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Abstract

The Michelson-Morley experiment and its resolution by the special theory of relativity
form a foundational truth in modern physics. In this paper we examine and generalise
the geometry of the sequence of events within a standard MM interferometer to arrive at
a geometry that merges the perspectives of the rest and moving frames within a common
stationary circle in space. Further we show that this theoretical approach leads us into
spherical trigonometry that supplies a simple solution of the Michelson-Morley problem
that is compatible with Einstein’s paradigm.

1 Introduction

The aim of this paper is to conduct an in-depth theoretical re-visitation of the paradigm
shifting Michelson-Morley (MM) experiment, its famous null result [1] and the resulting
paradox of space and time whose solution [2] forms the foundational basis of modern
physics. We will examine arguments that show that the event sequence within an MM
interferometer may be theorised by the rest frame in an unconventional fashion. This
approach will demonstrate that under inertial conditions and independent of its orienta-
tion or its relative velocity with respect to the rest frame, the locus of all points in space
where a reflection event can occur within an MM interferometer is a stationary circle in
space. Restricting the discussion to inertial conditions, we attempt to reconcile the MM
paradox in a fashion that retains this circular geometry while remaining compatible with
the theoretical consequences of special relativity.

2 Euclidean Geometry

On a flat surface [2], we draw any angle θ at origin Q bounded by two equal length line
segments QB = QB′ = h. We join points B and B′ to points A and C such that the line
segment AC is perpendicular to QB and centred at Q. We will restrict our arguments to
the domain x < h. Fig. 1 illustrates.
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Figure 1: Triangles ABC and AB′C rendered on a flat surface.

From fig. 1, we posit the following:

1. If x > 0, physical measurements will verify the theoretical statement AB + BC ̸=
AB′ +B′C remains true for all θ ̸= 0, π, 2π...

2. Since h is constant, curve BB′ will take the form of a circle as 0 ≤ θ ≤ 2π indepen-
dent of x.

3. If x > 0, physical measurements will verify the theoretical statement ̸ AB′Q ̸=
̸ QB′C remains true over all θ ̸= 0, π/2, π...

3 A Template of the MM Experiment

Now we turn to theoretical aspects of relativistic optical interferometry to demonstrate
that the geometry and sequence of events within an MM interferometer always templates
to that of fig. 1.

3.1 Frames of Reference

Consider two imaginary euclidean reference frames that are in relative motion with respect
to each other. Let us arbitrarily assume one of these frames is at rest and the other moves
with some velocity v with respect to the rest frame. Accordingly we refer to fig. 1 and
declare,

1. A rest frame I0 centered at point Q.

2. A moving frame I1 that translates from point A to point C with some velocity v
relative to rest frame I0.

3.2 Geometry and Sequence of Events

Now let us consider the structure of an MM interferometer [1](see fig. 2). By fixing
̸ B′

1QB′
2 = π/2, line segments QB′

1 and QB′
2 form the arms of the interferometer. Mirrors

B1 and B2 are aligned perpendicular to their respective arms. The apparatus may be
rotated about its source and consequently each arm subtends its own angle θi measured
from a perpendicular to line segment AC. Let us affix moving frame I1 to the source of
the interferometer. Now let us imagine this interferometer moving through space under
inertial rules such that,

1. v remains constant (AQ = QC).
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2. The interferometer orientation (θi) with respect to line segment AC remains con-
stant.

Reference frame I1 (affixed to the source) translates with constant velocity v from
point A to point C. From the perspective of the rest frame I0, a discrete event cycle
begins with the source at point A marking the simultaneous emission of a pair of photons
(wavelength=λ). As the entire apparatus moves with some constant (AQ = QC) velocity
v relative to origin Q along line segment AC, the photons are emitted at point A, reflect
from mirrors B1 and B2 to finally arrive simultaneously (in phase with each other) at
point C. This geometry and sequence of events remains true over all possible orientations
θ of an MM interferometer [3] and over all 0 ≤ v < c where c represents the velocity of
light in free space [4].

