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Abstract. We derive the generalized group inverse of a triangular block
matrix over a Banach algebra. We apply this formula in order to find the
generalized group inverse of 2 × 2 block operators under some conditions.
In particular, the weak group inverse of certain block operator matrices are
given.

1. Introduction

Let A be a Banach algebra with an involution ∗. The group inverse of an
element a in A is an element x such that

xa2 = a, ax2 = x, ax = xa.

Such x is unique if exists, denoted by a#. The group inverse is a concept
primarily used in the context of matrices and linear operators, particularly
in functional analysis and algebra. It is extensively studied by many authors
from many different views, e.g., [1, 3, 6, 7, 8, 11, 17].

The involution ∗ is proper if x∗x = 0 =⇒ x = 0 for any x ∈ A, e.g., in a
C∗-algebra, the involution is always proper. Let Cn×n be the Banach algebra of
all n×n complex matrices, with conjugate transpose ∗ as the involution. Then
the involution ∗ is proper. The concept of a weak group inverse extends the
idea of a group inverse in the context of matrices and operators. An element a
in a Banach algebra with proper involution ∗ has weak group inverse provided
that there exist x ∈ A and k ∈ N such that

x = ax2, (a∗a2x)∗ = a∗a2x, ak = xak+1.

If such x exists, it is unique, and denote it by aW©. The weak group inverse
is a valuable tool in linear algebra and functional analysis. It is particularly
significant in applications across various fields where traditional group inverses
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fail to exist. We refer the reader for weak group inverse in [5, 9, 10, 12, 13, 15,
16].

In [2], we introduced and studied a new generalized inverse in a Banach
*-algebra as a generalization of weak group inverse for complex matrices and
linear operators. An element a in a Banach algebra with proper involution has
generalized group inverse if there exists x ∈ A such that

x = ax2, (a∗a2x)∗ = a∗a2x, lim
n→∞

||an − xan+1||
1
n = 0.

Such x is unique if it exists. We call the preceding x the generalized group
inverse of a, and denote it by a g©. Here, we list some characterizations of
generalized group inverse.

The generalized Drazin inverse generalizes the group inverse. An element
a in A has generalized Drazin inverse if there exists x ∈ A such that ax2 =
x, ax = xa, a−a2x ∈ Aqnil (see [4, 18]). Here, Aqnil = {a ∈ A | 1+λa ∈ A−1}.
Such x is unique, if exists, and denote it by ad. We use Ad and A#© to denote
the sets of all generalized Drazin invertible and group invertible elements in A,
respectively. Here, we list some characterizations of generalized group inverse.

Theorem 1.1. (see [2, Theorem 2.2, Theorem 4.1 and Theorem 5.1]) Let A
be a Banach *-algebra, and let a ∈ A. Then the following are equivalent:

(1) a ∈ A has generalized group inverse.
(2) There exist x, y ∈ A such that

a = x+ y, x∗y = yx = 0, x ∈ A#, y ∈ Aqnil.

In this case, a g© = x#.
(3) a ∈ Ad and there exists x ∈ A such that

x = ax2, (ad)∗a2x = (ad)∗a, lim
n→∞

||an − xan+1||
1
n = 0.

(4) There exists an idempotent p ∈ A such that

a+ p ∈ A−1, (a∗ap)∗ = a∗ap and pa = pap ∈ Aqnil.

For a complex matrix, three generalized inverses mentioned above coincide
with one another. The generalized group inverse is particularly useful when
dealing with non-weak group invertible elements in algebraic structures, such
as linear operator over a Hilbert space. The motivation of this paper is to
investigate the generalized group inverse of a block operator matrix over a
Banach algebra.
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In Section 2, we present some necessary lemmas which will be used in the
sequel. In Section 3, we are concerned with when a triangular operator matrix
has generalized group inverse and the representation of the generalized group
inverse is then given. An additive result of the generalized group inverse is
established.

