f(r)rcosθaet (166)

nX = 2f(r)rcosθaet + 4f(r)2at cosθer + 2atf ′(r)rcosθer − 2f(r)at[2f(r) + rf ′(r)] sin θeθ (167)

nX = 2f(r)rcosθaet + 2[2f(r)2 + rf ′(r)]atcosθer − 2f(r)at[2f(r) + rf ′(r)] sin θeθ (168)

Then the Natario vector for variable velocities defined using contravariant shift vector components is
given by the following expressions:

nX = Xtet + Xrer + Xθeθ (169)

Or being:

nX = 2f(r)rcosθaet + 2[2f(r)2 + rf ′(r)]atcosθer − 2f(r)at[2f(r) + rf ′(r)] sin θeθ (170)

The contravariant shift vector components are respectively given by the following expressions:

Xt = 2f(r)rcosθa (171)

Xr = 2[2f(r)2 + rf ′(r)]atcosθ (172)

Xθ = −2f(r)at[2f(r) + rf ′(r)] sin θ (173)
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Figure 1: Polar Coordinates.(Source:Internet)

10 Appendix D:Polar Coordinates

Natario (See pg 5 in [1]) defined a warp drive vector nX = vs ∗ (dx) where vs is the constant speed of
the warp bubble and ∗(dx) is the Hodge Star taken over the x-axis of motion in Polar Coordinates(See
pg 4 in [1].(See also Appendices A and B for the detailed calculations).

∂

∂x
∼ dx = d(r cos θ) = cos θdr − r sin θdθ ∼ ∼ r2 sin θ cos θdθ ∧ dϕ + r sin2 θdr ∧ dϕ = d

(
1
2
r2 sin2 θdϕ

)
.

(174)
Consequently if we set exactly what Natario did in pg 5 in [1]:(we adopted the second expression)

X ∼ −vs(t)d
[
f(r)r2 sin2 θdϕ

]
∼ −2vsf cos θer + vs(2f + rf ′) sin θeθ (175)

X ∼ vs(t)d
[
f(r)r2 sin2 θdϕ

]
∼ 2vsf cos θer − vs(2f + rf ′) sin θeθ (176)

nX = Xrer + Xθeθ (177)

Xrs = 2vsf cos θ (178)

Xθ = −vs(2f + rf ′) sin θ (179)
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Considering a valid f as a Natario shape function being f = 1
2 for large r(outside the warp bubble)

and f = 0 for small r(inside the warp bubble) while being 0 < f < 1
2 in the walls of the warp bubble also

known as the Natario warped region(pg 5 in [1]):

We must demonstrate that the Natario warp drive vector given above satisfies the Natario requirements
for a warp bubble defined by:

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nX = vs(t) ∗ dx with X = vs for a large value of
rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg
4 in [1])(see Appendix G for an explanation about this statement)

Inside the bubble f = 0 and the Natario vector components are zero too.Outside the bubble f = 1
2 ,Xrs =

vs cos θ and Xθ = −vs sin θ.In motion over the x-axis only in the equatorial plane Xrs = vs because cos θ = 1

Due to a constant speed vs the term x ∗ d(vs) = 0.Now we must examine what happens when the
velocity is variable and then the term x ∗ d(vs) no longer vanishes.Remember that a real warp drive must
accelerate or de-accelerate in order to be accepted as a physical valid model.The complete expression of the
Hodge star that generates the Natario vector nX for a variable velocity vs is now given by(see Appendix
C for detailed calculations):

nX = ∗(vsx) = vs ∗ (dx) + x ∗ (dvs) (180)

The term ∗(dx) is again taken in Polar Coordinates

nX = Xtet + Xrer + Xθeθ (181)

nX = 2f(r)rcosθaet + 2[2f(r)2 + rf ′(r)]atcosθer − 2f(r)at[2f(r) + rf ′(r)] sin θeθ (182)

Xt = 2f(r)rcosθa (183)

Xr = 2[2f(r)2 + rf ′(r)]atcosθ (184)

Xθ = −2f(r)at[2f(r) + rf ′(r)] sin θ (185)

The variable velocity vs due to a constant acceleration a is given by the following equation:

vs = 2fat (186)

Remember that Natario(pg 4 in [1]) defines the x axis as the axis of motion.Inside the bubble f = 0
resulting in a vs = 0 and outside the bubble f = 1

2 resulting in a vs = at as expected from a variable
velocity vs in time t due to a constant acceleration a.Since inside and outside the bubble f always possesses
the same values of 0 or 1

2 then the derivative f ′ of the Natario shape function f is zero and the shift vector
Xrs = 2[2f2]at with Xrs = 0 inside the bubble and Xrs = 2[2f2]at = 2[21

4 ]at = at = vs outside the bubble
and this illustrates the Natario definition for a warp drive spacetime.See Appendix G
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Figure 2: Tridimensional 3D Spherical Coordinates.(Source:Internet)

11 Appendix E:Tridimensional 3D Spherical Coordinates

Natario (See pg 5 in [1]) defined a warp drive vector nX = vs ∗ (dx) where vs is the constant speed of
the warp bubble and ∗(dx) is the Hodge Star taken over the x-axis of motion in Polar Coordinates(See
pg 4 in [1].(See also Appendix F ).

∂

∂x
∼ dx = d(r cos θ) = cos θdr − r sin θdθ ∼ ∼ r2 sin θ cos θdθ ∧ dϕ + r sin2 θdr ∧ dϕ = d

(
1
2
r2 sin2 θdϕ

)
.

(187)
Note that in this case of Tridimensional 3D Spherical Coordinates the Hodge Star must be taken

no longer over d(r cos θ) but instead over d(ρ sinφ cos θ) and this demands more calculations.Replacing ρ
by r we have the following expressions for the Hodge Star:(see Appendices J and K)

∗dx = ∗d(r sinφ cos θ) = sin φ[∗d
(

1
2
r2 sin2 θdφ

)
] + cosφ[∗d[(

1
2
)(r2) cot θdθ]] (188)

sinφ[∗d[f(r)r2 sin2 θdφ]] + cosφ[∗d[(f(r))(r2) cot θdθ]] (189)
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Our new tridimensional 3D spherical coordinates warp drive vector in R3 with constant speed or
in R4 with constant speed vs nX = vs ∗ dx or for the first term vs ∗ dx of the new tridimensional 3D
spherical coordinates warp drive vector in R4 with variable speed vs nX = vs ∗ dx + x ∗ dvs is given
by:

nX = vs(t)[sinφ][2f(r) cosθer]−vs(t)[sinφ][2f(r)+rf ′(r)] sin θeθ]+[vs(t)cosφ][cotθ[2(f(r))+(rf ′(r))]eφ]]
(190)

