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Abstract

The Uehling potential is the one-loop radiative correction to the photon
propagator. The correction can be graphically represented by the Feynman
diagram of the second order. The physical meaning of this diagram is the
process γ → (e− + e+) → γ, where γ is denotation for photon, and e−, e+ is
the electron-positron pair. It means that photon can exist in the intermediate
state with e+, e− being virtual particles. Then, the Coulomb potential with
radiative corrections can be inserted in the Sommerfeld quantum equation in
order to find the Sommerfeld energy.

1 Introduction

The Coulomb’s law summarizes experimental data. This law states that two charged

bodies with infinitely small dimensions (two point charges) repel each other if they

have like charges and attract each other if they have unlike charges. The force of their

interaction force is proportional to ∼ q1q2
R2

12
, where q1 and q2 are charges of the first and

second bodies, respectively and R12 is the distance between them.

Let us consider an electrostatic field in a vacuum. A perfect vacuum cannot naturally

be achieved in experiments, and a certain amount of air always remains in the vessels

being evacuated. This does not at all mean, however, that the laws of an electric field in

a vacuum cannot be studied experimentally Tamm (1979).

The force of interaction of charges being inversely proportional to the square of the

distance between them can be directly verified experimentally. It can be verified by

sequentially measuring the forces of interaction between pairs of charges.
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As regards the sign of charges, it is pure convention that the charges which appear

on glass when it is rubbed with silk or flannel are positive. Hence, the charges that are

repelled by these charges on the glass are also positive.

It is very important that Coulomb’s law holds only for the interaction of point charges,

i.e. charged particles of infinitely small dimensions.

The expression ”infinitely small” should naturally not be understood here in its

strictly mathematical sense. In physics, the expression ”infinitely small” (or ”infinitely

great”) quantity is always understood in the sense of ”sufficiently small” (or ”sufficiently

great”) quantity-sufficiently small with respect to another quite definite physical quantity.

(Tamm, 1979).

In the formulation of Coulomb’s law, the infinitely small (point) value of the dimensions

of charged bodies is understood in the sense that they are sufficiently small relative to the

distance between these bodies, sufficiently small in the sense that with the given distance

between the bodies the force of their interaction no longer changes within the limits of

the preset accuracy of measurements upon a further reduction of their dimensions and an

arbitrary change in their shape (Tamm, 1979).

When determining the resultant of electric forces, we must naturally take account of

the circumstance that these forces are vectors. R12 stands for a radius-vector drawn from

point 1 to point 2, and R12 = |R12| for the numerical value of the distance between points

1 and 2. It is obvious that R12 = −R21.

Coulomb’s law, as in general of any law on which the relevant branch of theoretical

physics is based, belongs not only to the direct experimental verification of this law. It

also belongs, and this is much more significant, to the agreement with experimental data

of the entire complex of theoretical conclusions having this law as one of their cornerstones

Tamm (1979).

The radiative corrections to the Coulomb potential follows from the quantum elec-

trodynamics and cannot be determined by the classical mathematical procedures of the

classical electromagnetism. So, we use in the next section the Green function of photon

from which the radiative Uehling corrections to the Coulomb potential follow.

2 The Uehling correction to the Coulomb potential

The Uehling potential describes the interaction potential between two electric charges

which, in addition to the classical Coulomb potential, contains an extra term responsible

for the electric polarization of the vacuum. This potential was found by Uehling (1935).

Uehling’s corrections take into account that the electromagnetic field of a point

charge does not act instantaneously at a distance, but rather it is an interaction that

takes place via exchange particles, the photons. In quantum field theory, due to the

uncertainty principle between energy and time, a single photon can briefly form a virtual

particle-antiparticle pair, that influences the point charge. This effect is called vacuum
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polarization, because it makes the vacuum appear like a polarizable medium. The

dominant contribution comes from the electron. The corrections by Uehling are negligible

in everyday practice, but it allows to calculate the spectral lines of hydrogen-like atoms

with high precision.

The appropriate modified propagation function implies the change of the interaction

between static charges which originally interact by manner of the Coulomb law. Let us

first recall the definition of the potential by means of the Green function. This definition

of the potential is not involved in the Roche majestic article on the historical development

of the potential (Roche, 2003).

So, from the Green function of the massive scalar particle (Schwinger, 1970; 2018)

∆+(x− x′) = i
∫
dωpe

ip(x−x′)−ip0|x0−x′0| (1)

we get, as the consequence of it, the massless Green function (Schwinger, 1970; 2018;

2-3.91)

D+(x− x′) = ∆+(x− x′,m = 0) = D+(x− x′, τ) =

i

4π2

1

|x− x′|

∫ ∞
0

dp0 sin
(
p0|x− x′|

)
e−ip

0|τ | (2)

with τ = x0 − x′0. The potential corresponding to the Green function (2) is then defined

by the following way (Schwinger, 1970; 2018; 2-3.92):

V (x− x′) =
∫ ∞
−∞

dτD+(x− x′, τ) =

1

2π2

1

|x− x′|

∫ ∞
0

dp0
sin(p0|x− x′|)

p0
=

1

4π

1

|x− x′|
. (3)

