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Abstract

The Lagrange theory of particle motion in the noninertial systems is applied to the
Foucault pendulum, isosceles triangle pendulum and the general triangle pendulum swinging
on the rotating Earth. As an analogue, planet orbiting in the rotating galaxy is considered
as the the giant galactic gyroscope. The Lorentz equation and the Bargmann-Michel-Telegdi
equations are generalized for the rotation system. The knowledge of these equations is
inevitable for the construction of LHC where each orbital proton ”feels” the Coriolis force
caused by the rotation of the Earth.
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1 Introduction

In order to reveal the specific characteristics of the mechanical systems in the rotating
framework, it is necessary to derive the differential equations describing the mechanical
systems in the noninertial systems. We follow the text of Landau et al. (Landau et al.
1965).

Let be the Lagrange function of a point particle in the inertial system as follows:

L0 =
mv2

0

2
− U (1)

with the following equation of motion

m
dv0

dt
= −∂U

∂r
, (2)
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where the quantities with index 0 correspond to the inertial system.
The Lagrange equations in the noninertial system is of the same form as that in the

inertial one, or,

d

dt

∂L

∂v
=
∂L

∂r
. (3)

However, the Lagrange function in the noninertial system is not the same as in eq. (1)
because it is transformed.

Let us first consider the system K ′ moving relatively to the system K with the velocity
V(t). If we denote the velocity of a particle with regard to system K ′ as v′, then evidently

v0 = v′ + V(t). (4)

After insertion of eq. (4) into eq. (1), we get

L′0 =
mv′2

2
+mv′V +

m

2
V2 − U. (5)

The function V2 is the function of time only and it can be expressed as the total
derivation of time of some new function. It means that the term with the total derivation
in the Lagrange function can be removed from the Lagrangian. We also have:

mv′V(t) = mV
dr′

dt
=

d

dt
(mr′V(t))−mr′

dV

dt
. (6)

After inserting the last formula into the Lagrange function and after removing the
total time derivation we get

L′ =
mv′2

2
−mW(t)r′ − U, (7)

where W = dV/dt is the acceleration the system K ′.
The Lagrange equations following from the Lagrangian (7) are as follows:

m
dv′

dt
= −∂U

∂r′
−mW(t). (8)

We see that after acceleration of the system K ′ the new force mW(t) appears. This
force is fictitious one because it is not generated by the internal properties of some body.

In case that the system K ′ rotates with the angle velocity Ω with regard to the system
K, vectors v and v′ are related as (Landau et al., 1965)

v′ = v + Ω× r. (9)

The Lagrange function for this situation is (Landau et al., 1965 )

L =
mv2

2
−mW(t)r− U +mv · (Ω× r) +

m

2
(Ω× r)2. (10)

The corresponding Lagrange equations for the last Lagrange function are as follows
(Landau et al., 1965 ):

m
dv

dt
= −∂U

∂r
−mW +mr× Ω̇ + 2mv ×Ω +mΩ× (r×Ω) . (11)
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We observe in eq. (11) three so called inertial forces. The force mr× Ω̇ is connected
with the nonuniform rotation of the system K ′ and the forces 2mv×Ω and mΩ× r×Ω
correspond to the uniform rotation. The force 2mv×Ω is so called the Coriolis force and
it depends on the velocity of a particle. The force mΩ × r × Ω is called the centrifugal
force. It is perpendicular to the rotation axes and the magnitude of it is m%ω2, where %
is the distance of the particle from the rotation axis.

Equation (11) can be applied to many special cases. We apply it first to the case of
the mathematical pendulum swinging in the gravitational field of the rotating Earth. In
other words, to the so called Foucault pendulum.

2 Foucault pendulum

Foucault pendulum was studied by Léon Foucault (1819 - 1868) as the big mathematical
pendulum with big mass m swinging in the gravitational field of the Earth. He used a
67 m long pendulum in the Panthéon in Paris and showed the astonished public that the
direction of its swing changed over time rotating slowly. The experiment proved that the
earth rotates. If the earth would not rotate, the swing would always continue in the same
direction.1

If we consider the motion in the system only with uniform rotation, then we write
equation (11) in the form:

m
dv

dt
= −∂U

∂r
+ 2mv ×Ω +mΩ× r×Ω. (12)

In case of the big pendulum, the vertical motion can be neglected and at the same
time the term with Ω2. The motion of this pendulum is performed in the horizontal plane
xy. The corresponding equations are as follows (Landau et al., 1965 ):

