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I Introduction

In this paper, we explore a hypothetical model based on five-dimensional space, where we
introduce the concept of ”space density” ρ(r), which plays a key role in the formation and
understanding of the fifth dimension of space. We assume that changes in the fifth dimension,
which we interpret as ”space density,” can lead to effects analogous to gravitational and
electric fields. The paper discusses the fundamental postulates, the derivation of formulas
for density distribution around one and two spheres, and their interpretation in the context
of classical physical theories.

II Formulation of Postulates in Hypothetical Five-Dimensional
Space

Let’s assume that our space can bend not only along with its metric but also compress and
expand in various regions without changing the metric, meaning the space can bend relative
to its metric.

Suppose our space has a fifth dimension measured in new abstract units. Paying homage
to enthusiasts who unsuccessfully tried to find evidence of ether, we will measure this fifth
dimension of space in new physical units called ”Etheriums.” Do not be alarmed by the
experiments conducted by Michelson and Morley on the detection of ether; I fully agree
with the results of these experiments, which show that there is no medium that carries
electromagnetic waves, including light! Moreover, our space is hypothetical, and we can
make any assumptions in it. Our primary task is to study what consequences such an
assumption about the existence of a fifth dimension might lead to in abstract space.

We assume that each volume of space can be uniquely associated with a certain number
of Etheriums, meaning we can talk about a parameter of space that can be interpreted as
density, which is the ratio of the number of Etheriums in a given region of metric space to
the volume of that region.

I emphasize that this characteristic of space can be interpreted as density, but it is not
density in the sense of material density, such as baryonic density. Unlike material density,
space density does not cause curvature of spacetime along with its metric and thus does
not form mass in the classical sense. We can only talk about the amount of space density
in a given metric volume (curved with metric or not). Compression or stretching of space
relative to its metric will be characterized by a change in the number of Etheriums in that
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region (volume) of space, and thus we can intuitively associate it with changes in density
that we observe in ordinary matter. Integrating over an arbitrary volume of space will give
us the amount of density contained in that volume, and thus this expression will have the
dimension of Etheriums. We will accept the dimension of space density as Etherium/m3.

This characteristic of space measured in Etheriums cannot be expressed in the known
coordinates of our three-dimensional space (with the possibility of curvature along with the
metric) and one time coordinate. Thus, mathematically, our characteristic of space—its
fifth dimension—will be orthogonal to all other coordinates of our space. On this basis, it
can be accepted as the fifth dimension, and space-time can be extended to a hypothetical
representation of space-time-density.

Before we proceed to study the properties of this ”hypothetical” universe, let us formulate
the main laws (Postulates) that will operate in our new five-dimensional space and define
its properties. Let’s see what results we will obtain by investigating the properties of this
five-dimensional space.

Postulates

Here are the postulates:

2.1 Space Density ρ(r)

In five-dimensional space, density ρ(r) characterizes the state of space and can change, thus
allowing us to talk about the curvature of space without curvature of its metric. Let us call
this phenomenon ”first-order space curvature,” a term used in the Theory of Relativity but
with a slightly different context in this theory.

2.2 Spherical Symmetry

The distribution of space density in perturbation is assumed to have spherical symmetry.
The space density distribution ρ(r) is assumed to be symmetric about any point that is the
center of perturbation.

2.3 Law of Conservation of Space Density Quantity

When perturbing a certain region of space, the surrounding space can change its density
such that the total density of all space remains unchanged. In other words, to a certain
approximation, it can be said that the total ”density” of space over a finite volume must
remain constant compared to the volume of perturbation of this space.

2.4 Law of Entropy Minimization of Space Density

Space tends to reach a state of minimal entropy where space density is uniform. We assume
that our space before perturbation has some density ρ0 and under any perturbation, the
distribution of space will strive to compensate for this curvature and return to its original
state when the entropy of space density is minimal, i.e., density is uniform throughout the
volume of space. We can assume that when the density of all space equals ρ0, the entropy
in such a space is zero.

2



III Distribution of Space Density Around a Compressed Spheri-
cal Region of Space

Let us consider two states of our fictional universe. In the first state, the density of space is
constant and equals ρ0 throughout the entire space. In the second state of the system, we
have a certain region of space bounded by a sphere S(R1) that we compress to S(R′

1). We
need to find the distribution of space density inside the sphere and outside it according to
the laws established in our hypothetical universe.

3.1 Density Distribution After Compression

**Inside the sphere of radius R′
1:**

The density after compression inside the sphere is given by:

ρinside = ρ0 + ρ1

where ρ1 is the added density, determined from the volume ratio before and after compres-
sion:

ρ0V (R1) = ρinsideV (R′
1)

Substituting the volumes of the spheres:

ρ0
4

3
πR3

1 = (ρ0 + ρ1)
4

3
πR′3

1

Simplifying:
ρ0R

3
1 = (ρ0 + ρ1)R

′3
1

ρ0R
3
1 = ρ0R

′3
1 + ρ1R

′3
1

ρ1 = ρ0

(
R3

1

R′3
1

− 1

)
3.2 Density Distribution Outside the Sphere

Outside the sphere, it is assumed that the amount of density removed from the surrounding
space should be finite and equal to the amount added inside (i.e., ρ1 · V (R′