The corresponding shift vectors are:

nX = Xrer + Xθeθ + Xφeφ (191)

Xr = vs(t)[sinφ][2f(r) cosθ] (192)

Xθ = −vs(t)[sinφ][2f(r) + rf ′(r)] sin θ] (193)

Xφ = [vs(t)cosφ][cotθ[2(f(r)) + (rf ′(r))] (194)

The equation of the polar coordinates Natario vector nX in constant speed vs(pg 2 and 5 in [1])
is given by:

nX = Xrer + Xθeθ (195)

With the contravariant shift vector components explicitly written:

Xr = 2vsf(r) cos θ (196)

Xθ = −vs(2f(r) + (r)f ′(r)) sin θ (197)

Note that Natario in pg 4 in [1] defined the x-axis as the polar axis.if the motion occurs only in the
x-axis in polar coordinates then the angle between the x-y plane and the z-axis is 90 degrees and in
this case sinφ = 1 and cos φ = 0 and our new warp drive vector in tridimensional 3D spherical coor-
dinates reduces to the original Natario warp drive vector in polar coordinates both in constant speed.

Only in a real tridimensional 3D spherical coordinates motion our new warp drive vector accounts for
a significant difference

Due to a constant speed vs the term x ∗ d(vs) = 0.Now we must examine what happens when the
velocity is variable and then the term x ∗ d(vs) no longer vanishes.Remember that a real warp drive must
accelerate or de-accelerate in order to be accepted as a physical valid model.The complete expression of
the Hodge star that generates the warp drive vector nX in tridimensional 3D spherical coordinates for
a variable velocity vs is now given by(see Appendix L for detailed calculations):

nX = A + B → A = vs ∗ dx → B = x ∗ dvs (198)
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nX = A + B → A = vs ∗ dx → B = x ∗ dvs (199)

A = (2f(r)at)(sinφ[2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ] + cosφ[cotθ[2(f(r)) + (rf ′(r))]eφ]) (200)

B = (r sinφ cos θ)(2[atf ′(r)er + f(r)aet]) (201)

Comparing the new warp drive vector for variable velocities in real tridimensional 3D spherical
coordinates with the variable velocities Natario polar coordinates warp drive vector counterpart:

nX = Xtet + Xrer + Xθeθ + Xφeφ (202)

Xt = 2(rf(r)a))(sinφ)(cos θ) (203)

Xr = (2at)[2f(r)2 + (rf ′(r))](sinφ)(cos θ) (204)

Xθ = −(2f(r)at)[2f(r) + rf ′(r)](sinφ)(sin θ) (205)

Xφ = (2f(r)at)[2f(r) + (rf ′(r))](cosφ)(cotθ) (206)

nX = Xtet + Xrer + Xθeθ (207)

Xt = 2f(r)r(cosθ)a (208)

Xr = 2[2f(r)2 + rf ′(r)]at(cosθ) (209)

Xθ = −2f(r)at[2f(r) + rf ′(r)](sin θ) (210)

Natario defined a motion in the x−axis of polar coordinates (pgs 4 and 5 in [1]) then the polar plane
x−y makes an angle of 90 degrees with the z−axis and since sinφ = 1 and cos φ = 0 it is easy to see that in
this case the new warp drive vector for variable velocities in real tridimensional 3D spherical coordi-
nates reduces itself to the variable velocities Natario polar coordinates warp drive vector counterpart:

The difference occurs only in a real tridimensional motion.
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Figure 3: Artistic Presentation of Tangent and Cotangent Spaces I.(Source:Internet)

12 Appendix F:Tangent and Cotangent Spaces I

The Canonical Basis of the Hodge Star * in spherical coordinates in R3 can be defined as follows(see pg 4
in [1],eq 3.72 pg 69(a)(b) in [2]):

er ≡
∂

∂r
∼ dr ∼ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dθ ∧ dϕ) (211)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ (r sin θdϕ) ∧ dr ∼ r sin θ(dϕ ∧ dr) (212)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (213)

The Canonical Basis of the Hodge Star * in spherical coordinates in R4 can be defined as follows(see
pg 4 in [1],eqs 3.135 and 3.137 pg 82(a)(b) in [2],eq 3.74 pg 69(a)(b) in [2])(see pg 47 eqs 2.67 to 2.70 and
pg 92 in [3]):

er ≡
∂

∂r
∼ dr ∼ dt ∧ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dt ∧ dθ ∧ dϕ) (214)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ dt ∧ (r sin θdϕ) ∧ dr ∼ r sin θ(dt ∧ dϕ ∧ dr) (215)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dt ∧ dr ∧ (rdθ) ∼ r(dt ∧ dr ∧ dθ) (216)
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In order to study the term x ∗ d(vs) we must introduce a new Canonical Basis for the coordinate time
in the R4 space basis defined as follows:(see eqs 10.102 and 10.103 pgs 363(a)(b) and 364(a)(b) in [2] with
the terms S = u = 13,eq 3.74 pg 69(a)(b) in [2],eqs 11.131 and 11.133 with the term m = 04 pg 417(a)(b)
in [2].)(see pg 47 eqs 2.67 to 2.70 and pg 92 in [3]):

et ≡
∂

∂t
∼ dt ∼ dr ∧ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dr ∧ dθ ∧ dϕ) (217)

As a matter of fact we have for the Canonical Basis and the Hodge Star * in R4 the following equations
(see pg 47 eqs 2.67 to 2.70 in [3]):

∗e0 = e1 ∧ e2 ∧ e3 (218)

∗e1 = e0 ∧ e2 ∧ e3 (219)

∗e2 = e0 ∧ e3 ∧ e1 (220)

∗e3 = e0 ∧ e1 ∧ e2 (221)

In R3 the corresponding equations are:(see pg 55 in [5])(see also pg 54 fig 4.2 in [5] for a graphical
presentation of the Hodge Star * in R3)(see pg 18 eq 1.55 in [6]):

∗e1 = e2 ∧ e3 (222)

∗e2 = e3 ∧ e1 = −e1 ∧ e3 (223)

∗e3 = e1 ∧ e2 (224)

The Canonical Basis ei are related to the partial derivatives ∂
∂xi

or simplifying related to ∂xi wether in
R3 or R4 and are graphically represented by the partial derivatives ∂xi included in the tangent space of
the picture given in the beginning of this section.

