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The nature of semi-exponentials
Warren D. Smith, warren.wds@gmail.com, August 2024.

ABSTRACT: A "semi-exponential" is a function F(z) such that F(F(z))=exp(z). We show that (a) no
entire-analytic semi-exponential F(z) exists; (b) no semi-exponential F(z) exists that is analytic
within any interior-connected domain that includes both the real axis, and all complex Q obeying
Q=exp(Q), in its interior, and which maps reals→reals; (c) Analytic semiexponentials do exist that
map most reals to complex numbers and which have non-analytic points; (d) We also construct a
useful piecewise-analytic real→real semi-exponential such that F, F', and F'' all are continuous, and
F(x) is strictly increasing and strictly concave-∪, for all real x; and indeed the domain of definition of
this F(z) may be slightly expanded to a long and thin complex set that includes the real axis in its
interior, albeit then F becomes discontinuous at an infinite set of nonreal points. (e) But we show
that no piecewise-analytic, with piece boundaries being nonempty rectifiable differentiable curves,
semi-exponential that maps reals→reals can be defined within any domain that includes the strip
0≤im(z)<π. Many of our arguments may be repurposed for many other "semi" functions besides the
exponential. Finally (f) we show that real-valued C∞-smooth, strictly increasing, strictly concave-∪
semi-exponentials exist, and under certain asymptotic analyticity demands are unique.

A hoary problem is to find a nice "semi-exponential" function F(z) such that F(F(z))=exp(z).
Equivalently, if L(z)=lnF(z) then L(eL(z))=z. Ideally we'd want F(z) to obey both

i. F(z) is an analytic function of z (optimally, entire-analytic),
ii. F(z) always maps real numbers to real numbers.

However, as we shall prove, achieving both is impossible. This may be regarded as a follow-on to
the prior article on that topic by Crone & Neuendorffer 1988. We'll assume the reader knows
complex analysis, e.g. see the textbook by R.Remmert, and is familiar with the properties of exp(z)
and ln(z).

Two (or three or ... or infinity?) piecewise- and recursively-defined solutions

Crone & Neuendorffer gave a nice real→real semi-exponential F(z) satisfying (ii) but not (i).
Specifically,

F(X)=X+1/2 if 0≤X≤1/2,   F(X)=exp(X-1/2) if 1/2≤X≤1, 
and for X>1 define F recursively by F(X)=exp(F(lnX)),   and for X<0 by F(X)=ln(F(expX)). 

The latter causes F(X)=eX-1/2 when -ln2≤X≤0 and F(X)=ln(eX+½) when X≤-ln2. 
When 1≤X≤√e we have F(X)=X√e, and when √e≤X≤e we have F(X)=eXexp(-1/2).

As I pointed out in the wikipedia article, this piecewise- and recursively-defined F(X) is continuous
and strictly increasing for all real X, and its derivative F'(X) also is continuous and (non-strictly)
increasing, so this F(X) is (non-strictly) concave-∪. The second derivative F''(X) has discontinuities

http://en.wikipedia.org/wiki/Entire_function
http://en.wikipedia.org/wiki/Half-exponential_function
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at a countable discrete subset S½ of real X, namely

S½ = {-ln2, 0, 1/2, 1, √e, e, e√e, ee, exp(e√e), exp(ee), ...}

where each further entry Xn equals exp(Xn-2). Another advantage of their F(X) is that it is very easy
to compute. Call it FI.

Now here is a different F(X) – call it FII – of a similar ilk but enjoying higher-degree continuity:

F(X)=(3X+2)/(4-X) if 0≤X≤1/2,   F(X)=exp((4X-2)/(3+X)) if 1/2≤X≤1, 
while for X>1 define F recursively by F(X)=exp(F(lnX)),   and for X<0 by F(X)=ln(F(expX)). 

The latter causes F(X)=(4eX-2)/(eX+3) when -ln2≤X≤0 and F(X)=ln((3eX+2)/(4-eX)) when X≤-ln2. 
When 1≤X≤√e we have F(X)=e(2+3lnX)/(4-lnX), and when √e≤X≤e we have F(X)=exp(e(4lnX-2)/(3+lnX)).