1)). Thus, the
integral of the disturbance from the surface of the compressed region to infinity should yield
a finite number, meaning the integrable function must converge. In three-dimensional space,
such a function is 1

r4
. Let us assume that the distribution of reduced density outside the

compressed region satisfies this distance dependence. Then the space density decreases as
follows:

∆ρdecrease(r) =
A

r4

3.3 Normalization Coefficient A

To satisfy the conservation of space density, the integral of ∆ρdecrease(r) over the volume
from R′

1 to infinity must equal the added density inside the sphere:

ρ1V (R′
1) =

∫ ∞

R′
1

∆ρdecrease(r) · 4πr2 dr

3



Substituting:
ρ1

4

3
πR′3

1 = 4π

∫ ∞

R′
1

A

r4
r2 dr

Solving the integral:

4πA

∫ ∞

R′
1

1

r2
dr = 4πA

[
−1

r

]∞
R′

1

= 4πA

(
1

R′
1

− 0

)
=

4πA

R′
1

Equality of densities:
ρ1

4

3
πR′3

1 =
4πA

R′
1

Finding A:

A = ρ1
R′4

1

3

Final formula for ∆ρdecrease(r):

∆ρdecrease(r) =
A

r4
=

ρ1
R′4

1

3

r4

Now multiply both the numerator and the denominator by 4π:

∆ρdecrease(r) =
4πρ1

R′4
1

3

4πr4
=

ρ1
4
3
πR′4

1

4πr4
=

ρ1
V (R′

1)

R′
1

r4
=

ρ1 ·R′
1 · V (R′

1)

4πr4

Thus, the final formula for the decrease in density is:

∆ρdecrease(r) =
ρ1 ·R′

1 · V (R′
1)

4πr4

3.4 Checking the Conservation of Space Density

We check that the added density inside the sphere equals the reduced density outside it
using the found formula:

ρ1V (R′
1) =

∫ ∞

R′
1

∆ρdecrease(r) · 4πr2 dr

Substituting the expression for ∆ρdecrease(r):

ρ1
4

3
πR′3

1 =

∫ ∞

R′
1

ρ1 ·R′
1 · V (R′

1)

4πr4
· 4πr2 dr

ρ1
4

3
πR′3

1 = ρ1 ·R′
1 · V (R′

1)

∫ ∞

R′
1

1

r2
dr

Integrating:

ρ1 ·R′
1 · V (R′

1)

[
−1

r

]∞
R′

1

= ρ1 ·R′
1 · V (R′

1)

(
1

R′
1

− 0

)
=

ρ1 ·R′
1 · V (R′

1)

R′
1

Result:
ρ1

4

3
πR′3

1 = ρ1V (R′
1)

Thus, we see that the chosen density distribution∼ 1
r4

outside the compressed sphere satisfies
the law of conservation of space density: the amount of added density inside the sphere
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during its compression equals the amount of space density ”removed” from the space outside
the sphere. The disturbance outside the sphere has finite dimensions and does not cause
infinite disturbances in space, unlike its compression or stretching over the entire infinite
space. The disturbance in the form of compression of a limited region of space causes a
disturbance in the form of stretching in a similarly limited region, with the disturbance
(change in space density relative to ρ0) approaching zero as r approaches infinity.

IV Interaction of Two Compressed Space Spheres

Now let’s consider how the density distribution of space outside the compressed region of
space, bounded by a sphere, changes in the presence of a second similar sphere with a
compressed region of space. Let’s add a second compressed spherical region to our space
— another such sphere of compressed space from S(R2) to S(R′

2), located at a distance D

from the first. Let’s examine how the density distribution of space around the first sphere
changes due to the second sphere.

Distribution of space density in the area surrounding the spheres:

I built a mathematical model that constructs a three-dimensional array of values∆ρdecrease(r1)

and ∆ρdecrease(r2), representing the density distribution of space outside the first and second
spheres, respectively. The code also outputs a graph of the space density along the line
connecting the centers of the spheres. By bringing the spheres closer together, one can
visually observe (using a logarithmically normalized color scale) the change in the space
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density distribution in the space surrounding the spheres, as well as a graph of the density
distribution along the line connecting the centers of the spheres.

Looking at the images of the space density distribution around the spheres, based on the
mathematical model, it can be seen that as the spheres come closer, the density distribution
outside these spheres changes. Moreover, it becomes apparent that the amount of non-
uniformity in the density distribution around the disturbance caused by one sphere increases
as the spheres approach each other and decreases as they move apart.

I pondered how to evaluate this disturbance, which arises in the density distribution of
space due to the presence of two spheres, depending on the distance between them. We need
such a characteristic of this disturbance that will take into account the change in distribution
not only along the line connecting these spheres but also throughout the volume outside the
spheres to infinity.

I couldn’t think of anything better than to first take the gradient over the entire volume
from the density distribution of space, which will be a characteristic of the rate of change in
density distribution, and then integrate this result again over the entire volume. Moreover,
I need to understand the disturbance caused by the second sphere on the first, so I need
to first take the gradient of the space density outside the first sphere, and then integrate
the obtained values over the entire space from R′

1 to infinity. The obtained solution of this
integral will characterize the amount of curvature, or more correctly, the amount of space
density disturbance caused by the first sphere alone.