3These terms are needed to deal with the Robertson-Walker equation in Cosmology using differential forms.We dont need
these terms here and we can make S = u = 1

4This term is needed to describe the Dirac equation in the Schwarzschild spacetime we dont need the term here so we can
make m = 1.Remember also that here we consider geometrized units in which c = 1
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On the other hand in R4 we also have the following relations for the Hodge Star *:(see pg 92 in [3])

∗dt = dx ∧ dy ∧ dz (225)

∗dx = dt ∧ dy ∧ dz (226)

∗dy = dt ∧ dz ∧ dx (227)

∗dz = dt ∧ dx ∧ dy (228)

Also for R4 considering the ((w, v)(εΛ3
p)(R

1,3)) formalism we may have the following relations:(see pg
382 in [4])(x1 = x,x2 = y,x3 = z)

∗dt = dx1 ∧ dx2 ∧ dx3 (229)

∗dx1 = dt ∧ dx2 ∧ dx3 (230)

∗dx2 = dt ∧ dx3 ∧ dx1 (231)

∗dx3 = dt ∧ dx1 ∧ dx2 (232)

In R3 we would have the following relations:(see pg 117 eqs 4.6 and 4.7 in [7])(see pg 298 in [4])

∗dx = dy ∧ dz (233)

∗dy = dz ∧ dx (234)

∗dz = dx ∧ dy (235)

The differentials dx,dy,dz or dx1, dx2 and dx3 are related to the cotangent space differentials included
in the picture given in the beginning of this section.

See the graphical presentations of the relations between tangent and cotangent spaces in pg 55 fig 2.28 and
pg 70 fig 3.1 in [4].See pg 168 fig 5.19 for a graphical presentation of dx∧ dy,pg 169 fig 5.20 for a graphical
presentation of dy ∧ dz and pg 170 fig 5.21 for a graphical presentation of dz ∧ dx all in [4].
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Useful relations to deal with the Hodge Star * are given by eqs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.3
pg 68(a)(b) in [2]:See also pg 89 in [3],pg 112 in [4],pg 97 in [5],pg 36 eqs 2.21 and 2.22 in [6],pg 70 eq 3.3
in [7].

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 3 99K ∗d(fα) = df ∧ α− f ∧ dα (236)

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 2 99K ∗d(fα) = df ∧ α + f ∧ dα (237)

∗d(dx) = ∗d(dy) = ∗d(dz) = 0 (238)

p = 3 stands for the R4 and p = 2 stands for the R3.

See also Appendix I.
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Figure 4: Artistic Presentation of a Warp Bubble.(Source:Internet)

13 Appendix G:Artistic Presentation of a Warp Bubble

In 2001 the Natario warp drive appeared.([1]).This warp drive deals with the spacetime as a ”strain” tensor
of Fluid Mechanics(pg 5 in [1]). Imagine a fish inside an aquarium and the aquarium is floating in the
surface of a river but carried out by the river stream.The warp bubble in this case is the aquarium.An
observer at the rest in the margin of the river would see the aquarium passing by him at a large speed but
inside the aquarium the fish is at the rest with respect to his local neighborhoods.Since the fish is at the
rest inside the aquarium the fish would see the observer in the margin passing by him with a large relative
speed since for the fish is the margin that moves with a large relative velocity

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nX = vs(t) ∗ dx with X = vs for a large value of
rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg
4 in [1])

Lets explain better this statement:Natario considered in this case a coordinates reference frame placed
inside the bubble where the fish inside the aquarium or the astronaut in a spaceship inside the bubble
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depicted above are at the rest with respect to their local neighborhoods.Then any Natario vector must be
zero inside the bubble or the aquarium or the spaceship.

On the other hand since the fish sees the margin passing by him with a large relative velocity or the
astronaut would see a stationary observer in outer space outside the bubble passing by him with a large
relative velocity then any Natario vector outside the bubble must have a value equal to the relative velocity
seen by both the fish and the astronaut.

Considering a valid f as a Natario shape function being f = 1
2 for large r(outside the warp bubble)

and f = 0 for small r(inside the warp bubble) while being 0 < f < 1
2 in the walls of the warp bubble

also known as the Natario warped region(pg 5 in [1]):The walls of the bubble the Natario warped region
corresponds to the distorted region in the picture depicted in this Appendix.

See also Appendix H.
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Figure 5: Another Artistic Presentation of a Warp Bubble.(Source:Internet)

14 Appendix H:Another Artistic Presentation of a Warp Bubble

Natario considered a coordinates reference frame placed inside the bubble.Now we must consider a coordi-
nates reference frame placed outside the bubble:In this case the observer at the rest in the margin of the
river would see the aquarium passing by him with a large velocity with the fish inside.Also a stationary
observer at the rest in outer space would see the spaceship depicted in the picture above passing by him
with a large velocity with the astronaut inside.

Now the rules originally defined by Natario are interchanged:

Since the observer in the margin and the observer in outer space are at the rest any Natario vector in
this case must be zero outside the bubble.

But since the fish and the spaceship are being seen by the observer at the rest in the margin and the
observer at the rest in outer space both fish and spaceship with a large velocity then the Natario vector
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inside the bubble must have a value equal to the velocity seen by both observers.

Considering a valid f as a Natario shape function being f = 0 for large r(outside the warp bubble)
and f = 1

2 for small r(inside the warp bubble) while being 0 < f < 1
2 in the walls of the warp bubble also

known as the Natario warped region:The walls of the bubble the Natario warped region corresponds to the
distorted region the ”blue circle” in the picture depicted in this Appendix.
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Figure 6: Artistic Presentation of Tangent and Cotangent Spaces II.(Source:Internet)

15 Appendix I:Tangent and Cotangent Spaces II

Consider a curve R in R4 defined in function of a given set of coordinates u0,u1,u2 and u3 as being
R = R(u0, u1, u2, u3).

A total derivative of R is given by:

dR =
∂R

∂u0
du0 +

∂R

∂u1
du1 +

∂R

∂u2
du2 +

∂R

∂u3
du3 (239)

Applying the Einstein summing convention:

dR =
∂R

∂ui
dui = eidui (240)

or

dR =
∂R

∂uj
duj = ejduj (241)

With i, j = 0, 1, 2, 3 as the coordinates, ∂R
∂ui and ∂R

∂uj as the directional partial derivatives of R with
respect to each coordinate and ei and ej are the respective Canonical Basis.

