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Abstract Starting from earthquake fault dynamic equations, a correspondence be-
tween earthquake occurrence statistics in a seismic region before a major earthquake
and the statistics of solutions to a nonlinear eigenvalue problem whose eigenfunc-
tions characterize the seismic velocity model of the region is presented. Modelling
the eigenvalue solution statistics with a 2D Coulomb gas statistical physics model,
previously reported deviation of seismic activation earthquake occurence statistics
from Gutenberg-Richter statistics in time intervals preceding a major earthquake is
derived. It is also explained how statistical physics modelling predicts a finite dimen-
sional nonlinear dynamic system describes rupture nucleation in the seismic activa-
tion region, and how this prediction can be tested experimentally.
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1 Introduction

An increase in the number of intermediate sized earthquakes (M > 3.5) in a seismic
region preceding the occurrence of an earthquake with magnitude M > 6, referred to
as seismic activation, has been observed to occur [Bowman et al.(1998)]. For exam-
ple, seismic activation was observed in a geographic region spanning 21°N —26°N x
119°E — 123°F for a period of time between 1991 and 1999 preceding the magni-
tude 7.6 Chi-Chi earthquake [Chen(2003)]. Figure 1 shows a schematic plot of the
cumulative distribution of earthquakes of different magnitudes in a region under-
going seismic activation in two different time intervals of equal duration preceding
occurrence of a major (7 < M < 8) earthquake at time T = Tp. In this figure, 7 is
a real time parameter, and 7y is the characteristic time of major earthquake recur-
rence assuming an earthquake of similar magnitude occurred in the same region at
7 =0 [Rundle et al.(2001), Vallianatos and Sammnds(2004)]. Importantly, the cumu-
lative distribution of earthquakes in a time interval of fixed width increasingly devi-
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Fig. 1 Plot of the cumulative distribution of earthquakes of different magnitudes in a seismic zone in two
different time intervals of equal width preceding occurrence of a major earthquake at AT =17 —7 =10
[Rundle et al.(2001), Vallianatos and Sammnds(2004)].

ates away from a Gutenberg-Richter linear log-magnitude plot as the end of the time
interval approaches 7.

As a means of predicting the time T = 7y at which a major earthquake preceded
by seismic activation occurs, it has been hypothesized that the average seismic mo-
ment (M) of earthquakes occuring in intervals of time (7,7 + A7) preceding a major
earthquake obeys an inverse power of remaining time to failure law:

1
Mg o — - (D
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and that as a result, the cumulative Benioff strain €’ (7), defined as:
¢(t)=Y M2, )

where My is the seismic moment of the " earthquake in the region starting from a
time T = 0 preceding the major earthquake, and n(7) is the number of earthquakes
occurring in the region up to time 7, satisfies [Tzanis et al.(2000)]:

C(t)=a-b(n—1)", p=1-n/2. 3)

Notably, the exponent selection of 1/2 in equation (2) is not necessary to derive
formula (3) with a different arithmetic relation between 7, and 7}, but appears to
have been commonly selected by previous researchers based on resulting predictions
of major earthquake occurrence time when formula (3) is fit to real seismic data
[Vallianatos and Chatzopoulos(2018)]. It is also noted that when a fit to real seismic
data is performed, a value 5 =~ 0.3 is typical [Bowman et al.(1998)].
A mathematical model of seismic activation based on damage mechanics of earth-
quake faults has been put forth to derive equation (3) with a value 9» = 1/3 [Ben-Zion and Lyakhovsky(2002)].
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In this derivation, the occurrence of seismic activation earthquakes progressively de-
creases the average shear modulus of fault material in the seismic region where sub-
sequent seismic activation earthquakes occur, and the result y5 = 1/3 is determined
by a Boltzman kinetic type description of how ruptured faults of different lengths at
different positional locations grow and join together [Tzanis and Vallianatos(2003)].