Then let’s add the second sphere at a distance D from the first and find the amount
of space density disturbance outside the first sphere in the presence of the second sphere.
Then, from the obtained total amount of space density disturbance outside the first sphere
in the presence of the second sphere at a distance D, subtract the amount of disturbance of
the first sphere alone, thus obtaining the difference in the amount of disturbance created by
the density distribution of the second sphere on the density distribution of the first sphere.
It’s convoluted, but I couldn’t think of anything smarter. If you know more correct methods
for assessing changes in spatial volumetric distribution, please suggest them; I will gladly
study them.

Since our space tends to decrease the entropy of the space density distribution, I assume
that the amount of disturbance will be proportional to the amount of interaction exerted
by the second sphere on the first. Let’s do this:

4.1 Integral of the Density Gradient for One Sphere

For one sphere, let the density be given by ∆ρdecrease(r1):

∆ρdecrease(r1) =
R′

1ρ1V (R′
1)

4πr41

The gradient of the density is:

∇∆ρdecrease(r1) = −4R′
1ρ1V (R′

1)

4πr51

Integrating over the volume:∫
V

∇∆ρdecrease(r1) dV =

∫ ∞

R′
1

−R′
1ρ1V (R′

1)

πr51
· 4πr21 dr = −4R′

1ρ1V (R′
1)

∫ ∞

R′
1

1

r31
dr
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Solving the integral:∫ ∞

R′
1

1

r31
dr =

[
− 1

2r21

]∞
R′

1

=

(
0−

(
− 1

2R′2
1

))
=

1

2R′2
1

Thus: ∫
V

∇∆ρdecrease(r1) dV = −4R′
1ρ1V (R′

1) ·
1

2R′2
1

= −2
ρ1V (R′

1)

R′
1

4.2 Integral of the Density Gradient for Two Spheres

Now for two spheres, located at a distance D:

∆ρtotal(r) = ∆ρdecrease(r1) + ∆ρdecrease(r2)

The density for the second sphere (the center of the second sphere is at a distance D):

∆ρdecrease(r2) =
R′

2ρ2V (R′
2)

4π(r −D)4

The gradient:

∇∆ρdecrease(r2) = −4R′
2ρ2V (R′

2)

4π(r −D)5

Integrating over the volume:∫
V

∇∆ρdecrease(r2) dV =

∫ ∞

R′
2

−R′
2ρ2V (R′

2)

π(r −D)5
· 4πr2 dr = −4R′

2ρ2V (R′
2)

∫ ∞

R′
2

1

(r −D)3
dr

Solving the integral:∫ ∞

R′
2

1

(r −D)3
dr =

[
− 1

2(r −D)2

]∞
R′

2

=

(
0−

(
− 1

2(R′
2 −D)2

))
=

1

2(R′
2 −D)2

Thus: ∫
V

∇∆ρdecrease(r2) dV = −4R′
2ρ2V (R′

2) ·
1

2(R′
2 −D)2

= −2
ρ2V (R′

2)

R′
2 −D

4.3 Final Integral for Two Spheres

The total integral for two spheres:∫
V

∇∆ρtotal(r) dV = −2
ρ1V (R′

1)

R′
1

− 2
ρ2V (R′

2)

R′
2 −D

Difference ∆W :

∆W =

(
−2

ρ1V (R′
1)

R′
1

− 2
ρ2V (R′

2)

R′
2 −D

)
−

(
−2

ρ1V (R′
1)

R′
1

)
= −2

ρ2V (R′
2)

R′
2 −D

Approximation R′
2 � D

When R′
2 � D:

∆W ≈ −2
R′

2ρ2VR2′

D2
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4.4 Results and Further Discussion

We obtained a very interesting result: the amount of disturbance in the space density
distribution caused by the second sphere is similar to the formula for the electric field
strength caused by a charge derived from Coulomb’s law for the electric field, if we consider
R′

2ρ2VR2′ as the charge of the second sphere. Isn’t it a bit mesmerizing when, based on
theoretical representations of a hypothetical five-dimensional space endowed with the laws
of spherical symmetry, the law of conservation of space density, and the law of minimizing
space density entropy, we obtain a formula that very much resembles the formula for electric
field strength derived from Coulomb’s law based on experimental data?

Upon further analysis of this formula, it becomes clear that what we understand as an
electric charge is the amount of space density added to the volume of the sphere V (R′

1),
that is, the product of ρ1 and the volume of the compressed space region.

However, in my opinion, the most interesting result of the study is something else. If you
noticed, we have not yet introduced in our hypothetical universe such a concept as energy
or the potential of interaction caused by the curvature of the space density distribution,
operating exclusively with the concepts of the amount of space density and the amount of
its curvature – disturbance. The amount of disturbance in space density exerted by the
second sphere on the space density distribution of the first sphere can be interpreted as
some amount of interaction between the spheres or, in our usual understanding, as force.
By integrating the amount of interaction over d – the distance between the spheres from
infinity to D, we obtain what we call the potential of the electric field or the potential energy
of the field.