Properties of FII(X) theorem: This F(X) is strictly increasing from F(-∞)=-ln2 to F(+∞)=+∞, and
strictly concave-∪, and F(X), F'(X), and F''(X) are continuous, for all real X; also L(X)=lnF(X) is
strictly increasing, and F(X) is positive, for all X>-ln2; but F'''(X) has jump discontinuities when
X∈S½. F(X) is analytic for all real X∉S½.

Proof: Plainly F(X) is analytic when 0<X<½ and when ½<X<1. When X=0 the two Taylor series of
F(X) are (3X+2)/(4-X)=1/2+(7/8)X+(7/32)X2+(7/128)X3+... (converges when |X|<4) and (4eX-
2)/(eX+3)= 1/2+(7/8)X+(7/32)X2-(7/384)X3-... (converges when |X|<[π2+(ln3)2]1/2≈3.328)

The two Taylor series of F(X) with X=Y+½ at Y=0 are (3X+2)/(4-X)=1+(8/7)Y+(16/49)Y2+
(32/343)Y3+... (converges when |Y|<7/2=3.5) and Exp([4X-2]/[3+X])= 1+(8/7)Y+(16/49)Y2-
(32/1029)Y3-... (converges when |Y|<3.5). This proves continuity of F, F', and F'', but discontinuity
of F''' at X=0 and X=½. The recurrence proves it for all other X.

The fact that F(X) is strictly increasing for all X follows when 0≤X≤½ from the explicit formula
F'(X)=14(4-X)-2, and when ½≤X≤1 from the explicit formula F'(X)=14(3+X)-2e(4X-2)/(3+X) which both
plainly are positive-real. Then the recurrence proves the same thing for all real X, given the fact that
lnX and expX both are strict-increasing.

The fact that L(X)=lnF(X) is strictly increasing for all X follows when 0≤X≤½ from the explicit formula
L'(X)=F'(X)/F(X) since F'(X)>0 and ½≤F(X)≤1. And when ½≤X≤1, and indeed all X>-ln2, the same
thing happens for the same reason.

The fact F(X) is strict concave-∪ for 0≤X≤1 follows since the second derivatives also plainly are
positive real in those intervals: F''(X)=28(4-X)-3 when 0≤X≤½ and 28(4-X)(X+3)-4e(4X-2)/(3+X) when
½≤X≤1. [One could similarly handle the intervals (-∞,-ln2] and [-ln2,0] using our explicit F formulas,
if desired...] Then the recurrence proves the same thing for all real X given the fact that
(d/dX)ln(F(eX))=eXL'(eX). Q.E.D.
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In my opinion FII obsoletes Crone & Neuendorffer's FI.

A third F(X)? Here is a (probably failed) attempt to get still-greater continuity – call it FIII:

F(X)=[(AX+B)/(C-X)]1/P if 0≤X≤1/2,   F(X)=exp((CXP-B)/(XP+A)) if 1/2≤X≤1, 
while for X>1 define F recursively by F(X)=exp(F(lnX)),   and for X<0 by F(X)=ln(F(expX)). 

The latter causes F(X)=(CeXP-B)/(eXP+A) when -ln2≤X≤0.

The question is whether any real parameter-4-tuple (A,B,C,P) exists causing this F(X), and F', F'',
and F''' all to be continuous. Unfortunately adding P to the mix made it too difficult to solve the
continuity equations for A,B,C,P in closed form. Therefore I do not know the answer.

A=4.56212,   B=3.39375,   C=6.17481,   P=0.863515

come close to achieving those goals, but does not. This failure is unsurprising given that each of
these numbers has been truncated after 6 significant figures – I would expect the true A,B,C,P (if
they exist) would all be irrational. Can we keep doing better by providing more decimals,
approaching perfection arbitrarily closely? I suspect the answer is "no" – some discontinuities in at
least one of those three derivatives are unavoidable – but am not 100% sure.