In addition to the damage mechanics model of seismic activation, an empirical
model of seismic activation using statistical physics known as the Critical Point (CP)
model has been put forth to derive equation (3) with a value 95 = 1 /4 [Rundle et al.(2001)].
In this derivation, the inverse power of remaining time to failure law:

1

M g

“4)

is asserted based on identifying the mean rupture length .# (1) of earthquakes occur-
ing at time T with the correlation length of a statistical physical system described by
Ginzburg-Landau mean field theory with a temperature parameter depending on 7,
whereby:

1
ZL(1) o< W’ )

and relation (4) follows from the scaling relation (M) o .#(7)* which holds when

the fault material shear modulus is constant in the seismic activation region [Rundle et al.(2003)].
Importantly, previous work has not explained why it is physically reasonable to de-

scribe statistics of seismic activation with thermal equilibrium statistical physics for-

malism, or what predictions other than time of major earthquake occurrence are pos-

sible with such models [Newman et al.(1995)]. Therefore, the objective of this article

is to advance the detailed mathematical description of the correspondence between

nonlinear differential equation modelling and statistical physics modelling of seismic

activation in a way that advances testing of model predictions against real seismic
measurements.

The outline of the article is as follows. Section 2 introduces a sine-Gordon equa-
tion modelling earthquake fault dynamics during seismic activation and explains how
inverse scattering theory of this equation implies a relation between solutions to a
nonlinear eigenvalue problem whose eigenfunctions characterize the seismic veloc-
ity model of the region and statistical physics. Section 3 explains how statistics of
the eigenvalue solutions are related to earthquake occurrence statistics, and how de-
scribing these statistics with a 2D Coulomb gas statistical physics model accounts for
deviation of earthquake occurrence statistics from Gutenberg-Richter statistics before
a major earthquake. Section 4 concludes by commenting on how statistical physical
modelling implies the phase space dimension of a nonlinear dynamical system char-
acterizing rupture nucleation in the seismic activation region is finite, and how this
implication can be tested against real seismic measurements.
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2 Methods
2.1 1D Fault Dynamics Inverse Scattering Theory

In 1+1 spacetime dimensions, the differential equation:
Ad2U(t,2) +Bo:U(t,2) — CI2U(t,2) = —sin(U(t,z)/D). (6)

has been used to model migration of earthquake hypocentres along earthquake faults
in seismic regions over periods of time during which multiple earthquakes occur
[Bykov(2001)]. In this equation, 7 is real time, z coordinates a direction of earth-
quake hypocenter migration along an earthquake fault, U(7,z) is the local displace-
ment of elastic material across the earthquake fault, Ad2U (7,z) is the local inertial
force acting on the fault material, B8Z2U (7,2) is the local elastic restoring force act-
ing on the fault material, and Cd;U(7,z) and sin(U(7,z)/D) are local frictional force
acting on the fault material attributed to periodic contact of the material with tectonic
plates on either side of the fault. If the earthquake fault material has constant height
h and shear modulus u along the fault, a soliton (2 kink) solution to equation (6)
can be interpreted to describe growth of an interval where earthquake rupture has oc-
curred along the z-axis, which in this 1 dimensional model is identified with the both
the direction of hypocentre migration and the direction of all earthquake slip vectors
[Carlson et al.(1994)].

Restricting focus to the case C = 0, with rescaling of 7, z, and U(7,z), each of
the constants A, B, and D in equation (5) can be set to 1. With this rescaling, and
definition of the matrices:

—io  —1U/(1,2)
% — 2 .Z ) , 7
hoies ) v
_ i [cosU(t,z) sinU(t,z) ®)
" 4 |sinU(t,z) —cosU(1,2)|’
for an arbitary complex number @, the equation:
My — N+ MN — N M =0, )

is equivalent to equation (5) [Khan(2020)]. Introduction of the matrix operator .#
also permits introduction of the associated seismic wave scattering problem:

T

in which 7 is an auxillary parameter, and oscillatory dependence e ~®" of the incom-
ing and outgoing scattered waves on a scattering time parameter ¢ has been implicitly
assumed in the definitions of .# and .#". According to the inverse scattering method,
the importance of the operator .4 is that it determines real time T evolution of scat-
tering data determined by the operator ./ .