Lex X and Y be Banach spaces. We use B(X, Y ) to stand for the set of
all bounded linear operators from X to Y . Set B(X) = B(X, Y ). Finally, in
Section 4, we apply our results and study the generalized group inverse for the

block operator matrix M =

(
A B
C D

)
, where A ∈ B(X), B ∈ B(X, Y ), C ∈

B(Y,X), D ∈ B(Y ). Here, M is a linear operator on Banach space X ⊕ Y .
Throughout the paper, all Banach algebras are complex with a proper in-

volution ∗. We use A g© and AW© to stand for the sets of all generalized group
invertible and weak group invertible elements in A, respectively. Let a ∈ A g©.
We denote aπ and aτ the idempotents 1− aad and aτ = 1− aa g©, respectively.

2. key lemmas

In this section, some lemmas are presented. We begin with

Lemma 2.1. Let a ∈ A g© and b ∈ A. Then the following are equivalent:

(1) aπb = 0.
(2) aτb = 0.
(3) (1− a g©a)b = 0.

Proof. (1) ⇒ (3) Since aπb = 0, we have that b = aadb. Then a g©ab =
a g©a2adb = aadb = b. Hence (1− a g©a)b = 0, as required.

(3) ⇒ (2) Since (1 − a g©a)b = 0, we have b = a g©ab. Thus, (1 − aa g©)b =
(1− aa g©)a g©ab = 0.

(2)⇒ (1) Since (1− aa g©)b = 0, we have b = aa g©b. Then

aadb = a2ada g©b = aa g©b = b.

This implies that aπb = 0, as required. �

Lemma 2.2. Let a ∈ A g© and b ∈ Aqnil. If a∗b = 0 and ba = 0, then
a+ b ∈ A g©. In this case,

(a+ b) g© = a g©.

Proof. Since a ∈ A g©, by virtue of Theorem 1.1, there exist x ∈ A# and
y ∈ Aqnil such that a = x + y, x∗y = 0, yx = 0. As in the proof of [2,
Theorem 2.2], x = a2a g© and y = a − a2a g©. Then a = x + (y + b). Since
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by = b(a − a2a g©) = 0, it follows by [18, Lemma 4.1] that y + b ∈ Aqnil.
Obviously, a∗(y+ b) = a∗y+ a∗b = 0. In light of Theorem 1.1, a+ b ∈ A g©. In
this case,

(a+ b) g© = x# = a g©,

as asserted. �

Lemma 2.3.

(1) Let M =

(
a b
0 d

)
. If a, d ∈ A#, then M ∈ M2(A)# if and only if

aπbdπ = 0. In this case, M# =

(
a# z
0 d#

)
, where

z = (a#)2b(1− dd#) + (1− aa#)b(d#)2 − a#bd#.

(2) Let p ∈ A be an idempotent and let x =

(
a b
0 d

)
p

. If a ∈ (pAp)#, d ∈

(pπApπ)#, then x ∈ A# if and only if aπbdπ = 0. In this case, x# =(
a# z
0 d#

)
p

, where

z = (a#)2b(1− dd#) + (1− aa#)b(d#)2 − a#bd#.

Proof. See [6, Theorem 1] and [7, Theorem 2.1]. �

For further use, we now extend [1, Theorem 3.4 and Theorem 3.7] as follows.

Lemma 2.4. Let M =

(
a b
c d

)
∈M2(A) with a, d ∈ A#.

(1) If bd = 0, aπb = 0 and dπc = 0, then M has group inverse. In this case,

M# =

(
a# (a#)2b

−d#ca# + (d#)2caπ d# − d#c(a#)2b− (d#)2ca#b

)
.

(2) If ab = 0, caπ = 0 and bdπ = 0, then M has group inverse. In this case,

M# =

(
a# − bd#c(a#)2 − b(d#)2ca# b(d#)2

dπc(a#)2 − d#ca# d#

)
.