A fourth F(X)? Here is an (also probably failed) attempt FIV that is more likely to work (or even if it
cannot be made to work, then it will be able to approximately achieve continuity to greater
accuracy), since it has two extra parameters D and M (0<M<1):

F(X)=[(AX+B)/(C-X)]1/P+D if 0≤X≤M,   F(X)=exp((C(X-D)P-B)/((X-D)P+A)) if M≤X≤1, 
while for X>1 define F recursively by F(X)=exp(F(lnX)),   and for X<0 by F(X)=ln(F(expX)). 

The latter causes F(X)=(Ce(X-D)P-B)/(e(X-D)P+A) when lnM≤X≤0.

The parameter choice

A=4.515046,   B=3.251113,   C=6.058416,   D=0.01025116,   P=0.87208825,   M=0.5000563

comes closer to making F, F', F'', and F''' all continuous at all real X, with F(0)=M and F(M)=1, but
again fails. Again I do not know whether all these continuities can be achieved by FIV to arbitrarily
good accuracy, but doubt it.

A fifth FV(z) trying to be a semi-exponential with everywhere continuous F, F', F'', F''', and F'''' –
and this one almost certainly does work – is

F(X)=A(X)/B(X) if 0≤X≤M,   F(X)=eC(X) if M≤X≤1, 
while for X>1 define F recursively by F(X)=exp(F(lnX)),   and for X<0 by F(X)=ln(F(expX)).

Here A(X) and B(X) are quartic polynomials (one of them, without loss of generality, can be
demanded to be monic) chosen so that F(X) is monotone-increasing for 0<X<M with F(0)=M and
F(M)=1; here M obeys 0<M<1, and the algebraic function Y=C(X) obeys A(Y)=B(Y)X. Note: if the
coefficients inside A(X) and B(X) are known, then an explicit, albeit complicated, formula for C(X)
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may be written with the aid of the quartic formula; and because F(X) is monotone-increasing for
0<X<M this formula will yield a real-valued C(X) which increases monotonically from C(M)=0 to
C(1)=M, so that F(X)=eC(X) increases monotonically from F(M)=1 to F(1)=eM. A and B contain, in
all, 9 variable real coefficients, and M also is variable between 0 and 1, so we have 10 degrees of
freedom in all. The demands for continuity of F', F'', F''', and F'''' at X=0 and X=M (the demands at
X=1 are the same as at X=0 and those at X=eM the same as those at X=M, and etc thanks to the
recursion, so only X=0 and X=M matter) then are eight equations, and the demands F(0)=M and
F(M)=1 are two more, making 10 in all. Furthermore, the "monotone increasing" demand
corresponds to certain inequalities. Presumably those 10 equations in 10 real variables (with some
extra inequalities) have at least one solution; and if so, each will yield a piecewise- and recursively-
defined semi-exponential with continuous 4th derivative, albeit some derivative of order≥5 should
have discontinuities at X∈SM where

SM = {lnM, 0, M, 1, eM, e, exp(eM), exp(e), ...}.

Furthermore, I can prove there are only a finite set of solutions (since all the answer-numbers are
algebraic numbers of bounded degree), which means this solution is unique up to a finite set of
choices.

A sixth FVI(X): is exactly the same as FV(X) above, except that A(X) and B(X) now are degree-d
polynomials. If d≥5, since there is no quintic formula, the algebraic function Y=C(X) will have no
explicit formula, but nevertheless is implicitly defined by A(Y)=B(Y)X, and uniquely defined if FVI(X)
is monotonically increasing for 0≤X≤M, and may be found numerically by e.g. the foolproof
"bisection algorithm." The 2d+1 coefficients inside A and B, as well as the value of M with 0<M≤1,
are 2d+2 variables which we demand satisfy the 2d+2 equations corresponding to continuity of
F(X), F'(X), F''(X), ..., F(d)(X) across both X=0 and X=M. If for any d those 2d+2 simultaneous
equations have at least one real solution, then FVI(X) is a semi-exponential with continuous
derivatives of all orders≤d, but which should have some derivative of some order≥d+1 which is
discontinuous when X∈SM. Furthermore I can prove there will be at most a finite set of solutions,
causing this order≤d-continuous FVI(X) to be unique up to a finite set of choices. And if we always

select the one closest (in the sense of L2 distance over the real interval 0<X<1), to the preceding
(next smaller d) choice (starting with our FII for the case d=2), then I would expect genuine
uniqueness.