Upon definition of scattering problem (10), the inverse scattering method pro-
ceeds by determining an infinite set of its left and right scattering (i.e. Jost) solutions
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Fig. 2 Schematic diagram of inverse scattering method applied to solve the sine-Gordon equation
[Aktosun et al.(2010)]. Real time 7 evolution of the scattering data determines a solution to the sine-
Gordon equation upon application of an inverse scattering transform.

¥, .(7,2) and ¥ g(7,2), indexed by complex wave numbers A = @, with asymp-
totics [Aktosun et al.(2010)]:

0
#0(00) = [ ] 2o (an
L(A,7)e A
Yurg =] T | 2o e (12)
T(A)
and:
e—zlz
'{IA,R(TaZ) = |: 0 :| y L —o (13)
e—ilz
WA,R(T?Z) = R({l(rl)lilz , % — oo, (14)
TTQ)

Next, using equation (9), real time T evolution of the Jost functions is calculated in
terms of T-variation of the reflection coefficients R(A,T) and a finite set of complex
numbers {c;} associated with complex wave numbers {A;} of bound state solutions
to linear system (10). Finally, the real time evolved sine-Gordon equation solution
U(7,z) is determined by applying an inverse scattering transform to the real time
evolved scattering data as indicated in Figure 2. Note that according to 1D scatter-
ing theory, scattering bound states are in correspondence with zeroes of the function
T (A), while resonant scattering states are in correspondence with zeros of the reflec-
tion coefficients R(A,T) and L(A, T) at fixed values of 7. Also note that in general the
bound and resonant state {A;} values have non-zero imaginary components, and are
located symmetrically with respect to the imaginary axis in the complex A-plane.

To clarify the physical relation between scattering data used by the inverse scatter-
ing method and seismic activation physics, consider the simpler 1D scattering prob-
lem in which a scattering potential function V (z) is compactly supported along the
z-axis, and the operator:

—BJ? +V(2), (15)

has infinitely many resonant state eigenfunctions ¥(z) satisfying the elastic wave
equation:
—~BI*¥(2) +V(2)¥(z) = E¥(2), (16)
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and finitely many bound state eigenfunctions ¥;(z) with negative real eigenvalues
E;= (Jt)j2 < 0. In this situation, the Jost eigenfunctions of operator (16) define a spec-
tral kernel whose determinant equates to the potential V, which in a 1D scattering
context implies the Jost functions define the velocity model of the 1D elastic wave
equation [Dyson(1976)]. Based on this established mathematical result, it is conjec-
tured that the scattering potential function U,(7,z) also equates to a determinant of
an operator defined by Jost functions of scattering problem (10).

To clarify the physical relation between inverse scattering theory bound states
and seismic activation it is noted that a solution ¥ (¢, 7,7) to the linear seismic wave
equation:

PP (t,7,2) — B(1)d2¥(t,7,2) + V(1,2)¥(t,7,2) = O, (17)

in which the auxillary seismic wave scattering time parameter ¢ is introduced and 7
tracks scattering potential changes associated with seismic activation, and for which
¥(0,71,z) and 0,¥(t,7,7)|,—0 are compactly supported, has a resonant scattering ex-
pansion of the form [Bindel and Zworski(2007)]:

N
P(r,7,2) =Y &V aWa(t,2) + e 'V bW ,(t,2) (18)
j=1

+ Y e "cW(t,2),
 resonant

in the limit + — oo. In this expansion, bound state eigenfunctions determine charac-
teristic length scales at which unstable growth of fault material displacement may
occur across the earthquake fault. Based on this interpretation, it is hereby suggested
that inverse scattering thery bound states describe patterns of stress distribution in
unruptured material as fault ruptures grow and nucleate.