If we look closely at our formula, we will see that at the point D = R′
1 we will have

division by zero, and the amount of interaction will be infinite, and at D < R′
1, the amount

of interaction will change sign, and hence the hypothetical potential energy arising from the
interaction of two spheres will also change sign. Consequently, this formula implies that the
law of conservation of energy has a very limited scope of application and is a special case of
the state of the universe when it holds.

This refers us to concepts such as dark energy and matter, when massive objects at great
distances begin to repel and move away with acceleration. I assume that this is not related
to some hypothetical ”invisible” dark energy or matter, but is related to the properties
of our space-time-density – with the fact that at large distances the potential energy of
gravitational interaction changes sign, as it is easier for space to minimize the entropy of
space in this way. Following this logic, our understanding of energy and the potential field is
fundamentally incorrect from the perspective of a five-dimensional space-time-density, which
strives to reduce its entropy along the path of least resistance, but this is the subject of a
completely different study of mine.

The conclusion is that the representation of our space as a five-dimensional object that
can curve relative to its metric can shed light on the mechanism of such a phenomenon as the
electric field. Let’s not assert that Coulomb’s law has already been derived theoretically and
is a consequence of Maxwell’s equations. Coulomb’s law and Ampère’s law form the basis of
Maxwell’s equations, and it is not surprising that, under certain simplifications, Maxwell’s
equations again turn into Coulomb’s law. I am not aware of a theoretical derivation not based
on empirical knowledge, which forms the basis of Coulomb’s law (obtained experimentally);
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I have not found it in open sources, which is not surprising as official science does not yet
recognize the presence of a fifth dimension in our space. Similar theoretical representations
of the nature of the interaction of electric charges are impossible in principle. In my opinion,
my hypothesis about the fifth dimension of our space deserves attention and discussion.

Another interesting conclusion of this theory about five-dimensional space is that what
we observe in the interaction of charged particles is not the field of these particles, but the
result of their interaction. The real picture of the field created by a point charge represents
a dependence of ∼ 1/r4, and the dependence we observe in Coulomb’s law ∼ 1/r2 is a
consequence of the effect of the second sphere’s field on the distribution of the first sphere’s
field. In other words, the charge’s own field, distorted by the field of the second charge,
acts on the charge and causes it to move in space, rather than the field of the second charge
directly acting on the first charge as is currently believed.

Accepting this model makes it completely clear what an electromagnetic wave is. If
we assume that when a charge is displaced, the change in the density distribution in the
surrounding space does not occur instantly but with some delay, and the propagation of the
change in the space density distribution occurs at a certain speed, say the speed of light, this
will allow us to obtain completely new wave equations for electromagnetic waves created
not by a conductor with alternating current, for which Maxwell’s equations were written,
but for a point charge performing harmonic oscillations relative to the space metric. I will
not derive these equations, I think anyone knowing the space density distribution around a
point charge ∼ 1/r4, can easily derive wave equations for the electromagnetic field knowing
the propagation speed of the disturbance equal to the speed of light.

V Solution of the Integral of the Gradient Over the Entire Volume
for the Equation of Space Density Distribution of One Sphere

As you may have noticed in the previous sections of my research, we considered the space
density distribution outside the compressed spheres, i.e., for r > R1′. Now let’s write our
space density distribution for one sphere from r = 0 to infinity, taking into account the
boundary conditions of space density distribution at the boundary of the compressed sphere
S(R1′), and let’s find the integral of the gradient of this distribution — the amount of
disturbance, to understand whether our space is in a disturbed state or it is in equilibrium
in terms of the amount of space disturbance, due to the space density distribution ∼ 1/r4

outside the compressed space region in the form of a sphere.
Let’s write our distribution under boundary conditions using the Heaviside function and

take the integral of the gradient of this space density distribution over the entire volume.
The idea is that I assume that mass in the classical understanding of mass is also related
to space density. Curvature of space together with its metric (second-order curvature) and
curvature of space by Curvature of space relative to its measurement such as space density is
inevitably related to boundary conditions! Based on the postulates of our space, inside the
compressed sphere, the space density will always be uniform, and thus, to comply with the
law of conservation of space, a sharp density transition boundary inevitably arises, which can
be described by the Heaviside function, and it is this boundary — as a strong disturbance
of space density — that causes the curvature of space relative to its metric. Here is an
illustration showing the space density distribution along any radius vector from the center
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of disturbance to infinity:

These two phenomena are inextricably linked to each other: if there is a curvature of
space density relative to ρ0, there must be a transition boundary that causes the curvature
of space relative to it. In my opinion, this is the connection between the electric and
gravitational fields, that they are inseparably linked. As I have already mentioned, the
change in space density distribution relative to its uniform distribution ρ0 is first-order
curvature, which can manifest itself as an electric field in statics and as a magnetic field
when this field moves relative to the space metric, and the second-order curvature arising
from boundary conditions — curvature of space together with the metric — manifests itself
as a gravitational field. However, the basis of these interactions is the tendency of space to
minimize entropy — the tendency to uniform space density distribution and minimization
of disturbance.