Defining ds2 = dR
⊗

dR we have:

ds2 = dR
⊗

dR =
∂R

∂ui
dui

⊗ ∂R

∂uj
duj = eidui

⊗
ejduj (242)

ds2 =
∂R

∂ui

∂R

∂uj
duiduj = eiejduiduj = gijduiduj (243)

gij =
∂R

∂ui

∂R

∂uj
= eiej (244)
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The directional partial derivatives of R and their respective Canonical Basis are related to the ∂i and
∂j tangent spaces of the picture depicted in the beginning of this section while the differentials dui and
duj are related to the respective cotangent spaces.See pg 148 problem 17 in [14],pg 132 eq 10.12 pg 133
eqs 10.14a,10.14b and 10.15 in [15].

gij = ∂R
∂ui

∂R
∂uj = eiej is the spacetime metric tensor of General Relativity.
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16 Appendix J:differential forms,Hodge star and the mathematical demon-
stration of the warp drive vectors nX = −vs ∗dx and nX = vs ∗dx for
a constant speed vs in a R3 space basis-3D Spherical Coordinates

The Canonical Basis of the Hodge Star in spherical coordinates can be defined as follows(see pg 4 in [1],eq
3.72 pg 69(a)(b) in [2]):

er ≡
∂

∂r
∼ dr ∼ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dθ ∧ dϕ) (245)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ (r sin θdϕ) ∧ dr ∼ r sin θ(dϕ ∧ dr) (246)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (247)

Back again to the equivalence between 3D spherical and cartezian coordinates d(ρ sinφ cos θ) :(See
Appendix E)

We will replace ρ by r and ϕ by φ.Then we have:

d(r sinφ cos θ) = sinφ[d(r cos θ)] + (r cos θ)d(sinφ) (248)

d(r sinφ cos θ) = sinφ[cosθdr + r(d cos θ)] + (r cos θ)(cosφdφ) (249)

d(r sin φ cos θ) = sinφ[cosθ(dr)− rsinθ(dθ)] + (r cos θ)[cosφ(dφ)] (250)

d(r sin φ cos θ) = sinφ[cosθ(dr)− sinθ(rdθ)] + cosφ[(r cos θ)(dφ)] (251)

Applying the Hodge Star * to the term [cosθ(dr)−sinθ(rdθ)] we will get the same results already shown
in the Appendix A and the first part of the 3D spherical warp drive vector is the one of the Appendix A
multiplied by sin φ .Then we must concern ourselves with the term cosφ[(r cos θ)(dφ)] and the following
Canonical Basis for the Hodge Star * since the other two were covered in the Appendix A.

eφ ≡
1

r sin θ

∂

∂φ
∼ r sin θdφ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (252)

The term cosφ[(r cos θ)(dφ)] must become compatible with the Canonical Basis for the Hodge Star
above and this can be achieved by the following substitution:

cosφ[(r cos θ)(dφ)] = cosφ[(r sin θ cot θ)(dφ)] = cosφ[cot θ(r sin θ)(dφ)] (253)

cosφ[cot θ ∗ ((r sin θ)(dφ))] = cosφ[cot θ(r(dr ∧ dθ))] = cosφ[cot θ(eφ)] (254)

In the Appendix A we used the term d
(

1
2r2 sin2 θdφ

)
and its respective Hodge Star ∗d

(
1
2r2 sin2 θdφ

)
also

used by Natario in pg 5 in [1] because this term corresponds to the term [cosθ(∗dr)−sinθ(∗rdθ)] now being
multiplied by sinφ.In the 3D spherical warp drive this term also appears multiplied by sinφ but we must
look for a corresponding expression concerning the term cosφ[cot θ∗((r sin θ)(dφ))] = cosφ[cot θ(r(dr∧dθ))].
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The desired expression is the following one:

cosφ[d[(
1
2
)(r2) cot θdθ]] (255)

Its respective Hodge Star is:

cosφ[∗d[(
1
2
)(r2) cot θdθ]] (256)

Using the relations in the expression above to deal with the Hodge Star * given by eqs 3.90 and 3.91
pg 74(a)(b) in [2],tb 3.3 pg 68(a)(b) in [2]:See also pg 89 in [3],pg 112 in [4],pg 97 in [5],pg 36 eqs 2.21 and
2.22 in [6],pg 70 eq 3.3 in [7].

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 2 99K ∗d(fα) = df ∧ α + f ∧ dα (257)

∗d(dx) = ∗d(dy) = ∗d(dz) = 0 (258)

p = 2 stands for the R3.Then we have:

∗d[(
1
2
)(r2) cot θdθ] = (

1
2
)(cot θ) ∗ d(r2dθ) + (

1
2
)(r2) ∗ d(cot θdθ) + (

1
2
)(r2) cot θ ∗ d(dθ) (259)

∗d(r2dθ) = d(r2) ∧ dθ + r2 ∧ d(dθ) = d(r2) ∧ dθ = 2rdr ∧ dθ (260)

∗d(cot θdθ) = d cot θ ∧ dθ + cot θ ∧ d(dθ) = d cot θ ∧ dθ = − csc2 θdθ ∧ dθ = 0 (261)

∗d(dθ) = 0 (262)

∗d[(
1
2
)(r2) cot θdθ] = (

1
2
)(cot θ) ∗ d(r2dθ) = (

1
2
)(cot θ)(2rdr ∧ dθ) = (cot θ)(rdr ∧ dθ) (263)

And

cosφ[∗d[(
1
2
)(r2) cot θdθ]] = cosφ[(cot θ)(rdr ∧ dθ)] = cosφ[cot θ(eφ)] (264)

Because due to the Canonical Basis of the Hodge Star:

eφ ≡
1

r sin θ

∂

∂φ
∼ r sin θdφ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (265)

Then in the 3D spherical coordinates we have the following Hodge Star:

∗d(r sinφ cos θ) = sin φ[∗d
(

1
2
r2 sin2 θdφ

)
] + cosφ[∗d[(

1
2
)(r2) cot θdθ]] (266)

Also in Appendix A we used the term ∗d[f(r)r2 sin2 θdφ] corresponding to the term ∗d
(

1
2r2 sin2 θdφ

)
because Natario also used it in pg 5 in [1].Now this term must be multiplied by sinφ.
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From the Appendix A we have:

∗d[f(r)r2 sin2 θdφ] = 2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ (267)

Defining the Natario Vector as in pg 5 in [1] in polar coordinates with the Hodge Star operator *
explicitly written :

nX = vs(t) ∗ d
(
f(r)r2 sin2 θdφ

)
(268)

nX = −vs(t) ∗ d
(
f(r)r2 sin2 θdφ

)
(269)

We can get finally the latest expressions for the Natario Vector in polar coordinates nX also shown in
pg 5 in [1]

nX = 2vs(t)f(r) cosθer − vs(t)[2f(r) + rf ′(r)] sin θeθ (270)

nX = −2vs(t)f(r) cosθer + vs(t)[2f(r) + rf ′(r)] sin θeθ (271)

We choose the polar coordinates Natario vectors nX = vs(t) ∗ d
(
f(r)r2 sin2 θdφ

)
and

nX = 2vs(t)f(r) cosθer − vs(t)[2f(r) + rf ′(r)] sin θeθ

But in 3D spherical coordinates we have:

sin φ(∗d[f(r)r2 sin2 θdφ]) = sinφ(2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ) (272)

Like the term ∗d[f(r)r2 sin2 θdφ] is associated to the term ∗d
(

1
2r2 sin2 θdφ

)
and now these terms must

be multiplied by sinφ we must find the corresponding term for cosφ[∗d[(1
2)(r2) cot θdθ]].