Proof. (1) Write M = P +Q, where

P =

(
a b
0 0

)
, Q =

(
0 0
c d

)
.
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In view of Lemma 2.3, P has group inverse and P# =

(
a# (a#)2b
0 0

)
. Simi-

larly, Q has group inverse and Q# =

(
0 0

(d#)2c d#

)
. Since dπc = 0, we see

that c = dddc; hence, bc = b(dddc) = (bd)ddc = 0. It is easy to verify that

PQ =

(
bc bd
0 0

)
= 0.

According to [1, Theorem 2.1], M = P +Q has group inverse and

M# = QπP# +Q#P π

=

(
1 0
−d#c dπ

)(
a# (a#)2b
0 0

)
+

(
0 0

(d#)2c d#

)(
aπ −a#b
0 1

)
=

(
a# (a#)2b

−d#ca# + (d#)2caπ d# − d#c(a#)2b− (d#)2ca#b

)
,

as required.
(2) Write M = P +Q, where

P =

(
a 0
c 0

)
, Q =

(
0 b
0 d

)
.

By virtue of Lemma 2.3, we have

P# =

(
a# 0

c(a#)2 0

)
, Q# =

(
0 b(d#)2

0 d#

)
.

As caπ = 0, we have c = cada; whence, cb = cad(ab) = 0. It is easy to verify
that

PQ =

(
0 ab
0 cb

)
= 0.

By virtue of [1, Theorem 2.1], M = P +Q has group inverse and

M# = QπP# +Q#P π

=

(
1 −bd#
0 dπ

)(
a# 0

c(a#)2 0

)
+

(
0 b(d#)2

0 d#

)(
a# 0
−ca# 1

)
=

(
a# − bd#c(a#)2 − b(d#)2ca# b(d#)2

dπc(a#)2 − d#ca# d#

)
,
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as asserted. �

Recall that a ∈ A has Drazin inverse provided that there exists x ∈ A such
that ax2 = x, ax = xa, ak = xak+1 for some k ∈ N.

Lemma 2.5. Let a ∈ A. Then a ∈ AW© if and only if

(1) a ∈ A g©;
(2) a ∈ A has Drazin inverse.

In this case, aW© = a g©.

Proof. Straightforward by choosing w = 1 in [4, Lemma 4.5]. �

3. main results

We come now to the demonstration for which this section has been devel-
oped.

Theorem 3.1. Let A be a Banach algebra andM =

(
a b
0 d

)
with a, d ∈ A g©.

If
ddτb = 0, b∗ddτ = 0, aτbdτ = 0,

then M ∈ A g© and

x g© =

(
a g© z
0 d g©

)
,

where z = (a g©)2bdτ + aτb(d g©)2 − a g©bd g©.

Proof. By hypothesis, we have generalized group decompositions:

a = x+ y, d = s+ t,

where
x, s ∈ A#, y, t ∈ Aqnil

and
x∗y = 0, yx = 0; s∗t = 0, ts = 0.

As in the proof of [2, Theorem 2.2],

x = a2a g©, y = d− d2d g©,
s = d2d g©, t = d− d2d g©.

Then we have M = P +Q, where

P =

(
x b
0 s

)
, Q =

(
y 0
0 t

)
.
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We verify that

xπbsπ = [1− (a2a g©)a g©]b[1− (d2d g©)d g©]
= (1− aa g©)b(1− dd g©) = 0.

In view of Lemma 2.3, P has group inverse. Since y, t ∈ Aqil, we directly verify
that Q is quasinilpotent. One easily checks that

P ∗Q =

(
x∗ 0
b∗ s∗

)(
y 0
0 t

)
=

(
0 0
b∗y 0

)
= 0,

QP =

(
y 0
0 t

)(
x b
0 s

)
=

(
0 yb
0 0

)
= 0.