ẍ+ ω2x = 2Ωzẏ, ÿ + ω2y = −2Ωzẋ, (13)

where ω is the frequency of the mathematical pendulum without rotation of the Earth,

or ω = 2π/T and (Landau et al., 1965 ): T ≈ 2π
√
l/g, where T is the period of the

pendulum oscillations, l is the length of the pendulum and g is the Earth acceleration.
After multiplication of the second equation of (13) by the imaginary number i and

summation with the first equation, we get:

ξ̈ + 2iΩz ξ̇ + ω2ξ = 0 (14)

for the complex quantity ξ = x + iy. For the small angle rotation frequency Ωz of the
Earth with regard to the oscillation frequency ω, Ωz << ω, we easily find the solution in
the form:

ξ = e−iΩzt(A1e
iωt + A2e

−iωt), (15)

or,

x+ iy = e−iΩzt(x0 + iy0), (16)

1Author performed the experiment with the Foucault pendulum inside of the rotunda of the Flower garden in
Kroměř́ıž (Moravia, Czech Republic)
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where functions x0(t), y0(t) are the parametric expression of the motion of the pendulum
without the Earth rotation. If the complex number is expressed in the trigonometric form
of (16), the Ωz is the rotation of the complex number x0 + iy0. The physical meaning of
eq. (16) is, that the plane of the Foucault pendulum rotates with the frequency Ωz with
regard to the Earth.

3 The triangle pendulum

The triangle pendulum is the analogue of the Foucault pendulum with the difference that
the pendulum is a rigid system composed from two rods forming the triangle ABC. In
the isosceles triangle it is AC = CB = l = const. The legs AC = CB are supposed to
be prepared from the nonmetal and nonmagnetic material, with no interaction with the
magnetic field of the Earth. Point C is a vertex at which the pendulum is hanged. The
vertex is realized by the very small ball. Points A and B are not connected by the rod.
The angle ACB = α.

To be pedagogical clear, let us give first the known theory of the simple mathematical
pendulum (Amelkin, 1987).

The energetical equation of the pendulum is of the form (ϕ is the deflection angle from
vertical, ϕ0 is the initial deflection angle from vertical):

mv2

2
−mgl cosϕ = −mgl cosϕ0, (17)

from which follows, in the polar coordinates with v = lϕ̇

ϕ̈+
g

l
sinϕ = 0. (18)

We have for the very small angle ϕ that x ≈ lϕ and it means that from the last
equation follows the equation for the harmonic oscillator

ẍ+
g

l
x = 0. (19)

The rigorous derivation of the period of pendulum follows from eq.(17). With
v = ds/dt = ldϕ/dt, we get

l

2

(
dϕ

dt

)2

= g(cosϕ− cosϕ0). (20)

Then,

dt =

√
l

2g

dϕ√
cosϕ− cosϕ0

. (21)

For the period T of the pendulum, we have from the last formula:

T

4
=

√
l

2g

∫ ϕ0

0

dϕ√
cosϕ− cosϕ0

. (22)

Using relations cosϕ = 1 − 2 sin2 ϕ/2, cosϕ0 = 1 − 2 sin2 ϕ0/2, and substitution
sinϕ/2 = k sinχ, with k = sinϕ0/2, we get
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dϕ =
2
√
k2 − sin2 χ/2√
1− k2 sin2 χ

dχ (23)

and finally

T = 4

√
l

g

∫ π/2

0

dχ√
1− k2 sin2 χ

, (24)

where the integral in the last formula is so called the elliptic integral, which cannot be
evaluated explicitly but only in the form of series.

Now, let us go back to the isosceles triangle pendulum, which differs from the
mathematical pendulum in such a way that it is a rotating system. We write in the
polar coordinates instead of the equation (18) the equation for the rotating system which
ia called the physical pendulum:

Jϕ̈ = −(Σmi)ga sinϕ, (25)

where J is the moment of inertia of the triangle pendulum with the determination

J = Σmil
2
i = 2ml2 (26)

and a is the distance of the center-of-mass to the axis of rotation, or,

a = l cos(α/2). (27)

It is easy to see the equation of motion is

ϕ̈+ (g/l) cos(α/2) sinϕ = 0, (28)

which has the limiting form

ϕ̈+ (g/l) cos(α/2)ϕ = 0, (29)

for the small deflection angles and it means that the frequency of oscillations is

ω =

√
g

l
cos(α/2). (30)

For α = 0 we get the frequency of the mathematical pendulum. It is evident that the
triangle pendulum behaves on the rotating Earth as the Foucault pendulum and it can
be used as the table pendolino experiment for the demonstration of the Earth rotation.

