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Abstract

This paper explores the theoretical relationship between the frequency
of prime digits in factorial representations and the non-trivial zeros of the
Riemann Zeta function. By defining the prime digit frequency within fac-
torials and aggregating these frequencies, we propose a hypothesis where
such aggregated prime digit frequencies exhibit periodic patterns that
mirror the distribution of the non-trivial zeros of the Riemann Zeta func-
tion. Utilizing Fourier transform analysis, we identify periodic compo-
nents in the digit frequencies that may correspond to these zeros. Sta-
tistical tests, including Chi-Squared and Kolmogorov-Smirnov tests, are
employed to validate this connection. This study suggests that the nature
of prime digit frequencies in number sequences, such as factorials, may
reflect deeper mathematical structures influenced by the Riemann Zeta
functions zeros.

Code for the programs is available at:
Python Code at Github

1 Introduction

Mathematical Notation of the Theoretical Connection to the Riemann Zeta
Function

The goal is to explore the possible theoretical connection between prime digit
frequencies in factorials and the Riemann Zeta function, particularly focusing
on its non-trivial zeros. Here’s how we can develop the notation and hypotheses:

1. Prime Digit Frequencies in Factorials
Let n! denote the factorial of n, and consider the digits of n! in a certain

base, typically base-10.
Define the frequency of a digit d (where d is a prime digit like 2, 3, 5, or 7

in base-10) in the representation of n! as:

Fd(n) =
count of digit d in n!

total digits in n!
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These frequencies can be aggregated over multiple factorials to provide in-
sights. For a sequence of factorials from 1 to N , we define the aggregated
frequency:

F d(N) =
1

N

N∑
n=1

Fd(n)

import math

from collections import Counter

from sympy import isprime

# Calculate Factorial

def factorial(n):

return math.factorial(n)

# Convert Number to Base

def convert_to_base(n, base):

digits = []

while n:

digits.append(n % base)

n //= base

return digits[::-1]

# Calculate Prime Digit Frequencies in Factorials

def prime_digit_frequency_in_factorials_up_to_n(n, base=10):

prime_digits = [d for d in range(base) if isprime(d)]

frequencies = []

for i in range(1, n + 1):

digit_counts = Counter ()

total_digits = 0

for j in range(1, i + 1):

fact_digits = convert_to_base(factorial(j), base)

digit_counts.update(fact_digits)

total_digits += len(fact_digits)

prime_freq = {digit: digit_counts[digit] / total_digits for

digit in prime_digits}

frequencies.append(prime_freq)

return frequencies , prime_digits

2. Non-Trivial Zeros of the Riemann Zeta Function
The Riemann Zeta function ζ(s) is a complex function defined for complex

numbers s = σ + it by:

ζ(s) =

∞∑
n=1

1

ns

for ℜ(s) > 1, and analytically continued to other regions except s = 1.
The non-trivial zeros of the Zeta function are critical and lie in the critical

strip 0 < ℜ(s) < 1. The famous Riemann Hypothesis posits that all non-trivial
zeros lie on the critical line ℜ(s) = 1

2 .
3. Hypothesis Connecting Prime Digit Frequencies to Zeta Function Zeros
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Hypothesis: The aggregated prime digit frequencies in factorials exhibit pe-
riodic patterns indicative of the distribution of the non-trivial zeros of the Rie-
mann Zeta function.

Formally, if ρ denotes a non-trivial zero of ζ(s), then there exists a relation
between F d(n) and the imaginary parts γ of ρ = 1

2 + iγ such that:

F d(N) ≈ A+B
∑
γ

cos(γ logN + ϕ)

where A and B are constants, and ϕ is a phase term.
Fourier Transform Analysis
To detect these periodic patterns, we apply the Fourier transform on the

sequence of Fd(n):

F{Fd(n)}(ω) =
N∑

n=1

Fd(n)e
−iωn

The peaks in the Fourier transform magnitude |F{Fd(n)}(ω)| are analyzed
to identify periodic components that may correspond to the imaginary parts γ
of the zeta zeros.

import numpy as np

import matplotlib.pyplot as plt

from scipy.fftpack import fft

# Fourier Analysis of Prime Digit Frequencies

def perform_fourier_analysis(frequencies , prime_digits):

for digit in prime_digits:

digit_freqs = [freq[digit] for freq in frequencies]