In this paradigm, the magnetic field is a kind of first-order curvature — dynamic first-
order curvature, which changes the nature of interaction: moving like-charged particles begin
to attract under the influence of the magnetic field caused by the movement of space density
relative to its metric.

As confirmation of this theory about the fifth dimension of our space in the form of
space density, there should also be dynamic second-order curvature according to this logic,
something like a gravitational magnetic field when moving massive bodies causing curvature
of the space metric interact similarly to moving electric charges, but as far as I know,
experiments in this direction have not yet been conducted.
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5.1 Representation of Space Density Distribution Inside and Outside the Com-
pressed Spherical Region of Space Using the Heaviside Function

To verify the correctness of using the Heaviside function H(x) in this density distribution
∆ρ(r), we will consider the boundary conditions and ensure that they correctly correspond
to the conditions of the problem.

The basic density distribution ρ(r) is defined as follows:

ρ(r) =

{
ρ0 + ρ1, if r ≤ R1′

ρ0 − R1′·ρ1·VR1′
4πr4

, if r > R1′

Increase in density ∆ρincrease(r):

∆ρincrease(r) =

{
ρ1, if r ≤ R1′

0, if r > R1′

Decrease in density ∆ρdecrease(r):

∆ρdecrease(r) =

{
0, if r ≤ R1′

R1′·ρ1·VR1′
4πr4

, if r > R1′

Now let’s express ∆ρ(r) in terms of the Heaviside function:
1. For the increase in density ∆ρincrease(r):

∆ρincrease(r) = ρ1H(R1′ − r)

2. For the decrease in density ∆ρdecrease(r):

∆ρdecrease(r) =
R1′ · ρ1 · VR1′

4πr4
H(r −R1′)

So, the total change in density:

∆ρ(r) = ∆ρincrease(r)−∆ρdecrease(r)

∆ρ(r) = ρ1H(R1′ − r)− R1′ · ρ1 · VR1′

4πr4
H(r −R1′)

Now let’s check the fulfillment of the boundary conditions:
1. For r ≤ R1′:

∆ρ(r) = ρ1H(R1′ − r)− R1′ · ρ1 · VR1′

4πr4
H(r −R1′)

Since H(R1′ − r) = 1 and H(r −R1′) = 0:

∆ρ(r) = ρ1 − 0 = ρ1

2. For r > R1′:

∆ρ(r) = ρ1H(R1′ − r)− R1′ · ρ1 · VR1′

4πr4
H(r −R1′)

Since H(R1′ − r) = 0 and H(r −R1′) = 1:

∆ρ(r) = 0− R1′ · ρ1 · VR1′

4πr4
= −R1′ · ρ1 · VR1′

4πr4
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Now, substituting VR1′ =
4
3
π(R1′)3:

∆ρ(r) = −
R1′ · ρ1 · 4

3
π(R1′)3

4πr4
= −ρ1 ·R1′4

3r4

Thus, we arrive at the following expression for ∆ρ(r):

∆ρ(r) = ρ1H(R1′ − r)− ρ1 ·R1′4

3r4
H(r −R1′)

Therefore, the density distribution using the Heaviside function correctly reflects the
change in density:

∆ρ(r) = ρ1

[
H(R1′ − r)− R1′4

3r4
H(r −R1′)

]
5.2 Verification of Density Conservation Condition Using Heaviside Function

To verify whether our equation, written using the Heaviside function, satisfies the condition
of density conservation, we take the integral of ∆ρ(r) over the entire volume. Recall that
∆ρ(r) is given by:

∆ρ(r) = ρ1

[
H(R1′ − r)− R1′4

3r4
H(r −R1′)

]
We will compute the integral: ∫ ∞

0

∆ρ(r) · 4πr2 dr

We split the integral into two parts corresponding to ∆ρincrease(r) and ∆ρdecrease(r):∫ ∞

0

∆ρ(r) · 4πr2 dr =
∫ ∞

0

[
ρ1H(R1′ − r)− ρ1 ·R1′4

3r4
H(r −R1′)

]
· 4πr2 dr

We split this into two separate integrals:∫ ∞

0

ρ1H(R1′ − r) · 4πr2 dr −
∫ ∞

0

ρ1 ·R1′4

3r4
H(r −R1′) · 4πr2 dr

First, consider the integral:∫ R1′

0

ρ1 · 4πr2 dr = 4πρ1

∫ R1′

0

r2 dr = 4πρ1

[
r3

3

]R1′

0

= 4πρ1 ·
(R1′)3

3
=

4πρ1(R1′)3

3

Now consider the second integral:∫ ∞

R1′

ρ1 ·R1′4

3r4
· 4πr2 dr = 4πρ1R1′4

3

∫ ∞

R1′

1

r2
dr =

4πρ1R1′4

3

[
−1

r

]∞
R1′

Evaluating the limits:

4πρ1R1′4

3

(
− 1

∞
+

1

R1′

)
=

4πρ1R1′4

3
· 1

R1′
=

4πρ1R1′3

3

Adding both results:∫ ∞

0

∆ρ(r) · 4πr2 dr = 4πρ1(R1′)3

3
− 4πρ1(R1′)3

3
= 0
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Thus, the integral of ∆ρ(r) over the entire volume is zero:∫ ∞

0

∆ρ(r) · 4πr2 dr = 0

This result is expected, as we set up the problem such that the increase in density
in one volume is compensated by a decrease in density by the same amount outside this
volume across the entire space. This is a consequence of the density conservation law of
our universe. However, we have verified the correctness of boundary conditions using the
Heaviside function for our density distribution for a sphere from 0 to infinity.