For example, if V(7,z) is a potential well of depth V) > 0 which is independent
of 7, nonzero for |z| < L, and zero elsewhere, there exist finitely many bound state
eigenfunctions ¥;(z) which decay exponentially with increasing |z|:

W (z) o< e KRl 2] — oo (19)

for a discrete set of spatial decay constants:

k= \/_7]./3, (20)

whose inverse values determine characteristic length scales at which unstable growth
of fault material displacement may occur across the earthquake fault. Figure 3 shows
a plot of resonant and bound state frequency locations for three situations in which
7§V(z) is a square well potential of increasing width and fixed height.

2.2 3D Fault Dynamics to Statistical Physics

To generalize the previous discussion of inverse scattering theory in 1 spatial dimen-
sion to 3 spatial dimensions, suppose a major earthquake hypocentre resides in an
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Fig. 3 Plots of resonant frequency and bound state frequency locations for 3 square well potentials of
increasing width.

elastic half space in such a way that the elastic parameters of the half space are con-
stant outside a sphere of diamater %, centred at the hypocentre. Moreover, suppose
that with appropriate definition of a perfectly matched layer at the sphere’s boundary,
dependent on complex frequency, elastic scattering resonant frequencies at time T are
determined by solution to a nonlinear eigenvalue problem whose solutions satisfy an
equation [Bindel]:

R(w,7) =0. (21

With this supposition, the complex resonant frequency set { ®;} constitutes a 3D gen-
eralization of inverse scattering data that depends on 7, and whose real time evolution
is necessarily in correspondence with real time evolution of the half space elastic pa-
rameters.

Without addressing the precise mathematical form of R(®,7), it is possible to
conjecture how statistical properties of 3D scattering data descriptive of seismic ac-
tivation depend on T with reference to previous work on statistical physics models
of seismic activation. To this end, it is recalled that in one of the original statistical
physics models of seismic activation, singularities of the free energy of an unspecified
statistical physical system occur at a discrete set of T values less than 7y, whereby 7
is interpreted as the temperature of the system and singularities identify system phase
transition points [Saleur et al.(1996)]. Based on this work, it is put forth that values
of 7 at which singularities of the function:

logR(0,7), (22)

occur coincide with phase transition temperatures of a still unspecified statistical
physical system, whereby values of @ for which R(®,t) = 0 are interpretable as
(7-dependent) Yang-Lee zeroes of the system’s partition function.
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3 Results

To relate the discussion in the previous chapter to seismic activation earthquake oc-
currence statistics, first define w,(7) and .Z(7) as the corner frequency and rupture
length of the largest seismic activation earthquake occurring before time 7 < 7. From
this definition, the observed scaling relation between earthquake corner frequency

and seismic moment M;:
-1/3

0 (T) < Mg /7, (23)
together with the scaling relation:
My < 2 (1), (24)
imply [Aki(1967)]:
ZL(1) < (1)L (25)

Next, suppose that the eigenfunction of a solution @ to R(®, t) = 0 defines a litho-
spheric stress distribution preceding a seismic activation earthquake of rupture length
% o« @~ !, and that the probability of this earthquake occurring the time interval
(1,7 + A7) is proportional to wdt/Q, where Q(®) is the quality factor of the litho-
spheric resonance at frequency @. Then, if p(®) is the density of nonlinear eigen-
value solutions in the interval (@, ® + d®), the number of earthquakes with corner
frequency less than or equal to @ occurring during the time interval is:

Nedt = / ? (0dt/0(0)p(0)do (26)

0(T)

Importantly, the discussion in the previous paragraph assumes that rather than be-
ing a set of continuously changing values, the resonant frequency set {®; } is discon-
tinuously updated with occurrence of each seismic activation earthquake, whereby
a frequency is removed from the set and other frequencies in the set are affected by
change to the fault rupture pattern. For this reason, rather than describing the resonant
frequency set deterministically, it is put forth that this set can be described probabilis-
tically, either by defining a probability density functional of elastic parameter models
on the seismic activation region, or correspondingly, by assigning probability distri-
butions to the coefficients of the statistical physics Hamiltonian that determines the
equation R(®,7) = 0 as a Yang-Lee zero condition. Figure 4 illustrates a 2D random
fracture network model of a seismic activation region at 4 different times 7, whereby
occurrence of seismic activation earthquakes leading up to the major earthquake at
time T = Ty introduce new fractures that change the seismic scattering effect of the
fracture network [Lei and Sornette(2022)].