I then would conjecture that the limit as d→∞ along some sequence of integer d≥1, of those
order≤d-continuous FVI(X) exists, which then necessarily would provide a construction of a C∞-
smooth real-valued monotonically-increasing semi-exponential. Our construction would (I
conjecture) yield a unique such F(X), probably concave-∪.

Open questions: Prove (or disprove) that this limit, in fact, exists. Compute its Chebyshev series
over the interval 0≤X≤1 accurate to ±10-20. And: Is it the unique monotone-increasing concave-∪
C∞-smooth real-valued semi-exponential F(X)?

http://en.wikipedia.org/wiki/Quartic_equation
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I can in fact prove by a different method that a C∞-smooth real-valued monotonically-increasing
semi-exponential exists. It presumably equals the construction above, but I have not proven that.

C∞-smooth real-valued monotonically-increasing semi-exponential Existence & Uniqueness
Theorem: A C∞-smooth real-valued monotonically-increasing F(X) exists such that F(F(X))=eX.
Furthermore, if F(X) is insisted to agree (and its first k derivatives also agree, for any fixed integer
k≥0) with an analytic function of X to within additive errors that approach 0 when X→+∞ with k held
fixed, then it is unique.

Proof: Instead of the function eX consider the function G(X)=eX-1 which has a (mildly repulsive)
fixpoint at X=0. For integer N≥1, the "iterative Nth root" of G(X), call it G[1/N](X), is a function

i. whose N-fold iteration equals G(X),
ii. whose formal power series G[1/N](X)=X+∑m≥2amXm with all-real coeffcients am (if N>1 this

series will not converge for any X≠0 and is valid only in the sense of an "asymptotic series"
when X→0+; see Baker 1958 for proof of nonconvergence) if iterated N times, agrees with
G(X)=x+∑m≥2Xm/m!,

iii. is an analytic function of X.

Szekeres 1958 proved that such a G[1/N](X) exists, is unique, and is monotonically increasing, for
all X≥0. We now simply demand when X→+∞ that our semi-exponential F(X) must equal G[1/2](X)
to within additive error that approaches 0 (and the first k derivatives must also agree to within errors
appraoching 0, for any fixed k≥0, when X→+∞). Then F(X) plainly exists and is uniquely determined
when 0≤X≤1 by running its recurrence F(X)=exp(F(lnX)) "backwards" from X→∞. Furthermore, the
resulting F(X) automatically will be C∞ and strictly monotonically increasing, and automatically will
obey F(X)>X for all X≥0. Therefore M=F(0) automatically will lie in (0,1). Hence our recursion then
may be used to define F(X) uniquely for all real X. Q.E.D.

Unfortunately, both Crone & Neuendorffer's FI, and my new FII, FIII, FIV, FV, FVI are only defined
for real z, and as yet we have provided no clue how to extend any of their definitions to work for
complex z. Because exp(z) is periodic with period=2πi, it suffices to define it when |im(z)|<π; and
hence seems a plausibly-good idea to insist that F(z) also be thus-periodic. In any case let us
attempt to extend F(z)'s domain at least to the infinite rectangular strip 0≤im(z)<π.

An obvious idea then to extend our piecewise-defined F(z) off the real axis into the complex plane,
is to replace the countable set SM of piece-boundary points, by some set of curves passing
through those points vertically, and then use the analytic continuations of each function-piece to fill
the resulting pieces of the strip. However, because an analytic function is fully and uniquely
specified by its values on any curve-segment (however short) we see that it is impossible for the
resulting F(z) to be continuous across the piece-boundary curves. There will be a jump-
discontinuity almost everywhere we cross every curve.

But let's say you are willing to accept all that discontinuity. Then can we create suitable jigsaw-
puzzle curves? The answer is "no":
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"No jigsaw" theorem: There cannot exist any partitioning of the infinite strip 0≤im(z)<π by a
nonempty countable set of 1-dimensional curves, (intersecting the real axis at the countable point-
set SM for some M with 0<M<1; and we assume these curves have 2-dimensional measure zero
and have at least one-sided derivatives at least at the points where they cross the real axis) such
that functions analytic within each "puzzle piece," but discontinuous almost everywhere across
each curve, yield a piecewise-defined semi-exponential valid throughout that strip off the curves.