Y = fft(digit_freqs) # Perform Fourier Transform

N = len(Y)

Y = np.abs(Y[:N//2]) # Take the magnitude of the first

half of the FFT

# Frequency bins

freq_bins = np.fft.fftfreq(N)[:N//2]

# Plot the Fourier Transform results

plt.figure(figsize=(10, 6))

plt.plot(freq_bins , Y)

plt.title(f’Fourier Transform of Prime Digit {digit}

Frequencies ’)

plt.xlabel(’Frequency ’)

plt.ylabel(’Magnitude ’)

plt.yscale(’log’)

plt.grid(True)

plt.show()

Statistical Testing
To statistically validate the hypothesis, we perform the following tests:
1. **Chi-Squared Test**: Compare the observed frequencies of prime digits
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F d(N) with a uniform distribution 1
p−1 where p is the number of prime digits:

χ2 =
∑

d∈prime digits

(F d(N)− 1
p−1 )

2

1
p−1

2. **Kolmogorov-Smirnov Test**: Compare the empirical distribution of
F d(N) with the expected uniform distribution.

from scipy.stats import chisquare , ks_2samp

# Statistical Analysis of Prime Digit Frequencies

def statistical_analysis(frequencies , prime_digits):

# Calculate observed frequencies across all factorials up to n

observed_frequencies = {digit: 0 for digit in prime_digits}

total_counts = 0

for freq in frequencies:

for digit in prime_digits:

observed_frequencies[digit] += freq[digit]

total_counts += 1

# Normalize observed frequencies

observed_list = [observed_frequencies[digit] for digit in

prime_digits]

total_observed = sum(observed_list)

observed_list = [freq / total_observed for freq in

observed_list]

# Expected frequencies assuming uniform distribution

expected_list = [1 / len(prime_digits)] * len(prime_digits)

# Perform chi -squared test

chi2_stat , p_val_chi = chisquare(observed_list , f_exp=

expected_list)

print("Chi -Squared Test Statistic:", chi2_stat)

print("p-value (Chi -Square):", p_val_chi)

# Perform KS test

ks_stat , p_val_ks = ks_2samp(observed_list , expected_list)

print(f"KS Test Statistic: {ks_stat}")

print(f"p-value (KS Test): {p_val_ks}")

# Plot observed vs expected frequencies

digits = list(prime_digits)

plt.figure(figsize=(10, 6))

x = np.arange(len(digits))

plt.bar(x - 0.2, observed_list , 0.4, label=’Observed ’)

plt.bar(x + 0.2, expected_list , 0.4, label=’Expected ’)

plt.xlabel(’Prime Digits ’)

plt.ylabel(’Frequency ’)

plt.xticks(x, digits)

plt.legend ()
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plt.title(’Observed vs Expected Prime Digit Frequencies ’)

plt.show()

Formal Statement of Connection
To formalize the theoretical connection, we propose that the aggregated

prime digit frequency function F d(N) can be modeled as:

F d(N) =

∫ ∞

−∞
f(γ)eiγ logNdγ

where f(γ) is a function embodying the density of the non-trivial zeros, ef-
fectively transforming the prime digit frequency sequence into a form influenced
by the zeros of the Riemann Zeta function.

Proof that a p-value approaches 1 as n → ∞
To prove that a p-value approaches 1 as n → ∞ for a given null hypothe-

sis, we need to show that the observed test statistic under the null hypothesis
becomes more consistent with the expected distribution as the sample size in-
creases. Let’s consider the specific example of the Chi-Squared test for prime
digit frequencies in factorial digit sequences.

Theoretical Background
**Chi-Squared Test:** The Chi-Squared test is used to compare observed

and expected frequencies. The test statistic is given by:

χ2 =

k∑
i=1

(Oi − Ei)
2

Ei

where Oi and Ei are the observed and expected frequencies, respectively, for
each category i.

Under the null hypothesis, this statistic follows a Chi-Squared distribution
with k − 1 degrees of freedom, where k is the number of categories.

2 Hypothesis

As n → ∞, the distribution of prime digit frequencies in n! should approach
the uniform distribution if the digits are distributed randomly. This implies
that the observed frequencies Oi would converge to the expected frequencies Ei

under the null hypothesis of uniformity. Therefore, we expect the Chi-Squared
test statistic to approach 0.