In light of Theorem 1.1 and Lemma 2.3, we derive that

M g© = P# =

(
x# z
0 s#

)
,

where z = (x#)2b(1− ss#) + (1− xx#)b(s#)2 − x#bs#. Therefore

M g© =

(
a g© z
0 d g©

)
,

where z = (a g©)2b[1− dd g©] + [1− aa g©]b(d g©)2 − a g©bd g©. �

Corollary 3.2. Let A be a Banach algebra and M =

(
a 0
c d

)
with a, d ∈

A g©. If

aaτc = 0, c∗aaτ = 0, dτcaτ = 0,

then M ∈ A g© and

x g© =

(
a g© z
z d g©

)
,

where z = (d g©)2caτ + dτc(a g©)2 − d g©ca g©.

Proof. Clearly, we have

(
0 1
1 0

)
M

(
0 1
1 0

)
=

(
d c
b a

)
. Applying Theo-

rem 3.1 to the matrix

(
d c
b a

)
, we see that

(
d c
b a

)
has generalized group

inverse. This implies that M has generalized group inverse. In this case,

M g© =

(
0 1
1 0

)(
d c
b a

) g©(
0 1
1 0

)
.

Therefore we complete the proof by Theorem 3.1. �
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Corollary 3.3. Let A be a Banach algebra and M =

(
a b
0 0

)
with a ∈ A g©.

If aπb = 0, then M ∈ A g© and

M g© =

(
a g© (a g©)2b
0 0

)
.

Proof. Since aπb = 0, it follows by Lemma 2.1 that aτb = 0. This completes
the proof by Theorem 3.1. �

Corollary 3.4. Let A be a Banach algebra and M =

(
0 0
c d

)
with d ∈ A g©.

If dπc = 0, then x ∈ A g© and

M g© =

(
0 0

(d g©)2c d g©

)
,

Proof. In view of Lemma 2.1, dτc = 0. We are through by Corollary 3.2. �

Let p = p2 ∈ A. We can represent a ∈ A as a =

(
pap papπ

pπap pπapπ

)
p

. We

next use the matrix approach to establish an additive result of generalized
group inverse.

Theorem 3.5. Let a, b ∈ Ad, aπb ∈ A g©. If aπba = 0, aaπb = 0, a∗aπb = 0 and
(a+ b)πaadbaπ = 0, the following are equivalent:

(1) a+ b ∈ A g© and ad(a+ b) g©aπ = 0.
(2) (a+ b)aad ∈ A g©.

In this case,

(a+ b) g© = [(a+ b)aad] g© + (aπb) g© − [(a+ b)aad] g©aadbaπ(aπb) g©.

Proof. Let p = aad. By hypothesis, we have pπba = 0. Hence, pπbp =
(aπba)ad = 0. Moreover, we have pπap = (1 − aad)a2ad = 0, papπ = aada(1 −
aad) = 0, pπapπ = 0. Then

a =

(
a2ad 0

0 aπa

)
p

, b =

(
b1 b2
0 aπb

)
p

.

Hence

a+ b =

(
(a+ b)aad aadbaπ

0 aπ(a+ b)

)
p

.
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By hypothesis, we verify that

(aπb)∗(aπa) = (a∗aπb)∗aπ = 0,
(aπa)(aπb) = aaπb = 0,

aπa ∈ Aqnil.

In view of Lemma 2.2, a4 + b4 = aπ(a+ b) = aπa+ aπb ∈ A g©. Additionally,

aπb ∈ A g©, (aπb)d = pπbd, (aπb)π = pπbπ.

By virtue of Lemma 2.2, we derive that (a4 + b4)
g© = b g©

4 = (aπb) g©.
Since pπ(a + b)aad = 0 and pπ(a + b) ∈ Ad, it follows by [14, Lemma 2.2]

that

(a1 + b1)
d = [(a+ b)aad]d = (a+ b)daad.