The term we are looking for is the following one:

cosφ[∗d[(f(r))(r2) cot θdθ]] (273)

Solving the Hodge Star we have:

∗d[(f(r))(r2) cot θdθ] (274)

(f(r)) cot θ ∗ d(r2dθ) + (f(r))(r2) ∗ d(cot θdθ) + (r2)(cot θ) ∗ d(f(r)dθ)) + ((f(r))(r2) cot θ) ∗ d(dθ) (275)

As already seen before the terms ∗d(cot θdθ) = 0 and ∗d(dθ) = 0.Then the Hodge Star becomes:

∗d[(f(r))(r2) cot θdθ] = (f(r)) cot θ ∗ d(r2dθ) + (r2)(cot θ) ∗ d(f(r)dθ) (276)

∗d(r2dθ) = d(r2) ∧ dθ + r2 ∧ d(dθ) = d(r2) ∧ dθ = 2rdr ∧ dθ (277)

∗d(f(r)dθ) = d(f(r) ∧ dθ + f(r) ∧ d(dθ) = d(f(r) ∧ dθ = f ′(r)dr ∧ dθ (278)
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Still with the Hodge Star:

∗d[(f(r))(r2) cot θdθ] = (f(r)) cot θ ∗ d(r2dθ) + (r2)(cot θ) ∗ d(f(r)dθ) (279)

∗d(r2dθ) = 2rdr ∧ dθ (280)

∗d(f(r)dθ) = f ′(r)dr ∧ dθ (281)

∗d[(f(r))(r2) cot θdθ] = (f(r)) cot θ(2rdr ∧ dθ) + (r2)(cot θ)f ′(r))(dr ∧ dθ) (282)

The Canonical Basis for the Hodge Star is:

eφ ≡
1

r sin θ

∂

∂φ
∼ r sin θdφ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (283)

Then the Hodge Star now becomes:

∗d[(f(r))(r2) cot θdθ] = 2(f(r)) cot θ(rdr ∧ dθ) + (cot θ)rf ′(r)(rdr ∧ dθ) (284)

∗d[(f(r))(r2) cot θdθ] = cotθ[2(f(r)) + (rf ′(r))](rdr ∧ dθ) (285)

∗d[(f(r))(r2) cot θdθ] = cotθ[2(f(r)) + (rf ′(r))]eφ (286)

At last we are ready to present the new tridimensional 3D spherical warp drive vector.We already know
that in the 3D spherical coordinates d(r sinφ cos θ) we have the following Hodge Star:

∗d(r sinφ cos θ) = sinφ[∗d
(

1
2
r2 sin2 θdφ

)
] + cosφ[∗d[(

1
2
)(r2) cot θdθ]] (287)

But as we already demonstrated in this section the Hodge Star above can be associated to the following
one:

sinφ[∗d[f(r)r2 sin2 θdφ]] + cosφ[∗d[(f(r))(r2) cot θdθ]] (288)

With:

∗d[f(r)r2 sin2 θdφ] = 2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ (289)

∗d[(f(r))(r2) cot θdθ] = cotθ[2(f(r)) + (rf ′(r))]eφ (290)

Then our tridimensional 3D spherical Hodge Star can be given by:

sinφ[2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ] + cosφ[cotθ[2(f(r)) + (rf ′(r))]eφ] (291)

Natario defined two warp drive vectors in pg 5 in [1] as being:(see Appendix A)

nX = vs(t) ∗ d
(
f(r)r2 sin2 θdφ

)
= 2vs(t)f(r) cosθer − vs(t)[2f(r) + rf ′(r)] sin θeθ (292)

nX = −vs(t) ∗ d
(
f(r)r2 sin2 θdφ

)
= −2vs(t)f(r) cosθer + vs(t)[2f(r) + rf ′(r)] sin θeθ (293)

43



nX = vs(t) ∗ d
(
f(r)r2 sin2 θdφ

)
= 2vs(t)f(r) cosθer − vs(t)[2f(r) + rf ′(r)] sin θeθ (294)

nX = −vs(t) ∗ d
(
f(r)r2 sin2 θdφ

)
= −2vs(t)f(r) cosθer + vs(t)[2f(r) + rf ′(r)] sin θeθ (295)

We choose this one:nX = vs(t)∗d
(
f(r)r2 sin2 θdφ

)
= 2vs(t)f(r) cosθer−vs(t)[2f(r)+rf ′(r)] sin θeθ.Then

we have the original Natario warp drive vector in polar coordinates:

nX = vs(t) ∗ d
(
f(r)r2 sin2 θdφ

)
= vs(t)[2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ] (296)

Now and finally5 we can present the final form of our new warp drive vector in tridimensional 3D
spherical coordinates as being:

nX = vs(t)[sinφ[∗d[f(r)r2 sin2 θdφ]] + cosφ[∗d[(f(r))(r2) cot θdθ]]] (297)

nX = vs(t) sinφ[∗d[f(r)r2 sin2 θdφ]] + vs(t)cosφ[∗d[(f(r))(r2) cot θdθ]] (298)

nX = (sinφ)vs(t)[∗d[f(r)r2 sin2 θdφ]] + (cosφ)vs(t)[∗d[(f(r))(r2) cot θdθ]] (299)

∗d[f(r)r2 sin2 θdφ] = 2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ (300)

∗d[(f(r))(r2) cot θdθ] = cotθ[2(f(r)) + (rf ′(r))]eφ (301)

nX = vs(t)[sinφ[2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ] + cosφ[cotθ[2(f(r)) + (rf ′(r))]eφ]] (302)

nX = vs(t)[sinφ][2f(r) cosθer]−vs(t)[sinφ][2f(r)+rf ′(r)] sin θeθ]+[vs(t)cosφ][cotθ[2(f(r))+(rf ′(r))]eφ]]
(303)

This is the final form of our new tridimensional 3D spherical warp drive vector.Note that Natario in
pg 4 in [1] defined the x-axis as the polar axis.if the motion occurs only in the x-axis in polar coordinates
then the angle between the x-y plane and the z-axis is 90 degrees and in this case sinφ = 1 and cos φ = 0
and our new warp drive vector in tridimensional 3D spherical coordinates reduces to the original Natario
warp drive vector in polar coordinates.