To specify the mathematical form of the integral in equation (26), recall that the
Gutenberg-Richter law implies the total number of earthquakes of Richter magnitude
in the interval (Mg, Mg + dMpg) occurring in the seismic activation region in the time
interval (7,7 4+ d) is proportional to:

107"Mr gMydr, (27)
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Fig. 4 Schematic illustration of seismic activation in a 2D geometry at four different times 7 in which each
black line represents an earthquake fault along which rupture has already occured, and the red line repre-
sents an earthquake fault along which shear stress is increasing prior to rupture [Lei and Sornette(2022)].

which according to the relation:
Mg = (logo(M;s)—9) /1.5, (28)

between Richter magnitude and seismic moment satisfies:

1-b/1.5

lofbMRdMRd,r o M: dMSdT o< a)2b71da)d't- (29)

Therefore, assuming the Gutenberg-Richter law is valid, it follows that:
p(@)/0(0) = &2, (30)

To account for modification to the Gutenberg-Richter law in time intervals pre-
ceding a major earthquake using statistical physics, it is now conjectured that for
earthquake corner frequencies:

0~ 0(%) = ay, (31)

the quantity Q(®)/p (o) describes the density of a 2D Coulomb gas in the vicinity
of a test charge located at ® = @y, whereby [Goldenfeld]:

0(0)/p() = (0 — )P, By >0, (32)

for @y equal to the lowest corner frequency of a seismic activation earthquake pre-
ceding the major earthquake. With this conjecture, equation (26), modified to account
for occurrence of an earthquake at corner frequency @y, implies:

@
N, o 1+/ (o —ay) Podo, (33)
wy
which in turn implies the logarithm:
logio N ~logyq (1+¢c(@—ay) ), (34)

when plotted against Richter magnitude Mg o< —2log;q® for By < 1, can have ei-
ther of the cumulative distribution curve shapes shown in Figure 1 for different time
intervals, depending on the value of f.

Having conjectured 2D Coulomb gas statistical physics are relevant to account-
ing for deviation of earthquake occurrence statistics from Gutenberg-Richter statistics
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Fig. 5 Phase diagram of 2D sine Gordon statistical physics model with renormalization group flow indi-
cated by arrows and KT critical points identified by circle tangencies [Carpentier(1999)].

during seismic activation, it is now further conjectured, in accordance with previous
statistical physics models of seismic activation, that fy = (1), where (7) is a pa-
rameter in a T-dependent 2D sine Gordon statistical physics model whose parameters
at different values of 7 are related by renormalization group flow [Carpentier(1999),
Balog et al. (2018)]. With this additional conjecture, an increase in the value of 3(7)
as T — Ty accounts for increasing steepness of the cumulative distribution curve
shown in Figure 1. A phase diagram of a 2D sine Gordon model with a renormaliza-
tion group flow indicated by arrows is shown in Figure 5. In this diagram, different
vaues of the flow coordinate ‘t’ equate to 3(7) at different values of 7 in such a way
that 3 (7o) is the horizontal coordinate of a point of tangency between two of the Ford
circles. It is noted that this phase diagram corresponds to the k = 1 description of a
more general 2D sine Gordon statistical physics model defined by a field theory with
4k fields [Zabrodin(2010), Dubrovin and Yang(2020), Varchenko(1990)].