5.3 Gradient Integral Calculation and Equilibrium Check

Now let’s compute the integral of the gradient to determine whether the space is in equilib-
rium or perturbed.

5.3.1 Main Density Distribution

To define the density ∆ρ(r):

∆ρ(r) = ρ1

[
H(R′

1 − r)− ρ1 ·R′4
1

3r4
H(r −R′

1)

]
5.3.2 Density Gradient

We need to find the gradient ∇∆ρ(r): 1. **Derivative of H(R′
1 − r)**:

∂

∂r
H(R′

1 − r) = −δ(r −R′
1)

2. **Derivative of R′4
1

3r4
H(r −R′

1)**:

∂

∂r

(
R′4

1

3r4
H(r −R′

1)

)
= −4R′4

1

3r5
H(r −R′

1) +
R′4

1

3r4
δ(r −R′

1)

Thus, the partial derivative is:

∂(∆ρ)

∂r
= ρ1

[
−δ(r −R′

1) +
4R′4

1

3r5
H(r −R′

1)−
R′4

1

3r4
δ(r −R′

1)

]
5.3.3 Integration Over the Entire Volume

Integrate over the entire volume:∫ ∞

0

∇∆ρ(r) · dV =

∫ ∞

0

∂(∆ρ)

∂r
· 4πr2 dr

We split the integral into three parts: 1. **Integral of −ρ1δ(r −R′
1)**:∫ ∞

0

−ρ1δ(r −R′
1) · 4πr2 dr = −ρ1 · 4π(R′

1)
2

2. **Integral of ρ1 4R
′4
1

3r5
H(r −R′

1)**:∫ ∞

R′
1

ρ1
4R′4

1

3r5
· 4πr2 dr = ρ1 ·

16πR′4
1

3

∫ ∞

R′
1

1

r3
dr

13



Compute the integral: ∫ ∞

R′
1

1

r3
dr =

[
− 1

2r2

]∞
R′

1

=
1

2(R′
1)

2

Thus:
ρ1 ·

16πR′4
1

3
· 1

2(R′
1)

2
= ρ1 ·

8πR′2
1

3

3. **Integral of −ρ1
R′4

1

3r4
δ(r −R′

1)**:∫ ∞

0

−ρ1
R′4

1

3r4
δ(r−R′

1)·4πr2 dr = −ρ1
R′4

1

3

∫ ∞

0

δ(r −R′
1)

r4
·4πr2 dr = −ρ1

R′4
1

3
· 4π

(R′
1)

2
= −ρ1

4πR′2
1

3

5.3.4 Final Integral

Combine all parts:∫ ∞

0

∇∆ρ(r) · dV = −ρ1 · 4π(R′
1)

2 + ρ1 ·
8πR′2

1

3
− ρ1 ·

4πR′2
1

3

Bring to a common denominator and simplify:

= −ρ1 · 4π(R′
1)

2 + ρ1 ·
8πR′2

1

3
− ρ1 ·

4πR′2
1

3

= −ρ1 ·
(
4π(R′

1)
2 − 4π(R′

1)
2

3

)
= −ρ1 ·

(
12π(R′

1)
2

3
− 4π(R′

1)
2

3

)
= −ρ1 ·

8π(R′
1)

2

3

Express in terms of the sphere’s surface area S(R′
1):

S(R′
1) = 4π(R′

1)
2 =⇒ (R′

1)
2 =

S(R′
1)

4π

Substitute into the integral:

∫ ∞

0

∇∆ρ(r) · dV = −
8πρ1

(
S(R′

1)

4π

)
3

= −8ρ1S(R
′
1)

12

= −2ρ1S(R
′
1)

3

Thus, the integral of the density gradient over the entire volume, in terms of the sphere’s
surface area S(R′

1), is: ∫ ∞

0

∇∆ρ(r) · dV = −2ρ1S(R
′
1)

3

14



5.4 Conclusions

The result obtained presents an interesting observation: we see that the product of three-
dimensional density and the surface area of a three-dimensional sphere expresses the mag-
nitude of the spatial density perturbation. This confirms that, despite adherence to the
conservation of spatial density, the system remains perturbed. Thus, to fulfill the fourth law
of our universe— the tendency to minimize entropy of the spatial density distribution— it
is necessary that the amount of perturbation in the spatial density also tends toward zero.
However, if we make additional changes to the density distribution beyond the sphere and
somehow redistribute the spatial density outside the sphere, this will, in turn, lead to a
violation of the third law related to the conservation of spatial density.

In this context, it can be hypothesized that to compensate for this perturbation, space
will curve, thus altering its metric. This way, both the third and fourth postulates of our
hypothetical universe will be satisfied. It is now necessary to find a density distribution that
will result in zero spatial density perturbation caused by the boundary conditions on the
compressed sphere.