Only in a real tridimensional 3D spherical coordinates motion our new warp drive vector accounts for
a significant difference

5at last!!!we know that this section is being written in a tedious and monotonous style but we are writing this for beginners
or introductory students eagerly needing these mathematical demonstrations QED Quod Erad Demonstratum in order to
allow these students to more easily understand the whole process of the obtention of warp drive vectors
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For our new tridimensional 3D spherical coordinates warp drive vector

nX = vs(t)[sinφ][2f(r) cosθer]−vs(t)[sinφ][2f(r)+rf ′(r)] sin θeθ]+[vs(t)cosφ][cotθ[2(f(r))+(rf ′(r))]eφ]]
(304)

The corresponding shift vectors are:

nX = Xrer + Xθeθ + Xφeφ (305)

Xr = vs(t)[sinφ][2f(r) cosθ] (306)

Xθ = −vs(t)[sinφ][2f(r) + rf ′(r)] sin θ] (307)

Xφ = [vs(t)cosφ][cotθ[2(f(r)) + (rf ′(r))] (308)
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17 Appendix K:differential forms,Hodge star and the mathematical
demonstration of the warp drive vector nX = vs ∗ dx for a con-
stant speed vs or for the first term vs ∗ dx from the warp drive
vector nX = vs ∗ dx + x ∗ dvs(a variable speed) in a R4 space basis-
Tridimensional 3D Spherical Coordinates

The Canonical Basis of the Hodge Star in spherical coordinates can be defined as follows(see pg 4 in [1],eqs
3.135 and 3.137 pg 82(a)(b) in [2],eq 3.74 pg 69(a)(b) in [2])(see pg 47 eqs 2.67 to 2.70 and pg 92 in [3]):

er ≡
∂

∂r
∼ dr ∼ dt ∧ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dt ∧ dθ ∧ dϕ) (309)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ dt ∧ (r sin θdϕ) ∧ dr ∼ r sin θ(dt ∧ dϕ ∧ dr) (310)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dt ∧ dr ∧ (rdθ) ∼ r(dt ∧ dr ∧ dθ) (311)

Useful relations to deal with the Hodge Star * are given by eqs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.3
pg 68(a)(b) in [2]:See also pg 89 in [3],pg 112 in [4],pg 97 in [5],pg 36 eqs 2.21 and 2.22 in [6],pg 70 eq 3.3
in [7].

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 3 99K ∗d(fα) = df ∧ α− f ∧ dα (312)

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 2 99K ∗d(fα) = df ∧ α + f ∧ dα (313)

∗d(dx) = ∗d(dy) = ∗d(dz) = 0 (314)

p = 3 stands for the R4 and p = 2 stands for the R3.

Back again to the equivalence between 3D spherical and cartezian coordinates d(ρ sinφ cos θ) :(See Ap-
pendix E)

We will replace ρ by r and ϕ by φ.Then we have:

d(r sinφ cos θ) = sinφ[d(r cos θ)] + (r cos θ)d(sinφ) (315)

d(r sin φ cos θ) = sinφ[cosθ(dr)− sinθ(rdθ)] + cosφ[(r cos θ)(dφ)] (316)

Applying the Hodge Star * to the terms above we will get the same results already shown in the
Appendix J .As a matter of fact comparing the Appendices A and B the given final result is the same in
both Appendices except for the fact that in Appendix A the Hodge Star is taken over R3 and in Appendix
B the Hodge Star is taken over R4.
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So the expressions for the Hodge Star of the term d(r sin φ cos θ) covered in the last(and gigantic or
enormous) Appendix J taken over R3 that uses the terms

∗d(r sinφ cos θ) = sinφ[∗d
(

1
2
r2 sin2 θdφ

)
] + cosφ[∗d[(

1
2
)(r2) cot θdθ]] (317)

sinφ[∗d[f(r)r2 sin2 θdφ]] + cosφ[∗d[(f(r))(r2) cot θdθ]] (318)

Will appear in identical form if we compute the Hodge Star for the same term

d(r sinφ cos θ)

in R4.The only difference is the term in R4

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 3 99K ∗d(fα) = df ∧ α− f ∧ dα (319)

Different than its counterpart in R3

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 2 99K ∗d(fα) = df ∧ α + f ∧ dα (320)

But since the term f ∧ dα = 0 wether in R4 or R3 the final result of the Hodge Star is the same wether
in R4 or R3 and we do not need to repeat here the tedious and monotonous piles of calculations shown in
the (monster)Appendix J since the results are the same ones.

Our new tridimensional 3D spherical coordinates warp drive vector in R4 with constant speed vs nX =
vs ∗ dx or for the first term vs ∗ dx of the new tridimensional 3D spherical coordinates warp drive vector
in R4 with variable speed vs nX = vs ∗ dx + x ∗ dvs is given by:

nX = vs(t)[sinφ][2f(r) cosθer]−vs(t)[sinφ][2f(r)+rf ′(r)] sin θeθ]+[vs(t)cosφ][cotθ[2(f(r))+(rf ′(r))]eφ]]
(321)

The corresponding shift vectors are:

nX = Xrer + Xθeθ + Xφeφ (322)

Xr = vs(t)[sinφ][2f(r) cosθ] (323)

Xθ = −vs(t)[sinφ][2f(r) + rf ′(r)] sin θ] (324)

Xφ = [vs(t)cosφ][cotθ[2(f(r)) + (rf ′(r))] (325)
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18 Appendix L:differential forms,Hodge star and the mathematical
demonstration of the new warp drive vector nX = ∗(vsx) = vs ∗
dx + x ∗ dvs for a variable speed vs and a constant acceleration a in
Tridimensional 3D Spherical Coordinates

any warp drive vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value
of r defined by Natario as the interior of the warp bubble and nX = vs(t) ∗ dx with X = vs for a large
value of r defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp
bubble.(pg 4 in [1])(see Appendix G for an explanation about this statement)

In the Appendices J and K we gave the mathematical demonstration of the new warp drive vector nX
in the R3 and R4 space basis in tridimensional 3D spherical coordinates where the velocity vs is con-
stant.Hence the complete expression of the Hodge star that generates the warp drive vector nX = vs ∗ dx
for a constant velocity vs is given by:

nX = ∗(vsx) = vs ∗ (dx) (326)