Replacing D+(x − x′, τ) by its modified spin 1/2 version D̃+(x − x′, τ), we get the

modified Coulomb potential (Schwinger, 1970; 2018):

Ṽ (x) =
1

4π|x|
+

α

3π

∫ ∞
(2m)2

(
1 +

2m2

M2

)(
1− 4m2

M2

)1/2
e−M |x|

4π|x|
=

1

4π|x|

[
1 +

α

π

∫ 1

0
du
u2(1− u2/3)

1− u2
exp

{
− 2m|x|

(1− u2)1/2

}]
, (4)

where

u =

(
1− 4m2

M2

)1/2

. (5)

So, we have seen that the four variable Green function is reduced by time integration to

the the tree-variable Green function and the exponential part of it is the Green function
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corresponding to operator −∆ +M2. It can be obtained by the contour integration with

the result

∫ (dp)

(2π)3
eipx

p2 +M2 − iε
=
e−M |x|

4π|x|
. (6)

Now, let us consider two cases in eq. (4):

Ṽ (x) ≈ V (x); 2m|x| � 1 (7)

Ṽ (|x|) ≈ 1

4π|x|

[
1 +

2α

3π

{
lg

1

m|x|
− C − 5

6

}]
; 2m|x| � 1, (8)

where

C = 0, 57721.... (9)

is the Euler constant. The additional logarithmic behavior under these circumstances

comes from the interval of M -integration such that |x|−1 � M � 2m. The evaluation

of Ṽ (|x|) for 2m|x| � 1 is obtained by partitioning the integral at some value of M that

satisfies the considered inequality.

Let us remark that the used methods of this article can be applied in the area of the

general theory of the potential (Gunter, 1953).

3 The Bohr energy

Simple perturbation theory can be applied to the change in interaction energy,

δV (x) = −Ze2δD(x), (10)

where δD(x) represents the difference between D̃(x) and

D(x) =
1

4π
|x|. (11)

In a state with non-relativistic wave function ψ(x), appropriate to the restriction

Zα� 1, we have

δE =
∫
d(x)δV (x)|ψ(x)|2 ∼= −4πZα|ψ(0)|2

∫
d(x)δD(x), (12)

which uses the fact that the perturbation is significant only over distances that are small

compared with atomic dimensions. The integration that appears here is equivalent to

evaluating the zero momentum limit of δD+(k), and

∫
d(x)δD(x) =

α

3π

∫ ∞
4m2

dM2

M4

(
1 +

2m2

M2

)(
1− 4m2

M2

)1/2

=
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α

π

1

(2m)2

∫ 1

0
dvv2

(
1− 1

3
v2
)

=
α

15π

1

m2
. (13)

Only s-states need to be considered. For principal quantum number n

|ψns(0)|2 =
1

π

(
Zα

n
m
)3

(14)

and

δEns = − 4

15π

Z4α5

n3
m, (15)

or,

δEns(
1
2
Z2α2

n2 m
) = − 8

15π

Z2α3

n
, (16)

the latter giving a comparison with the Bohr energy values. More details will not be

supplied now since, this effect is rather minor compared to another that displaces the s-

states in the opposite sense. Let us remark that quantum numbers can take the following

values: n = 1, 2, 3, ... - (principal quantum number), l = 0, 1, 2, ..., n − 1 - (azimuthal

quantum number) and m = −l, ... l, - (magnetic quantum number) (Merzbacher, 1988).

In our case, Only s-states are considered being nonzero.

The existence of the vacuum polarization effect must be inferred from the quantitative

comparison with experiment; in its absence a small but significant discrepancy with

experiment would remain (Schwinger, 1983; 2018).

4 The quantum Sommerfeld equation

Let us find the classical equation of motion and the trajectory of an electron according

to relauvistic theory. In this case, the r and ϕ polar coordinates change with different

frequencies. Or, the motion is quasi-periodic. We determine the angle through which

the perihelion of the electron is shifted during ”one” revolution. Then we obtain the

Sommerfeld formula for the energy levels and find their splitting. We follow he the

monograph by Sokolov et al. (1962)

Using the relativistic Lagrangian function

L = −mc2
√

1− β2 +
Ze2

r
, (17)

where

β2 =
v2

c2
=

1

c2
(ṙ2 + r2ϕ̇2), (18)

we obtain the equation of motion in the form:
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d

dt

mv√
1− β2

= −Ze
2

r3
r. (19)

For the generalized momenta

pr =
∂L
∂ϕ̇

, pϕ =
∂L
∂ṙ
, (20)

we get from eq. (20):

pr =
pϕ
r2
r′, r′ =

dr

dϕ
(21)

Now, it follows, in accordance with the law of conservation of energy, that

E = c

√
mc2 + p2r +

p2ϕ
r2
− Ze2

r
= const, (22)

which implies that

r′ =
r2

cpϕ

√√√√(E +
Ze2

r

)2

−m2c4 −
c2p2ϕ
r2

. (23)