5.5 Integral of the Density Gradient for One Sphere

First, we will transform our formula for the spatial density perturbation into one representing
the perturbation caused by the compression of a spherical region of space. For this purpose,
we will multiply both the numerator and the denominator of the obtained formula for the
spatial density perturbation by R′

1. Given that the volume of the sphere contains a certain
amount of spatial density equal to the integral over the entire volume of the sphere from ρ1,
and that ρ1 is uniformly distributed over the sphere’s volume, the amount of added spatial
density inside the sphere (Q1) can be expressed as:

Q = (V (R1)− V (R′
1)) · ρ0

Thus:
ρ1 =

Q

V (R′
1)

Considering the formula for ρ1 and the formula for the amount of spatial density perturbation
created by one compressed sphere from S(R1) to S(R′

1):∫ ∞

0

∇∆ρ(r) · dV = −2ρ1S(R
′
1)

3

By multiplying the numerator and the denominator by R′
1, we get:

Numerator ·R′
1

Denominator ·R′
1

=
Q · V (R′

1)

V (R′
1) ·R′

1

Expanding the formula for the volume of the sphere:

V (R′
1) =

4

3
π(R′

1)
3

Substituting:
Q

4
3
π(R′

1)
3
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Using the formula for the volume of a four-dimensional sphere:

V4(R
′
1) =

π2(R′
1)

4

2

We can write:
Q

V4(R′
1)

=
Q

π2(R′
1)

4

2

=
2Q

π2(R′
1)

4

Thus, our formula for the spatial density perturbation takes the form:

(3πQ) · V3(R
′
1)

4 · V4(R′
1)

If we take ρ′1 = Q
V4(R′

1)
as the four-dimensional density, then the formula for the spatial

density perturbation becomes:
3πρ′1V3(R

′
1)

4

where V3(R
′
1) is the three-dimensional volume of a sphere with radius R′

1, and ρ′1 = Q
V4(R′

1)

is the four-dimensional density.
This formula:

3πρ′1V3(R
′
1)

4

can be interpreted as a form of gravitational charge. Next, it is straightforward to express
the curvature coefficient K(r) of the spatial metric, which, similar to the density distribution
outside the compressed sphere, will be proportional to 1/r4 with some normalization factor.
We will obtain an equation for the distribution of the coefficient K(r)—the curvature of the
spacetime metric due to density—and then through the amount of perturbation that a second
gravitational charge will create on the distribution of the coefficient K(r)—the curvature
of the spacetime metric due to the first charge—derive something akin to gravitational
equations.

However, as you may have noticed, the obtained formula, analogous to electric charges,
will describe the repulsion of gravitational charges, while we know that massive bodies,
which we associate with the curvature of spacetime along with their metric, attract each
other. Here, we must consider that the curvature of the spatial density, both for electric and
gravitational charges created by the second object, will interact directly with the ”density
lump,” which represents both gravitational and electric charges. Remember that a gravi-
tational charge is the surface area of a sphere multiplied by the three-dimensional density,
which we simply approximated as a volume gravitational charge to find K(r), analogous
to electric charge. Thus, the surface area of a sphere multiplied by the three-dimensional
density is essentially a four-dimensional bubble, and to minimize its entropy, space will tend
to push out from less curved regions (where K(r) is smaller) to areas with more curvature
(where K(r) is larger), i.e., towards a second sphere creating perturbation on the distribu-
tion of the curvature of the first. Hence, there will be a region where the forces of attraction
and repulsion are equal, and beyond this region, objects that cause spacetime curvature will
begin to repel, which is what we observe in cosmology as cosmic objects accelerate away
from each other.
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5.6 Evaluation of the Gravitational Charge and Its Physical Meaning
5.6.1 Application of the Analogy Between Gravitational and Electric Charges

Justification of the Analogy

• The application of the analogy between gravitational charge and electric charge is based
on the mathematical similarity of the formulas for the spatial density perturbation. The
article presents that the perturbation of space caused by one compressed sphere can be
interpreted as a density distribution analogous to the distribution of the electric field.

• The interaction formula of two compressed spheres resembles Coulomb’s law, which
allows the use of the analogy between gravitational charge and electric charge. This
similarity suggests that gravitational charge can play a role similar to that of electric
charge in the generated spatial perturbations.

5.6.2 Physical Meaning of the Gravitational Charge

• The gravitational charge can be interpreted as the force that holds space in a compressed
state. This implies that the gravitational charge is a measure of the energy required to
create and maintain the compression of space.

• The article suggests that the amount of interaction created by the second sphere on the
first can be interpreted as a force. This leads to the conclusion that the gravitational
charge is the source of this force that holds the compressed region of space.

5.7 Analysis of the Gravitational Charge in the Context of the Standard Model
of Elementary Particles

5.7.1 Analogy with the Higgs Boson

• In the standard model of elementary particles, the Higgs boson is responsible for the
mechanism by which particles acquire mass. In this context, the gravitational charge
can be considered as an analogue of the Higgs field, but in a spatial-energy interpreta-
tion.

• If the gravitational charge is interpreted as the force holding space in a compressed
state, this resembles the mechanism of the Higgs field, which creates a potential through
which particles interact and acquire mass.