Moreover, we have

(a1 + b1)
π = aad − (a+ b)daad(a+ b)aad

= aad − (a+ b)d(a+ b)aad

= (a+ b)πaad.

(1)⇒ (2) Since ad(a+ b) g©aπ = 0, we have p(a+ b) g©pπ = 0. Then we write

(a+ b) g© =

(
α β
0 γ

)
p

.

Then
(a+ b)((a+ b) g©)2 = α,(

(a+ b)∗(a+ b)2(a+ b) g©)∗ = (a+ b)∗(a+ b)2(a+ b) g©,

lim
n→∞

||(a+ b)n − (a+ b) g©(a+ b)n+1|| 1n = 0.

We infers that

(a1 + b1)α
2 = α, [(a1 + b1)

∗(a1 + b1)
2α]∗ = (a1 + b1)

∗(a1 + b1)
2α,

lim
n→∞

||(a1 + b1)
n − α(a1 + b1)

n+1|| 1n = 0.

Therefore (a1 + b1)
g© = α, as desired.

(2)⇒ (1) By hypothesis, we have

a1 + b1 = (a+ b)aad ∈ A g©.

By the preceding discussion, a1 + b1, a4 + b4 ∈ A g©, and so we have generalized
group decompositions: a1 + b1 = x+ y, a4 + b4 = s+ t, where x, s ∈ A#, y, t ∈
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Aqnil and x∗y = 0, yx = 0; s∗t = 0, ts = 0. As in the proof of [2, Theorem 2.2],

x = (a1 + b1)
2(a1 + b1)

g©,
y = (a1 + b1)− (a1 + b1)

2(a1 + b1)
g©,

s = (a4 + b4)
2(a4 + b4)

g©

= aπ(a+ b)2(aπb) g©,
t = (a4 + b4)− (a4 + b4)

2(a4 + b4)
g©

= aπ[(a+ b)− (a+ b)2(aπb) g©].

Then we have a+ b = β + γ, where

β =

(
x xxdb2
0 s

)
p

,

γ =

(
y xπb2
0 t

)
p

.

Clearly, we have xπ(xxdb2) = 0, and so β ∈ A# by Lemma 2.3. Since y, t ∈
Aqnil, we see that γ ∈ Aqnil. By hypothesis, we easily check that

x∗xπb2 = x∗(a1 + b1)
πb2 = x∗(a+ b)πaadbaπ = 0,

x∗t = x∗aπ[(a+ b)− (a+ b)2(aπb) g©

= (aadx)∗aπ[a+ b− (a2 + ab+ ba+ b2)aπbaπbd(aπb) g©

= (adx)∗aπ[a∗aπb][(1− a− b)aπbaπbd(aπb) g©

+ (aadx)∗aπ[1− a)[aaπb]aπbd(aπb) g©

− (aadx)∗[aaπb]aπbaπbd(aπb) g© = 0,
s∗y = [aπ(a+ b)2(aπb) g©]∗aadz

= [aπ(a2 + ab+ ba+ b2)(aπb)(aπbd)(aπb) g©]∗aadz
= [aπ(a2 + b2)(aπb)(aπbd)(aπb) g©]∗aadz
= [aπb2(aπb)(aπbd)(aπb) g©]∗aadz
= [b(aπb)(aπbd)(aπb) g©]∗[a∗aπb]∗adz = 0,

s∗xπb2 = [aπ(a+ b)2(aπb) g©]∗aadz′

= [b(aπb)(aπbd)(aπb) g©]∗[a∗aπb]∗adz′ = 0.

Moreover, we derive that

xπb2s = (a+ b)πaadbaπb2aπ(a+ b)2(aπb) g© = 0.
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We directly check that

β∗γ = [x∗ + (b2)
∗(xxd)∗ + s∗]

(
y xπb2
0 t

)
p

= 0,

γβ =

(
y xπb2
0 t

)
p

(
x xxdb2
0 s

)
p

= 0.