The solution of the last equation can be realized by the substitution r = 1/u. Then,

after some mathematical operations we get the differential equation for u and therefore

for r. The solution of the differential equation for u is then the equation of the trajectory

r:

r =
q

1 + ε cos γϕ
, (24)

where

γ =

√√√√1− Z2e4

c2p2ϕ
(25)

q =
γ2c2p2ϕ
Ze2E

. (26)

ε =

√√√√
1 +

γ2
(
1− m2c4

E2

)
(1− γ2)

(27)

It is apparent from Eq. (24) that the motion is quasi-periodic. For the shift ∆ϕ of the

perihelion, we have from (24)

∆ϕ =
2π(1− γ)

γ
≈ πZ2e4

c2p2ϕ
. (28)

With the help of
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∮
pidxi = Ii, (29)

where Ii are so called the Ehrenfest adiabatic invariants, with pi, xi being generalized

coordinates, we get

Iϕ = 2πpϕ. (30)

Ir = 2π

(
B√
A
−
√
C

)
, (31)

where

A = m2c2
(

1− E2

m2c4

)
. (32)

B =
Ze2E

c2
, C = p2ϕ −

Z2e4

c2
(33)

Then, for the energy E, we obtain the expression

E = m2c2

1 +
Z2e4

c2
[
Ir
2π

+
√

I2ϕ
4π2 − Z2e4

c2

]2

−1/2

. (34)

We immediately see that the frequencies

ωϕ =
∂E

∂Iϕ
, ωr =

∂E

∂r
(35)

are different.

Using the Bohr-Sommerfeld quantization conditions

∮
pϕdϕ = nϕh̄,

∮
prdr = nrh̄, (36)

where nϕ, nr are azimutal and radial quantum numbers, we can transform the energetical

formula (34) in the new form:

Enr,nϕ = E −mc2 = mc2

1 +
Z2α4[

nr +
√
nϕ2 − Z2α2

]2

−1/2

−mc2, (37)

where α = e2/ch̄ ≈ 1/137 is so called the fine structure constant. Expanding the formula

(37) into a series in α2 and restricting ourselves to quantities of the order of α2, we have:

En,nϕ = −Rh̄Z
2

n2

[
1 +

α2Z2

n2

(
n

nϕ
− 3

4

)]
(38)
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Since nϕ varies from 1 to nϕ it follows from Eq. (38) that the energy levels, which

is determined by the principal quantum number n = nr + nϕ are splited into n closely

sublevels (this close spacing is a consequence of the smallness of α2 ).

The fine-structure splitting is

∆En,nϕ = En,nϕ − En,nϕ−1 =
Rh̄Z4α2

n2nϕ(nϕ − 1)
, (39)

where

R =
me4

2h̄3
(40)

being the Rydberg constant.

The splitting, or fine structure, of the levels, is a characteristic result of relativistic

effects and it is essentially different from the predictions of the nonrelativistic theory.

Let us remark that Dirac formula for H-atom is related to the Sommerfeld formula Or,

if we replace the numbers nϕ by (j+ 1/2) and nr by (j−1/2) in the formula (37), we get:

Enr,nϕ = E−mc2 = mc2

1 +
Z2α4[

n+ (j − 1/2) +
√

(j + 1/2)2 − Z2α2
]2

−1/2

−mc2, (41)

which is original the Dirac formula for the electron with spin 1/2. The coincidence is

miraculous and till this time the explanation of the physical origin of this coincidence was

not given. More information of this problem is in the Petrov article (Petrov, 2020)

5 The Sommerfeld equation with the Uehling correction

If we denote the Uehling potential as δV (r), being the small radiative contribution to the

Coulomb potential, then we can by analogy with the above theory repeat the calculations.

We get the following system of mathematical objects.

E = c

√
mc2 + p2r +

p2ϕ
r2
− Ze2

r
+ δV = const, (42)

which implies that

r′ =
r2

cpϕ

√√√√(E +
Ze2

r
− δV

)2

−m2c4 −
c2p2ϕ
r2

. (43)

By the substitution r = 1/u we obtain the differential equation for u.

6 Discussion

The effect we are discussing here, is usually named as vacuum polarization. It increases

the strength of the Coulomb interaction with diminishing distance. The increase is quite
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small, however, at any realizable distance. Thus, with 2m|x| ∼ 10−3, which represents

a distance of roughly 10−14 cm when the electron mass is used, it is approximately one

percent. In view of the logarithmic dependence on distance, this order of magnitude

cannot be changed significantly by any conceivable improvement in experimental process;

a ten-percent increase in interaction strength requires dropping to a distance ∼ 10−37

cm. And long before such distances could be approached, the situation would change

qualitatively through the growing importance of particles that are heavier than the

electron.

Nevertheless, vacuum polarization effects are measurable at the present level of

experimental technique. The most elementary situation is that of hydrogen atoms where

the strengthened attraction between electron and nucleus depresses the energy values of

zero orbital angular momentum states, these being the ones in which the electron spends

appreciable time near the nucleus (Schwinger, 1983; 2018).
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