5.7.2 Role in the Structure of Space-Time

• The gravitational charge can be considered as a quantum of space curvature, analogous
to how the Higgs boson acts in the context of particle mass. This suggests that the
gravitational charge could be a link between classical gravity theory and quantum
mechanics.

• In the hypothesis presented in the article, the gravitational charge is responsible for
creating and maintaining space curvature, which may indicate the existence of a fun-
damental particle or field that governs this process.
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VI Results of the Study

The obtained result regarding the perturbation of spatial density, which refers to four-
dimensional density, represents an interesting and potentially profound discovery in the
context of theoretical physics and cosmology.

6.1 4D Density Interpretation

The transition to four-dimensional density ρ′1 = 2Q
π2(R′

1)
4 may suggest that spatial density

perturbations are not merely a three-dimensional phenomenon. This could hint at deeper
properties of spacetime where four-dimensional aspects play a crucial role. In some theories,
such as string theory or general relativity in extended models, spaces may have additional
dimensions.

6.2 Impact on Conservation Laws

The result indicates that changes in three-dimensional density might be related to addi-
tional dimensions or properties of spacetime. This could imply that conservation laws (in
this case, density) might manifest differently depending on the number of dimensions. In
four-dimensional space, density may be more complex, and changes in three-dimensional
coordinates might affect properties in four-dimensional dimensions.

6.3 Gravitational Field and Metric Curvature

If we consider the result in the context of a gravitational field, it might suggest that the
perturbation in density is associated with changes in the spacetime metric. Gravity in
general relativity is related to the curvature of spacetime, and if density perturbations
occur, this might mean that the metric is curved according to changes in density.

6.4 Physical Interpretation

Examining the formula for density perturbation:

3πρ′1V3(R
′
1)

4

where ρ′1 is the four-dimensional density, and V3(R
′
1) is the three-dimensional volume of

the sphere, can be interpreted as a form of gravitational charge or energy distributed in
space that influences its geometry. This might suggest that spacetime is not strictly three-
dimensional in terms of its physical properties, and has ”influential” components in an
additional dimension or in the form of more complex structures. In other words, we do
not know what holds charges in the compressed state of spatial density; perhaps the four-
dimensional charge somehow determines the amount of energy spent compressing the spatial
density from S(r1) to S(R′

1), and this is the energy that holds the electric charge in a
compressed state. In other words, gravitational charge, or as interpreted by the Standard
Model, the Higgs boson, is the amount of multidimensional energy spent on forming an
elementary particle.
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6.5 Theoretical and Practical Implications

If such results are indeed present in real physics, they could impact our understanding of
fundamental physical laws. For example:

• Exploration of Additional Dimensions: If density is related to four dimensions,
this could lead to new research and theories about the structure of spacetime.

• Development of New Models: A new theory or model might be needed to explain
how density and gravity interact in higher dimensions.

• Observations and Experiments: If such theoretical results can be experimentally
verified, it could open new avenues for observations and testing fundamental theories.

VII Conclusion

The result linking three-dimensional density perturbation with four-dimensional density may
indicate the need to reconsider current theories about the nature of spacetime and density.
This opens interesting possibilities for theoretical physics and may offer new avenues for
exploring and understanding the fundamental structures and properties of the microcosm
and the Universe. This theory highlights several important aspects of the theory of the fifth
dimension, which, if correct, could significantly expand our understanding of fundamental
physics. Let us consider some of them in more detail:

7.1 Gravitational Charge and New Understanding of Fields

The assumption of the existence of a gravitational charge and a new interpretation of in-
teractions between charges through the curvature of spacetime density indeed opens up
interesting perspectives. This may offer an alternative explanation for some phenomena
traditionally associated with gravity and electromagnetism and may potentially provide a
unified view of matter and energy.

7.2 Role of Dark Matter and Dark Energy

If the theory of the fifth dimension can explain the nature of dark matter and dark energy,
it would be a significant achievement. These phenomena remain one of the greatest mys-
teries of modern astrophysics and cosmology. Theories that provide explanations for these
phenomena without introducing new ”invisible” entities could indeed be considered more
economical in terms of ontology.

7.3 Gaps in Maxwell’s Equations

Maxwell’s equations, while fundamental for understanding electromagnetic phenomena, are
based on empirical laws such as Coulomb’s law and Ampère’s law. They do not provide a
deep explanation of the nature of the electromagnetic field at the microscopic structural or
origin level. The theory of the fifth dimension, if it can offer a more fundamental explanation,
could represent a significant advance in understanding electromagnetism.
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7.4 Analysis of Observed and Theoretical Fields

The assumption that the field we observe is the result of interactions of fields in five-
dimensional space may also be intriguing. It could explain anomalies or features in field
distribution that cannot be accounted for by current theories.

VIII To contact me, you can use my email khoruzhenkova@gmail.com
I need a reviewer who, if he finds the article justified and
the topic of the article interesting for other researchers, will
make a recommendation for publishing the article in more
authoritative journals that require confirmation and review
of the article. Thank you in advance for your questions
about the article and the discussion on the chosen topic for
study
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