According to Lemma 2.2, a+ b = β + γ ∈M2(A) g©. In this case, we have

(a+ b) g© = β#

=

(
x# z
0 s#

)
=

(
(a1 + b1)

g© z
0 (aπb) g©

)
p

,

where

z = −x#zs#
= −(a1 + b1)

g©aadbaπ(aπb) g©.

Obviously, ad(a+ b) g©aπ = ad[aad(a+ b) g©aπ] = 0, as required. �

Corollary 3.6. Let a, b ∈ Ad, aπb ∈ A g©. If aπba = 0, a∗aπb = 0 and abaπ = 0,
then the following are equivalent:

(1) a+ b ∈ A g©.
(2) (a+ b)aad ∈ A g©.

In this case, (a+ b) g© = [(a+ b)aad] g© + (aπb) g©.

Proof. This is obvious by Theorem 3.4. �

Corollary 3.7. Let a, b ∈ A g©. If ab = 0, ba = 0 and a∗b = 0, then a+b ∈ A g©.
In this case,

(a+ b) g© = a g© + b g©.

Proof. Since ab = 0, we see that aπba = 0, a∗aπb = 0 and abaπ = 0. Moreover,
we see that (a + b)aad = a2ad ∈ A g©. This completes the proof by Corollary
3.6. �
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4. applications

Lex X and Y be Banach spaces, and let M =

(
A B
C D

)
, where A ∈

B(X) g©, B ∈ B(X, Y ), C ∈ B(Y,X), D ∈ B(Y ) g©. Choose p =

(
IX 0
0 IY

)
.

Then M =

(
pMp pMpπ

pπMp pπMpπ

)
p

. Here, every subblock matrices can be seen as

the bounded linear operators on Banach space X⊕Y . Throughout this section,
without loss the generality, we consider M as the block operator matrix in a
specifical case X = Y . Evidently, B(X ⊕X) is indeed an Banach algebra with
the adjoint operation as the involution.

Theorem 4.1. If BD = 0, CA = 0, AπB = 0 and DπC = 0, then M has
generalized group inverse. In this case,

M g© =

(
A g© (A g©)2B

(D g©)2C D g©

)
.

Proof. Since AπB = 0, we verify that CB = C(AAdB) = (CA)AdB = 0. It
follows from DπC = 0 that BC = B(DDdC) = (BD)DdC = 0.

Write M = P +Q, where

P =

(
A B
0 0

)
, Q =

(
0 0
C D

)
.

It is easy to verify that

P ∗Q =

(
A∗ 0
B∗ 0

)(
0 0
C D

)
= 0,

PQ =

(
A B
0 0

)(
0 0
C D

)
=

(
BC BD
0 0

)
= 0,

QP =

(
0 0
C D

)(
A B
0 0

)
=

(
0 0
CA CB

)
= 0,

In view of Corollary 3.3, P has generalized group inverse. By virtue of Corol-
lary 3.4, Q has generalized group inverse. Therefore M has generalized group
inverse by Corollary 3.7. Moreover, we have

M g© = P g© +Q g©

=

(
A g© (A g©)2B
0 0

)
+

(
0 0

(D g©)2C D g©

)
=

(
A g© (A g©)2B

(D g©)2C D g©

)
,
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as asserted. �

Corollary 4.2. If BD = 0, CA = 0, A∗(AπB) = 0, D∗(DπC) = 0 and
(AπB)(DπC) is quasinilpotent, then M has generalized group inverse. In this
case,

M g© =

(
A g© (A g©)2AAdB

(D g©)2DDdC D g©

)
.

Proof. Write M = P +Q, where

P =

(
A AAdB

DDdC D

)
, Q =

(
0 AπB

DπC 0

)
.

Since (AAdB)D = 0, (DDdC)A = 0, Aπ(AAdB) = 0 and Dπ(DDdC) = 0, it
follows by Theorem 4.1 that P has generalized group inverse and

P g© =

(
A g© (A g©)2AAdB

(D g©)2DDdC D g©

)
.