4 Discussion

Previous work has identified predicting the time of occurrence of major earthquakes
as a possible application of statistical physics models of seismic activation, but this
application has not yet been realized [Bowman et al.(1998)]. In more recent times,
earthquake early warning algorithms such as FinDer and Virtual Seismologist have
been developed which can in principle use previous earthquake occurrence statistics
as input, and most recently, artificial intelligence algorithms such as QuakeGPT have
been developed for predicting the occurrence of major earthquakes using seismic
event records created with stochastic simulators as training data [Bose et al.(2023),
Rundle et al.(2024)]. Therefore, a practical applied science goal for the statistical

[h]
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physics model presented in this article appears to be improving the predictive per-
formance of one or more of these existing earthquake early warning algorithms by
appropriately modifying their earthquake occurrence statistical inputs, acknowledg-
ing that preliminary tests of the model’s validity against real seismic data must be
passed before achieving this application objective can be considered a realistic pos-
sibility.

From a geophysical testing point of view, if it is true that the growth of unstable
stress modes within the Earth during seismic activation are determined by statistical
physics renormalization group flow mathematics, and, as a result, a nonlinear dynam-
ical system of phase space dimension N characterizes the nucleation of shear stress
in a seismic region preceding a major earthquake, a geophysical signal processing
technique known as singular spectrum analysis should apply to determine this phase
space dimension [Broomhead and King(1986)]. Therefore, it is suggested that coda
wave interferometry measurements of relative changes in seismic surface wave and/or
body wave velocity be performed between pairs of seismic stations in a seismic region
over a duration of time during which seismic activation is known to have occurred,
and used as input to a time domain multichannel singular spectrum analysis algorithm
[Merrill et al.(2023)]. The number of channels of this algorithm would equate to the
number of station pairs, and the number of singular values output by the algorithm in
different time windows preceding occurrence of a major earthquake should provide
some indication of a finite value for N if the statistical physics model of seismic ac-
tivation is correct in principle. With reference to previous geophysical application of
singular spectrum analysis, performed in the frequency domain, the signal process-
ing algorithm suggested here is different in that it should be carried out in the time
domain 7 rather than the frequency domain [Sacchi(2009)].

In conclusion, work towards improving current earthquake early warning sys-
tems can proceed in two directions. Firstly, as an initial check on whether or not the
statistical physics modelling approach presented here could be of practical utility,
work can be done to determine whether or not changes of the Earth’s elastic veloc-
ity model preceding major earthquakes, as determined by coda wave interferometry,
can be processed to extract an integer identifiable as the phase space dimension of a
nonlinear dynamical system. Secondly, work can be done to elaborate upon the sta-
tistical physics mathematical model of seismic activation presented in this article to
determine other tests of its scientific validity and potential for practical application.



12 Daniel S. Brox - Alumni Caltech: brox @alumni.caltech.edu

Acknowledgements Thanks to my family for their support throughout completion of this research. Thanks
to Dr. Girish Nivarti and Professor Richard Froese for their willingness to entertain discussions about the
content of the article. The author declares they have no conflicts of interest.

References

[Akemann et al.(2021)] Akemann G, Mielke A, Péfler (2021) Spacing distribution in the 2D Coulomb
gas: Surmise and symmetry classes of non-Hermitian random matrices at non-integer f3.

[Aki(1967)] Aki K, 1967. Scaling law of seismic spectrum, J. geophys. Res., 72, 1217-1231

[Aktosun et al.(2010)] Aktosun T, Demontis F, F Van der Mee C. Exact solutions to the sine-Gordon
equation. Journal of Mathematical Physics. 51(12)

[Balog et al. (2018)] Balog I, Carpentier D, Fedorenko AA. Disorder-driven quantum transition in rela-
tivistic semimetals: functional renormalization via the porous medium equation. Physical review letters.
2018 121(16):166402

[Ben-Zion and Lyakhovsky(2002)] Ben-Zion Y, Lyakhovsky V (2002) Accelerated seismic release and
related aspects of seismicity patterns on earthquake faults. Earthquake processes: Physical modelling,
numerical simulation and data analysis Part II :2385-2412

[Bindel] Bindel DS. Structured and parameter-dependent eigensolvers for simulation-based design of res-
onant MEMS (Doctoral dissertation, University of California, Berkeley).