∗dx = ∗d(r sinφ cos θ) = sin φ[∗d
(

1
2
r2 sin2 θdφ

)
] + cosφ[∗d[(

1
2
)(r2) cot θdθ]] (327)

sinφ[∗d[f(r)r2 sin2 θdφ]] + cosφ[∗d[(f(r))(r2) cot θdθ]] (328)

Our new tridimensional 3D spherical coordinates warp drive vector in R4 with constant speed vs
nX = vs ∗ dx or for the first term vs ∗ dx of the new tridimensional 3D spherical coordinates warp drive
vector in R4 with variable speed vs nX = vs ∗ dx + x ∗ dvs is given by:

nX = vs(t)[sinφ][2f(r) cosθer]−vs(t)[sinφ][2f(r)+rf ′(r)] sin θeθ]+[vs(t)cosφ][cotθ[2(f(r))+(rf ′(r))]eφ]]
(329)

The corresponding shift vectors are:

nX = Xrer + Xθeθ + Xφeφ (330)

Xr = vs(t)[sinφ][2f(r) cosθ] (331)

Xθ = −vs(t)[sinφ][2f(r) + rf ′(r)] sin θ] (332)

Xφ = [vs(t)cosφ][cotθ[2(f(r)) + (rf ′(r))] (333)

Because due to a constant speed vs the term x ∗ d(vs) = 0.Now we must examine what happens when
the velocity is variable and then the term x ∗ d(vs) no longer vanishes.Remember that a real warp drive
must accelerate or de-accelerate in order to be accepted as a physical valid model.The complete expression
of the Hodge star that generates the warp drive vector nX for a variable velocity vs is now given by:

nX = ∗(vsx) = vs ∗ (dx) + x ∗ (dvs) (334)
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In order to study the term x ∗ d(vs) we must introduce a new Canonical Basis for the coordinate time
in the R4 space basis defined as follows:(see eqs 10.102 and 10.103 pgs 363(a)(b) and 364(a)(b) in [2] with
the terms S = u = 16,eq 3.74 pg 69(a)(b) in [2],eqs 11.131 and 11.133 with the term m = 07 pg 417(a)(b)
in [2].)(see pg 47 eqs 2.67 to 2.70 and pg 92 in [3]):

et ≡
∂

∂t
∼ dt ∼ dr ∧ (rdθ) ∧ (r sin θdφ) ∼ r2 sin θ(dr ∧ dθ ∧ dφ) (335)

The Hodge star operator defined for the coordinate time is given by:(see eq 3.74 pg 69(a)(b) in [2]):

∗dt = r2 sin θ(dr ∧ dθ ∧ dφ) (336)

The valid expression for a variable velocity vs(t) in the Natario warp drive spacetime due to a constant
acceleration a must be given by:

vs = 2f(r)at (337)

Because and considering a valid f(r) as a Natario shape function being f(r) = 1
2 for large r(outside

the warp bubble where X = vs(t) and nX = vs(t) ∗ dx + x ∗ d(vs(t))) and f(r) = 0 for small r(inside
the warp bubble where X = 0 and nX = 0) while being 0 < f(r) < 1

2 in the walls of the warp bub-
ble also known as the Natario warped region(pgs 4 and 5 in [1]) and considering also that the Natario
warp drive is a ship-frame based coordinates system(a reference frame placed in the center of the warp
bubble where the ship resides-or must reside!!) then an observer in the ship inside the bubble sees every
point inside the bubble at the rest with respect to him because inside the bubble vs(t) = 0 because f(r) = 0.

To illustrate the statement pointed above imagine a fish inside an aquarium and the aquarium is floating in
the surface of a river but carried out by the river stream.The stream varies its velocity with time.The warp
bubble in this case is the aquarium and the walls of the aquarium are the walls of the warp bubble-Natario
warped region.An observer in the margin of the river would see the aquarium passing by him at a large
speed considering a coordinates system(a reference frame) placed in the margin of the river but inside the
aquarium the fish is at the rest with respect to his local neighborhoods.Then for the fish any point inside
the aquarium is at the rest with respect to him because inside the aquarium vs = 2f(r)at with f(r) = 0
and consequently giving a vs(t) = 0.Again with respect to the fish the fish ”sees” the margin passing by
him with a large relative velocity.The margin in this case is the region outside the bubble ”seen” by the
fish with a variable velocity vs(t) = v1 in the time t1 and vs(t) = v2 in the time t2 because outside the
bubble the generic expression for a variable velocity vs is given by vs = 2f(r)at and outside the bubble
f(r) = 1

2 giving a generic expression for a variable velocity vs as vs(t) = at and consequently a v1 = at1
in the time t1 and a v2 = at2 in the time t2.Then the variable velocity in not only a function of time
alone but must consider also the position of the bubble where the measure is being taken wether inside or
outside the bubble.So the velocity must also be a function of r.Its total differential is then given by:

dvs = 2[atf ′(r)dr + f(r)tda + f(r)adt] (338)

6These terms are needed to deal with the Robertson-Walker equation in Cosmology using differential forms.We dont need
these terms here and we can make S = u = 1

7This term is needed to describe the Dirac equation in the Schwarzschild spacetime we dont need the term here so we can
make m = 1.Remember also that here we consider geometrized units in which c = 1
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Applying the Hodge star to the total differential dvs we get:

∗dvs = 2[atf ′(r) ∗ dr + f(r)t ∗ da + f(r)a ∗ dt] (339)

But we consider here the acceleration a a constant.Then the term f(r)tda = 0 and in consequence
f(r)t ∗ da = 0.This leaves us with:

∗dvs = 2[atf ′(r) ∗ dr + f(r)a ∗ dt] (340)

∗dvs = 2[atf ′(r) ∗ dr + f(r)a ∗ dt] = 2[atf ′(r)r2 sin θ(dt ∧ dθ ∧ dφ) + f(r)ar2 sin θ(dr ∧ dθ ∧ dφ)] (341)

∗dvs = 2[atf ′(r) ∗ dr + f(r)a ∗ dt] = 2[atf ′(r)er + f(r)aet] (342)

The complete expression of the Hodge star that generates the warp drive vector nX for a variable
velocity vs is given by:

nX = ∗(vsx) = vs ∗ (dx) + x ∗ d(vs) (343)

The term ∗dx was obtained in the Appendices J and K as follows:

∗dx = ∗d(r sinφ cos θ) = sin φ[∗d
(

1
2
r2 sin2 θdφ

)
] + cosφ[∗d[(

1
2
)(r2) cot θdθ]] (344)

sinφ[∗d[f(r)r2 sin2 θdφ]] + cosφ[∗d[(f(r))(r2) cot θdθ]] (345)

sinφ[2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ] + cosφ[cotθ[2(f(r)) + (rf ′(r))]eφ] (346)