Since (AπB)(DπC) is quasinilpotent, then so is (DπC)(AπB). Then Q2 =(
(AπB)(DπC) 0

0 (DπC)(AπB)

)
is quasinilpotent, and then so is Q.

One easily checks that

P ∗Q =

(
A∗ (DDdC)∗

(AAdB)∗ D∗

)(
0 AπB

DπC 0

)
=

(
(DdC)∗(D∗DπC) A∗AπB

D∗DπC (AdB)∗(A∗AπB)

)
= 0,

QP =

(
0 AπB

DπC 0

)(
A AAdB

DDdC D

)
=

(
AπBDDdC AπBD
DπCA DπCAAdB

)
= 0,

Therefore M has generalized group inverse by Lemma 2.2. Moreover, we have

M g© = P g© =

(
A g© (A g©)2AAdB

(D g©)2DDdC D g©

)
.

�

Theorem 4.3. If BD = 0, A∗B = 0, D∗C = 0, AπB = 0 and DπC = 0, then
M has generalized group inverse. In this case,

M g© =

(
α β
γ δ

)
,
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where
α = A g©,
β = (A g©)2B,
γ = −D g©CA g© + (D g©)2C[I − AA g©],
δ = D g© −D g©C(A g©)2B − (D g©)2CA g©B.

Proof. Since A and D has generalized group inverse, it follows by Theorem 1.1
that we have

A = A1 + A2, A
∗
1A2 = 0, A2A1 = 0,

D = D1 +D2, D
∗
1D2 = 0, D2D1 = 0,

A1, D1 has group inverse, A2, D2 is quasinilpotent.

Evidently, A1 = A2A g©, A2 = A − A2A g© and D1 = D2D g©, D2 = D −D2D g©.
Write M = P +Q, where

P =

(
A1 B
C D1

)
, Q =

(
A2 0
0 D2

)
.

We easily check that C∗D2 = C∗D(I − DD g©) = [D∗C]∗[I − DD g©] = 0.
Analogously, we have B∗A2 = 0. Since AπB = 0, we verify that

A2B = (A− A2A g©)B
= (A− A2A g©)AAdB
= A2AdB − A2A g©AAdB
= A2AdB − A2AdB = 0.

Likewise, we have D2C = 0. Then

P ∗Q =

(
A∗1 C∗

B∗ D∗1

)(
A2 0
0 D2

)
=

(
0 C∗D2

B∗A2 0

)
= 0,

QP =

(
A2 0
0 D2

)(
A1 B
C D1

)
=

(
0 A2B

D2C 0

)
= 0.

Obviously, BD1 = (BD)DD g© = 0. Since AπB = 0, it follows by Lemma 2.1
that Aπ1B = [I − A2A g©)A g©]B = (I − AA g©)B = 0. Similarly, Dπ

1C = 0. In
view of Lemma 2.4, P has group inverse. In this case,

P# =

(
α β
γ δ

)
,

where
α = A g©,
β = (A g©)2B,
γ = −D g©CA g© + (D g©)2C[I − AA g©],
δ = D g© −D g©C(A g©)2B − (D g©)2CA g©B.
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Obviously, Q is quasinilpotent. According to Theorem 1.1, M has generalized
group inverse and M g© = P#, as required. �

Corollary 4.4. If CA = 0, A∗B = 0, D∗C = 0, AπB = 0 and DπC = 0, then
M has generalized group inverse. In this case,

M g© =

(
α β
γ δ

)
,

where
α = A g© − A g©B(D g©)2C − (A g©)2BD g©C,
β = −A g©BD g© + (A g©)2B[I −DD g©],
γ = (D g©)2C,
δ = D g©.