Figure 2: Geometry of the Michelson-Morley experiment depicting the general case v ̸= 0 and
θi ̸= 0, π/2, π.... Point Q is chosen as the origin. Only the events within the interferometer
that are relevant to relativistic discussion are shown. Independent of the orientation of the
interferometer, rest frame I0 will find triangle AB′

iC is a generalisation of triangle AB′C in
fig. 1. Identical to fig.1, physical measurements of the geometry of events will confirm that
AB

′
i+B

′
iC ̸= AB

′
j+B

′
jC for all sin θi ̸= sin θj (inequality in path lengths) and ̸ AB′Q ̸= ̸ QB′C

(inequality in angles of incidence and reflection) for all θi ̸= 0, π/2, π... By setting v = 0 (x = 0),
the figure represents the observational perspective of moving frame I1. By setting v > 0 (x > 0),
the figure represents the observational perspective of rest frame I0. It is evident from fig. 1
that curve BB′ will take the form of a stationary circle of radius h about point Q independent
of θi (i.e. orientation) and v (i.e. frame of reference).

4 Preliminary Analysis

At this stage of investigation, rest frame I0 recognises the inequalities in path lengths
depicted in fig. 1 coupled with the experimental null result of the MM experiment to
arrive at a well understood paradox of space and time that is traditionally reconciled by
selecting point A as the origin followed by the application of special relativity [5]. But
we may also posit that by selecting instead point Q as the origin, rest frame I0 and any

3



moving frame Ii moving with velocity vi along the AC or CA directions are all assured
that over all 0 ≤ θi ≤ 2π and 0 ≤ vi < c, the locus of all points in space where a reflection
event can occur is a common stationary circle of radius h about point Q. Invoking the
symmetry of the circle, a rest frame I0 may also rotate fig. 2 in entirety about point Q by
any angle 0 ≤ ϕ ≤ 2π and may incorporate any number of moving frames I1, I2, I3, ...Ii,
each moving in any possible direction ϕi and each set an any orientation 0 ≤ θi ≤ 2π for all
0 ≤ vi < c within a single common stationary circle i.e. curve BB′. Further, invoking the
superposition property of waves [6], we may posit [7] that this single circle BB′ is capable
of hosting an infinite number of MM null result cycles moving at all possible velocities,
in all possible directions, simultaneously [8]. To this end, let us theorise a model of space
upon which rest frame I0 is able reconcile the paradox of unequal path lengths presented
above in a manner that retains the geometry of curve BB′.

5 Spherical Trigonometry

Let us first recall that fig. 1 is drawn on a flat surface [2] and that the value of x in this
figure is physically determined by measuring rod and assigned the unit metre(m). Noting
also that light obeys the properties of travelling waves [9], we recognise the governing
function of sinusoidal travelling waves, i.e. sin(x), takes an argument x that must be in
an angular unit of measure i.e. radians. With these in mind, let rest frame I0 project fig.
1 onto the surface of an imaginary sphere of arbitrary radius R such that the shortest dis-
tance path between any two points are described by great circles on the sphere [10]. Thus
the magnitude of distances x, h,AB′, B′C are measured analytically in radians subtended
at the centre of this sphere. Curve BB′ takes the form of a small circle on the surface of
this sphere having radius h radians and centred at point Q.

Figure 3: Spherical Trigonometry.

5.1 Analysis of Spherical Model

From fig. 3 and the rule of sines for spherical triangles [11], rest frame I0 finds in △AB′Q:

sinAB′

sin (π/2 + θ)
=

sinh

sinA
=

sinx

sin i
(1)

where i = ̸ AB′Q. Similarly for △CB′Q:

sinCB′

sin (π/2− θ)
=

sinh

sinC
=

sinx

sin r
(2)

where r = ̸ CB′Q.
From equations, 1 and 2 rest frame I0 finds in all spherical triangles of the form AB′C:
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sin(AB′)

sin(CB′)
= 1 (3)

Referring now to fig. 2, eq. 3 guarantees that by interpreting the MM null result
geometry with this approach, rest frame I0 is assured the theoretical statement AB′

i +
B′

iC = AB′
j + B′

jC remains true independent of v, h, θ. Thus the paradox of unequal
path lengths presented by physical measurements of fig. 1 vanishes independent of frame
of reference vi or orientation of the interferometer θi. Further by selecting point Q as
a common origin, every frame of reference I0, I1, I2...I∞, whether at rest or moving are
all assured that the commonality and the circularity of curve BB′ (refer sec. 4) remain
unaffected if projected onto this theoretical model of space.

6 Conclusion

Equation 3, demonstrates the total analytical light path AB′+B′C is always equal to the
maximal value i.e. π radians. Further eq. 3 remains true independent of h, θ and remains
valid over all 0 ≤ v/c < ∞. This model of analytical space is presented for scrutiny in
support of Einstein’s assertion that “the velocity of light in our theory plays the part,
physically, of an infinitely great velocity” [2][8].
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