[Bindel and Zworski(2007)] Bindel D, Zworski M. Symmetry of bound and antibound states in the semi-
classical limit. Letters in Mathematical Physics. 2007 Aug;81:107-17

[Bose et al.(2023)] Bose M, Andrews J, Hartog R, Felizardo C. Performance and next-generation devel-
opment of the finite-fault rupture detector (FinDer) within the United States West Coast ShakeAlert
warning system. Bulletin of the Seismological Society of America. 2023 Apr 1;113(2):648-63

[Bowman et al.(1998)] Bowman D, Ouillon G, Sammis C, Sornette A, Sornette D (1998) An ob-
servational test of the critical earthquake concept. Journal of Geophysical Research: Solid Earth
103(B10):24359-24372

[Broomhead and King(1986)] Broomhead D S, King G P (1986) Extracting qualitative dynamics from
experimental data. Physica D: Nonlinear Phenomena 20(2-3):217-236

[Bykov(2001)] Bykov V G (2001) Solitary waves on a crustal fault. Volcanology and Seismology
22(6):651-661.

[Carlson et al.(1994)] CarlsonJ M, Langer J S, Shaw B E (1994) Dynamics of earthquake faults. Reviews
of Modern Physics 66(2):657

[Carpentier(1999)] Carpentier D (1999) Renormalization of modular invariant Coulomb gas and sine-
Gordon theories, and the quantum Hall flow diagram. Journal of Physics A: Mathematical and General
32(21):3865

[Chen(2003)] Chen CC. Accelerating seismicity of moderate-size earthquakes before the 1999 Chi-Chi,
Taiwan, earthquake: Testing time-prediction of the self-organizing spinodal model of earthquakes. Geo-
physical Journal International. 2003 155(1):F1-5

[Dubrovin and Yang(2020)] Dubrovin B, Yang D (2020) Matrix resolvent and the discrete KdV hierarchy.
Communications in Mathematical Physics 377:1823-1852

[Dyatlov and Zworski(2019)] Dyatlov S, Zworski M (2019) Mathematical theory of scattering reso-
nances, volume 200. American Mathematical Soc.

[Dyson(1976)] Dyson FJ. Fredholm determinants and inverse scattering problems. Communications in
Mathematical Physics 47(2):171-83.

[Dyson and Mehta(1963)] Dyson FJ, Mehta ML (1963) Statistical theory of the energy levels of complex
systems. iv. Journal of Mathematical Physics 4(5):701-712

[Goldenfeld] Goldenfeld N. Lectures on phase transitions and the renormalization group. CRC Press;
2018.

[Hofstetter and Schreiber(1993)] Hofstetter E, Schreiber M (1993) Statistical properties of the eigenvalue
spectrum of the three-dimensional Anderson Hamiltonian. Physical Review B 48(23):16979

[Ito and Kaneko(2023)] Ito R, Kaneko Y (2023). Physical Mechanism for a Temporal Decrease of the
Gutenberg-Richter b-Value Prior to a Large Earthquake. Journal of Geophysical Research: Solid Earth
128(12):¢2023JB027413

[John(1991)] John S. Localization of light. Physics Today. 1991 May 1;44(5):32—40.

[Khan(2020)] Khan BA, Chatterjee S, Sekh GA, Talukdar B (2020) Integrable systems: From the inverse
spectral transform to zero curvature condition. arXiv preprint arXiv:2012.03456



Statistical Physics Model of Seismic Activation Preceding a Major Earthquake 13

[Lei and Sornette(2022)] Lei Q, Sornette D (2022) Anderson localization and reentrant delocalization of
tensorial elastic waves in two-dimensional fractured media. Europhys. Letters 136(3): 1-7

[Markos(2006)] Markos P (2006) Numerical analysis of the Anderson localization. arXiv preprint cond-
mat/0609580

[Merrill et al.(2023)] Merrill RJ, Bostock MG, Peacock SM, Chapman DS (2023) Optimal multichannel
stretch factors for estimating changes in seismic velocity: Application to the 2012 M,, 7.8 Haida Gwaii
earthquake. Bulletin of the Seismological Society of America 113(3):1077-1090