Proof. Applying Theorem 4.3 to the matrix

(
D C
B A

)
, we prove that

(
D C
B A

)
has generalized group inverse. Thus M has generalized group inverse and

M g© =

(
0 1
1 0

)(
D C
B A

) g©(
0 1
1 0

)
.

The proof is true by Theorem 4.3. �

Lemma 4.5. If A∗B = 0, BD = 0, then N =

(
A B
0 D

)
has generalized

group inverse. In this case,

N g© =

(
A g© 0
0 D g©

)
.

Proof. Write N = P +Q, where

P =

(
A 0
0 D

)
, Q =

(
0 B
0 0

)
.

We easily check that

P ∗Q =

(
A∗ 0
0 D∗

)(
0 B
0 0

)
=

(
0 A∗B
0 0

)
= 0,

QP =

(
0 B
0 0

)(
A 0
0 D

)
=

(
0 BD
0 0

)
= 0,

Since A and D have generalized group inverse, P has generalized group inverse
and

P g© =

(
A g© 0
0 D g©

)
.
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Obviously, Q is nilpotent, and so it is quasinilpotent. According to Lemma
2.2, M g© = P g©, as required. �

Lemma 4.6. If D∗C = 0, CA = 0, then N =

(
A 0
C D

)
has generalized

group inverse. In this case,

N g© =

(
A g© 0
0 D g©

)
.

Proof. Write N = P +Q, where

P =

(
A 0
0 D

)
, Q =

(
0 0
C 0

)
.

We easily check that

P ∗Q =

(
A∗ 0
0 D∗

)(
0 0
C 0

)
= 0,

QP =

(
0 0
C 0

)(
A 0
0 D

)
= 0,

By virtue of Lemma 2.2, M has generalized group inverse and M g© = P g©, as
desired. �

We are ready to prove:

Theorem 4.7. If BC = 0, BD = 0, CA = 0, CB = 0, A∗B = 0, D∗C = 0,
then M has generalized group inverse. In this case,

M g© =

(
A g© 0
0 D g©

)
.

Proof. Write M = P +Q, where

P =

(
A B
0 0

)
, Q =

(
0 0
C D

)
.

It is easy to verify that

P ∗Q =

(
A∗ 0
B∗ 0

)(
0 0
C D

)
= 0,

PQ =

(
A B
0 0

)(
0 0
C D

)
=

(
BC BD
0 0

)
= 0,

QP =

(
0 0
C D

)(
A B
0 0

)
=

(
0 0
CA CB

)
= 0,
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In view of Lemma 4.5, P has generalized group inverse. In view of Lemma 4.6,
Q has generalized group inverse. Moreover, we have

P g© =

(
A g© (0
0 0

)
,

Q g© =

(
0 0
0 D g©.

)
.

In light of Corollary 3.7,

M g© = P g© +Q g© =

(
A g© 0
0 D g©

)
,

as asserted. �

Finally, we present some new formulas for the weak group inverse of a block
operator matrix over a Banach space.

Theorem 4.8. Let M =

(
A B
C D

)
, where A ∈ B(X)W©, B ∈ B(X, Y ), C ∈

B(Y,X), D ∈ B(Y )W©.

(1) If BD = 0, CA = 0, AπB = 0 and DπC = 0, then

MW© =

(
AW© (AW©)2B

(DW©)2C DW©

)
.

(2) BD = 0, A∗B = 0, D∗C = 0, AπB = 0 and DπC = 0, then

MW© =

(
α β
γ δ

)
,

where

α = AW©,
β = (AW©)2B,
γ = −DW©CAW© + (DW©)2C[I − AAW©],
δ = DW© −DW©C(AW©)2B − (DW©)2CAW©B.

(3) BD = 0, CA = 0, BC = 0, CB = 0, A∗B = 0, D∗C = 0, then

MW© =

(
AW© 0
0 DW©

)
.

Proof. They are direct consequences from Lemma 2.5, Theorem 4.1, Theorem
4.3 and Theorem 4.7. �
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