Proof: The first question is: what should the jigsaw-puzzle curves be? That is quite easy: For
n=2,3,4,... the nth curve !n must be just the exp(z) map applied to all z∈!n-2. [And the (n+2)th

piece-interior is the exp-map applied to the nth.] All these curves need to be disjoint. Unfortunately,
the obvious choice to make !0 be "the vertical line with real part -∞" would force !2 to be the single
point (not a curve!) z=0. Therefore, we instead are forced to make !0 be a different curve e.g.
asymptoting to -∞ on the real axis, and then there would also need to be curves !-1, !-2, etc. Now
for some integer k we must specify two particular !k and !k+1, whereupon the whole collection
automatically becomes defined.

If any !k contains any point z=x+iy with x>(ln2)/2≈0.3466 and 0<y<π/4 (and some !k must) then,
after we apply the z'=exp(z) map, the new z'=x'+iy' will have x'>x and y'>y. After enough iterations
of the exp-map, this y-growth will necessarily eventually yield some !n containing points z=x+iy for
every y with π/2≤y≤π. But if z=x+iπ then after one more exping we will find that !n+2 contains a
point on the negative real-axis and hence must be (if we also demanded mirror symmetry across
the real axis) a closed curve! And then !n+4 will topologically-necessarily cross it, a contradiction.
Q.E.D.

However, it is possible to extend the domains of definition of both FI(z) and FII(z) to, e.g, the set of
z=x+iy with |y|<sech(x)/5 by making, e.g, !1 and !2 be the vertical lines with real parts -ln2 and 0
respectively. This domain is so thin, and F(z)'s discontinuities across the curves !n at all nonreal
points so annoying, that this seems of almost no interest.

An infinitude of analytic solutions

Crone & Neuendorffer (and at least two others much earlier) also suggested a different F(z) now
attempting to satisfy (i) but not (ii). Begin with a fixpoint Q of exp(z). There are a countable
infinitude of such Q, all of which are complex with none real, one being

Q ≈ 0.3181315052047641353126542515876645 + 1.3372357014306894089011621431937106 i.

This Q=Q1 where Qn with n>0 denote the fixpoints of exp(z) with im(Qn)>0 sorted into increasing-
im(Qn) order [indeed im(Qn) and re(Qn) and |Qn| for n≥1 form three strictly-increasing sequences of
positive reals], and Q–n=Q̅n. Asymptotically reQn∼ln(2π|n|) and imQn∼2πni for large integer |n|. Any
of the Qn with n≠0 could have been used instead of our Q, thus yielding not one, but actually a
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countably infinite set, of analytic semi-exponential functions F(z). (It also might be natural to define
Q0=+∞, but we shall not.)

Expand exp(z) in a Taylor series with basepoint Q, that is

exp(z) = Q + ∑n≥1 (z-Q)n Q/n!,   convergent for all complex z.

Even though Q=expQ and every summand are complex (and every series-truncation is complex
nonreal for generic real z), this whole series of course yields a real-valued result for real z. Now let

F(z) = Q + ∑n≥1 (z-Q)n cn .

where F(Q)=exp(Q)=Q, and solve for the series coefficients

c1 = R,     c2 = (R/2!) (R+1)-1,     c3 = (R/3!) (Q-R+1) (R+1)-2 (Q+1)-1,     

c4 = (R/4!) (Q2-4QR+7Q-5R+1) (R+1)-3 (Q+1)-1 (Q-R+1)-1,   ...

one by one to cause F(F(z))=exp(z) for all small-enough |z-Q|. There are exactly two solutions,
arising from R=±√Q. For z outside the circle of convergence of our series for F(z), define F(z) by
analytic continuation.

Non-existence theorems

Finite-disk Theorem: Any Taylor series, based anywhere, for any semi-exponential F(z), has a
finite convergence-disk. [For the specific F(z) defined in the preceding section one is interested in
disk-center z=Q, but this theorem works for all F(z) and for any series-basepoint.]