**P-Value:** The p-value is the probability of obtaining a test statistic as
extreme as, or more extreme than, the observed value under the null hypothesis.
As the test statistic approaches 0, the p-value approaches 1.

Proof Outline
1. **Limit of Observed Frequencies:** - Show that the observed frequencies

of prime digits in n! converge to their expected frequencies. - limn→∞ Oi(n) =
Ei.
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(a) Fourier Transform for Prime Digit 2
Frequencies

(b) Fourier Transform for Prime Digit
3 Frequencies

(c) Fourier Transform for Prime Digit 5
Frequencies

(d) Comparison of Frequencies vs. Ex-
pectation of Norm

Figure 1: Example of Data from the Program Attached

2. **Convergence of Chi-Squared Statistic:** - Show that as n → ∞, the
Chi-Squared test statistic approaches 0 due to the convergence of Oi to Ei. -
limn→∞ χ2 = 0.

3. **P-Value Convergence:** - Demonstrate that as the Chi-Squared statis-
tic approaches 0, the p-value, which is the cumulative probability from 0 to
the test statistic value under the Chi-Squared distribution, approaches 1. -
limn→∞ P (χ2) = 1.

Detailed Steps
1. **Observed Frequencies Convergence:**

Oi(n) =
count of digit i in n!

total number of digits in n!

Under the null hypothesis, each digit’s frequency should approach 1
k (for k prime

digits in the base). Therefore:

lim
n→∞

Oi(n) = Ei =
1

k

2. **Convergence of the Chi-Squared Statistic:** Since Oi(n) approaches
Ei, the numerator in the Chi-Squared statistic (Oi − Ei)

2 approaches 0:

lim
n→∞

χ2 =

k∑
i=1

(Oi(n)− Ei)
2

Ei
=

k∑
i=1

(0)2

Ei
= 0
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3. **P-Value Convergence:** The p-value is the probability that the Chi-
Squared statistic exceeds the observed value under the null hypothesis:

P (χ2 ≥ observed χ2) → 1asobserved χ2 → 0

Formally, as the observed χ2 approaches 0, the Chi-Squared distribution’s cu-
mulative distribution function (CDF) approaches 1 at the limit:

lim
χ2→0

Fχ2(0) = 1

Here, Fχ2 denotes the CDF of the Chi-Squared distribution.

Combining these steps, we conclude that as n → ∞, the p-value approaches
1, indicating that the observed frequencies are increasingly consistent with the
expected uniform distribution under the null hypothesis. This theoretical proof
hinges on the convergence properties of the observed frequencies and the behav-
ior of the Chi-Squared distribution.

Conclusion
In summary, demonstrating that a p-value approaches 1 as n → ∞ involves

proving that the observed test statistic aligns more closely with the expected
distribution, thereby rendering the test statistic to approach its expected value
under the null hypothesis (0 for the Chi-Squared test), which in turn causes the
p-value to approach 1. This can be formalized using the properties of conver-
gence, limits, and statistical distributions.
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3 Conclusion

This theoretical model suggests that by analyzing the aggregated prime digit
frequencies in factorials using Fourier and statistical analysis, one may uncover
underlying periodic patterns that correspond to the non-trivial zeros of the
Riemann Zeta function. This is rooted in the hypothesis that the zeros influence
the structure of number sequences, such as the digits of factorials, in ways that
can potentially be detected and analyzed.

4 Main Analysis

Combining all parts into one, we write the main analysis routine that integrates
the calculation, Fourier analysis, and statistical testing altogether.

def main_analysis(n_max=100 , base=10):

# Calculate Frequencies

frequencies , prime_digits =

prime_digit_frequency_in_factorials_up_to_n

(n_max , base)

print("Prime Digits:", prime_digits)

print("Frequencies Calculated")

# Perform Fourier Analysis

print("Performing Fourier Analysis ...")

perform_fourier_analysis(frequencies , prime_digits)

# Conduct Statistical Analysis

print("Performing Statistical Analysis ...")

statistical_analysis(frequencies , prime_digits)

# Example usage

if __name__ == "__main__":

n_max = 100 # Specify the maximum n for factorial calculations

base = 10 # Specify the base (10 for decimal)

main_analysis(n_max , base)
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