[Newman et al.(1995)] Newman WI, Turcotte DL, Gabrielov AM (1995) Log-periodic behavior of a hier-
archical failure model with applications to precursory seismic activation. Physical Review E 52(5):4827

[Rundle et al.(2001)] Rundle JB, Klein W, Turcotte DL, Malamud BD (2001) Precursory seismic acti-
vation and critical-point phenomena. Microscopic and Macroscopic Simulation: Towards Predictive
Modelling of the Earthquake Process 2165-2182

[Rundle et al.(2003)] Rundle JB, Turcotte DL, Shcherbakov R, Klein W, Sammis C (2003) Statistical
physics approach to understanding the multiscale dynamics of earthquake fault systems. Reviews of
Geophysics 41(4)

[Rundle et al.(2024)] Rundle JB, Fox G, Donnellan A, Ludwig IG (2024) Nowcasting Earthquakes with
QuakeGPT: Methods and First Results. arXiv e-prints. 2024 Jun:arXiv-2406

[Sacchi(2009)] Sacchi M (2009) FX singular spectrum analysis. Cspg Cseg Cwls Convention 392-395

[Saleur et al.(1996)] Saleur H, Sammis C, Sornette D (1996) Renormalization group theory of earth-
quakes. Nonlinear Processes in Geophysics 3(2):102-109

[Soerensen and Schneider(1991)] Soerensen M, Schneider T (1991) Level-spacing statistics for the An-
derson model in one and two dimensions. Physik B Condensed Matter 82(1):115-119

[Sornette(1989)] Sornette D (1989) Acoustic waves in random media: II Coherent effects and strong
disorder regime, Acustica 67(4):251-265

[Tzanis and Vallianatos(2003)] Tzanis A, Vallianatos F (2003) Distributed power-law seismicity changes
and crustal deformation in the SW Hellenic ARC. Natural Hazards and Earth System Sciences
3(3/4):179-195

[Tzanis et al.(2000)] Tzanis A, Vallianatos F, Makropoulos K (2000) Seismic and electrical precursors to
the 17-1-1983, M7 Kefallinia earthquake, Greece: Signatures of a SOC system. Physics and Chemistry
of the Earth, Part A: Solid Earth and Geodesy 25(3):281-7

[Vallianatos and Chatzopoulos(2018)] Vallianatos F, Chatzopoulos G (2018) A complexity view into the
physics of the accelerating seismic release hypothesis: Theoretical principles. Entropy 20(10):754

[Vallianatos and Sammnds(2004)] Vallianatos F, Sammonds P (2004) Evidence of non-extensive statisti-
cal physics of the lithospheric instability approaching the 2004 Sumatran—Andaman and 2011 Honshu
mega-earthquakes. Tectonophysics 590:52—8

[Varchenko(1990)] Varchenko A (1990) Multidimensional hypergeometric functions in conformal field
theory, algebraic K-theory, algebraic geometry. In Proceedings of the International Congress of Math-
ematicians 1:281-300

[Wu and Aki(1985)] Wu RS, Aki K (1985) Scattering characteristics of elastic waves by an elastic het-
erogeneity. Geophysics 50(4):582-95.

[Wu and Aki(1988)] Wu RS, Aki K (1988) Multiple scattering and energy transfer of seismic
waves—Separation of scattering effect from intrinsic attenuation II. Application of the theory to Hindu
Kush region. Scattering and Attenuations of Seismic Waves, Part 1:49-80.

[Zabolotskaya et al.(2010)] Zabolotskaya EA, Ilinskii YA, Hay TA, Hamilton MF. Green’s functions for a
volume source in an elastic half-space. The Journal of the Acoustical Society of America 131(3):1831—
42

[Zabrodin(2010)] Zabrodin A (2010) Canonical and grand canonical partition functions of Dyson gases as
tau-functions of integrable hierarchies and their fermionic realization. Complex Analysis and Operator
Theory 4:497-514