Proof: Plainly F(0)≠0 since F(0)=0 would cause exp(0)=0, which is false since exp(0)=1. Either
F(z)=0 has no solution z=P, or if it does, then F(z)=P has no solution z=Y. [Because: if Y existed,
then P=F(Y) would too, and then F(P)=F(F(Y))=exp(Y)=0, which is impossible.] Therefore the range
of F(·) omits either 0 or P or both. But if P exists, then F(F(lnP))=P, therefore either Y=F(lnP) exists,
whereupon P=F(Y) exists (contradiction!); or the domain of F(·), even after maximally-extending it
via "analytic continuation," omits (all values of) lnP. In the latter case, there is a "natural barrier" so
plainly F must have a finite convergence disk. So if F is entire-analytic we conclude that P and Y
both necessarily are missing from the range of F(·). And P=Y is impossible since if P=Y then
F(P)=P hence P=0 (contradiction!). Now by Picard's theorem, F(z) cannot be an entire-analytic
function because such functions can omit at most one value from their range! Therefore, every
Taylor series for F(z) has finite convergence-disk. Q.E.D.

And actually that "finite-disk" theorem works not only for the semi-exponential, but for
any "semi" version of any real→real entire-analytic function whose range omits one
complex value. [For the case of exp(z), the omitted value is 0.]

Unfortunately

Non-reality Theorem: Any semi-exponential F(z) defined using the fixpoint-and-series trick

http://en.wikipedia.org/wiki/Picard_theorem
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assumes nonreal values for generic real z.

Proof: Numerical computation and graphical argument sketched in fig.2 of Crone & Neuendorffer.
Q.E.D.

And actually, this generic non-reality happens not only for semi-exponentials, but actually for
essentially any "semi" version of any real→real analytic function got by the fixpoint-and-series trick
based at any non-real fixpoint.

"No analytic real→real semi-exponential" theorem: No function F(z), analytic within any domain
with a connected interior that includes both the real axis, and all fixpoints Qn of exp(z), exists such
that F(F(z))=exp(z) and F(z) maps reals to reals.

Proof: From the non-reality theorem, every semi-exponential F(z) that has any fixpoint anywhere,
is nonreal for generic real z. Therefore, if there is any analytic semi-exponential F(z) that maps
reals→reals, it must have no fixpoints anywhere – although it must have plenty of 2-orbit points,
since every Qn with Qn=exp(Qn) is a 2-orbit point, i.e. fixpoint of F(F(z)). [And more generally: by

essentially the same argument applied to exp(exp(...exp(z)))=exp[2n+1](z), F(z) cannot have any
odd-cardinality orbits.]

Now F(F(z))=exp(z) has a countably-infinite set of fixpoints Q, which are exactly the 2-orbit points
for F(z). Let Q'=F(Q). Then Q=F(Q'). If Q is a fixpoint for F(F(z))=exp(z), then Q'=F(Q) automatically
also is. Therefore the action of F(z) on the fixpoints of exp(z) is to permute them in a self-inverse
way, i.e. the permutation consists entirely of 2-cycles. There are two ways to make those 2-cycles:

1. F(Qn)=Q̅n (complex conjugation),
2. F(Qa)=Qb for various disjoint pairs (a,b) of nonzero integers with a+b≠0 and a≠b.

If (1) then F(z)=F̅(z̅) holds for various z=Qn (which if it happened for an infinite set of Qn would be
an infinite set of z), which helps, or at least does not hurt, the prospect this holds for all z, which is
the only way F maps reals→reals. But if (1) holds for every z=Qn, then the degree-k Taylor

coefficients ck at Q̅ must be the complex conjugates of those at Q, causing |c1|2=Q=expQ=exp'Q,
which is impossible because all the Qn are nonreal.

If (2) then pick one of the integer pairs (a,b) and try to find the Taylor series coefficients of F(z)
based at z=Qa and those based at z=Qb one by one. But then the product of the |c1|'s must equal
|Q|=|expQ|=|exp'Q| for both Qa and Qb simultaneously, which is impossible since |Qa|≠|Qb|.

Q.E.D.
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