The complete expression of the Hodge star that generates the warp drive vector nX for a variable
velocity vs is now given by:

nX = vs(sinφ[2f(r) cosθer−[2f(r)+rf ′(r)] sin θeθ]+cosφ[cotθ[2(f(r))+(rf ′(r))]eφ])+x(2[atf ′(r)er+f(r)aet])
(347)

But remember that we are in tridimensional 3D spherical coordinates(see Appendix E) in which x =
r sinφ cos θ and this leaves us with:

nX = A + B → A = vs ∗ dx → B = x ∗ dvs (348)

A = vs(sinφ[2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ] + cosφ[cotθ[2(f(r)) + (rf ′(r))]eφ]) (349)

B = (r sinφ cos θ)(2[atf ′(r)er + f(r)aet]) (350)

But we know that vs = 2f(r)at.Hence we get:

50



nX = A + B → A = vs ∗ dx → B = x ∗ dvs (351)

A = (2f(r)at)(sinφ[2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ] + cosφ[cotθ[2(f(r)) + (rf ′(r))]eφ]) (352)

B = (r sinφ cos θ)(2[atf ′(r)er + f(r)aet]) (353)

Then we can start with a warp bubble initially at the rest using the warp drive vector shown above and
accelerate the bubble to a desired speed of 200 times faster than light.When we achieve the desired speed
we turn off the acceleration and keep the speed vs constant.The term B due to the acceleration x ∗ (dvs)
now disappears the speed vs is no longer vs = 2f(r)at and we are left again with the warp drive vector for
constant speeds shown below:

nX = A → A = vs ∗ dx (354)

A = vs(sinφ[2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ] + cosφ[cotθ[2(f(r)) + (rf ′(r))]eφ]) (355)

Working some algebra with the new warp drive vector for variable velocities we get:8

nX = A + B → A = vs ∗ dx → B = x ∗ dvs (356)

A = (2f(r)at)(sinφ[2f(r) cos θer − [2f(r) + rf ′(r)] sin θeθ] + cosφ[cotθ[2(f(r)) + (rf ′(r))]eφ]) (357)

B = (r sinφ cos θ)(2[atf ′(r)er + f(r)aet]) (358)

A = (2f(r)at) sinφ[2f(r) cos θer]−(2f(r)at) sinφ[2f(r)+rf ′(r)] sin θeθ+(2f(r)at)cosφ[cotθ[2(f(r))+(rf ′(r))]eφ]]
(359)

B = 2(r sinφ cos θ)atf ′(r)er + 2(r sinφ cos θ)f(r)aet (360)

A = 4(f(r)2at)(sinφ)(cos θ)er−(2f(r)at)[2f(r)+rf ′(r)](sinφ)(sin θ)eθ+(2f(r)at)[2(f(r))+(rf ′(r))](cosφ)(cotθ)eφ

(361)

B = 2(at)(rf ′(r))(sinφ)(cos θ)er + 2(rf(r)a))(sinφ)(cos θ)et (362)

8again:we know that we are being tedious monotonous and repetitive but we are writing this mainly for beginners or
introductory students
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Rearranging the terms we have:

A = 4(f(r)2at)(sinφ)(cos θ)er−(2f(r)at)[2f(r)+rf ′(r)](sinφ)(sin θ)eθ+(2f(r)at)[2(f(r))+(rf ′(r))](cosφ)(cotθ)eφ

(363)

A = (2f(r)at) sinφ[2f(r) cos θer]−(2f(r)at) sinφ[2f(r)+rf ′(r)] sin θeθ+(2f(r)at)cosφ[cotθ[2(f(r))+(rf ′(r))]eφ]]
(364)

(2f(r)at)[2f(r)](sinφ)(cos θ)er−(2f(r)at)[2f(r)+rf ′(r)](sinφ)(sin θ)eθ+(2f(r)at)[2f(r)+(rf ′(r))](cosφ)(cotθ)eφ

(365)

B = 2(at)(rf ′(r))(sinφ)(cos θ)er + 2(rf(r)a))(sinφ)(cos θ)et (366)

Working the terms with er

(2f(r)at) sinφ[2f(r) cos θer] + 2(at)(rf ′(r))(sinφ)(cos θ)er (367)

(2f(r)at)[2f(r)](sinφ)(cos θ)er + 2(at)(rf ′(r))(sinφ)(cos θ)er (368)

(2at)[2f(r)2](sinφ)(cos θ)er + 2(at)(rf ′(r))(sinφ)(cos θ)er (369)

(2at)[2f(r)2 + (rf ′(r))](sinφ)(cos θ)er (370)

At last we can give now the new warp drive vector for variable velocities in real tridimwensional 3D
spherical coordinates using its respective contravariant shift vector components:9

nX = Xtet + Xrer + Xθeθ + Xφeφ (371)

Xt = 2(rf(r)a))(sinφ)(cos θ) (372)

Xr = (2at)[2f(r)2 + (rf ′(r))](sinφ)(cos θ) (373)

Xθ = −(2f(r)at)[2f(r) + rf ′(r)](sinφ)(sin θ) (374)

Xφ = (2f(r)at)[2f(r) + (rf ′(r))](cosφ)(cotθ) (375)

9again:the section is extensive but a beginner needs all these QED Quod Erad Demonstratum mathematical demonstrations
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Comparing the new warp drive vector for variable velocities in real tridimensional 3D spherical coor-
dinates with the Natario polar coordinates warp drive vector counterpart:

nX = Xtet + Xrer + Xθeθ + Xφeφ (376)

Xt = 2(rf(r)a))(sinφ)(cos θ) (377)

Xr = (2at)[2f(r)2 + (rf ′(r))](sinφ)(cos θ) (378)

Xθ = −(2f(r)at)[2f(r) + rf ′(r)](sinφ)(sin θ) (379)

Xφ = (2f(r)at)[2f(r) + (rf ′(r))](cosφ)(cotθ) (380)

nX = Xtet + Xrer + Xθeθ (381)

Xt = 2f(r)r(cosθ)a (382)

Xr = 2[2f(r)2 + rf ′(r)]at(cosθ) (383)

Xθ = −2f(r)at[2f(r) + rf ′(r)](sin θ) (384)

Natario defined a motion in the x− axis of polar coordinates (pgs 4 and 5 in [1]) then the polar plane
x−y makes an angle of 90 degrees with the z−axis and since sinφ = 1 and cos φ = 0 it is easy to see that
in this case the new warp drive vector for variable velocities in real tridimensional 3D spherical coordinates
reduces itself to the Natario polar coordinates warp drive vector counterpart:

The difference occurs only in a real tridimensional motion.
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