The triangle pendulum with equal sides can be generalized to the situation with
AC = l1, BC = l2 and with masses m1,m2. Then, it the equation of motion of such
generalized triangle pendulum is equation (25) with J = m1l

2
1 + m2l

2
2 and with a being

given by the cosine theorem in the triangle ABC (the angle CAB = α1, the angle ABC
= α2)

a2 = l21 + x2
1 − 2l1x1 cosα1 = l22 + x2

2 − 2l2x2 cosα2, (31)

where x1, x2 can be determined from equations

x1 + x2 = AB =
√
l21 + l22 − 2l1l2 cosα, x1/x2 = m2/m1 (32)
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The last equation means that the components x1, x2 with x1 +x2 = AB determine the
position of the center-of-mass which evidently lies on the line AB between points A and
B.

For l1 = l2 = l and m1 = m2 = m, we get the isosceles pendulum and for α = 0, we
get the original simple mathematical pendulum.

The mathematical and physical analysis of the general triangle pendulum shows us
that this pendulum has the same behavior as the Foucault pendulum. Or, in other words
we can denote it as the triangle Foucault pendulum.

4 The galactic gyroscope

The gyroscope is usually defined as a device for measuring or maintaining orientation
based on the principle of conservation of angular momentum. The essence of the device
is the spinning wheel. We will show that the planet orbiting in the rotating galaxy is the
galactic gyroscope because the orientation of the orbit is conserved reminding the classical
gyroscope.

The force acting on the planet with mass m is according to Newton law

F = −GmM
r2

, (33)

where M is the mass of Sun, r being the distance from m to the Sun.
The corresponding equations of motion in the coordinate system x and y are as follows

mẍ = −GmM
r2

cosϕ; mÿ = −GmM
r2

sinϕ, (34)

or, with sinϕ = y/r, cosϕ = x/r,

ẍ = −kx
r3

; ÿ = −ky
r3
, k = GM, r =

√
x2 + y2 (35)

Using x = r cosϕ, y = r sinϕ, we get instead of equations (35):

(r̈ − rϕ̇2) cosϕ− (2ṙϕ̇+ rϕ̈)sinϕ = −k cosϕ

r2
(36)

(r̈ − rϕ̇2) sinϕ+ (2ṙϕ̇+ rϕ̈)cosϕ = −k sinϕ

r2
. (37)

In case that the motion of the planet is performed in the rotation system of a galaxy
the equations (36), (37) are written in the form (Ωz = Ω)

(r̈ − rϕ̇2) cosϕ− (2ṙϕ̇+ rϕ̈) sinϕ = −k cosϕ

r2
+ 2Ωẏ (38)

(r̈ − rϕ̇2) sinϕ+ (2ṙϕ̇+ rϕ̈) cosϕ = −k sinϕ

r2
− 2Ωẋ, (39)

or,

(r̈ − rϕ̇2) cosϕ− (2ṙϕ̇+ rϕ̈) sinϕ = −kϕ
r2

+ 2Ω(ṙ sinϕ+ r cosϕϕ̇) (40)
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(r̈ − rϕ̇2) sinϕ+ (2ṙϕ̇+ rϕ̈) cosϕ = −k sinϕ

r2
− 2Ω(ṙ cosϕ− r sinϕϕ̇). (41)

After multiplication of eq. (40) by sinϕ and eq. (41) by cosϕ and after their
subtraction we get

2ṙϕ̇+ rϕ̈ = −2Ωṙ, (42)

or,
d

dt
(r2ϕ̇) = −Ω

d

dt
(r2), (43)

or,

ϕ̇ = −Ω. (44)

It means that the angle velocity of the ellipse of a planet inside the rotating galaxy is
−Ω which is the opposite angle velocity of the galaxy with regard to vacuum of universe
(Of course that the additional fundametal solution of eq. (42) is ϕ̇ = const/r2).

Let us only remark that here we consider the well defined galaxy as the galaxy
of elliptical form and not of the chaotic form. We do not consider here the “
galaxy rotation problem” - the discrepancy between the observed rotation speeds
of matter in the disk portion of spiral galaxies and the predictions of Newton dy-
namics considering the luminous mass - which is for instance discussed in http :
//en.wikipedia.org/wiki/Galaxy−spiral−problem.

5 Rotating LHC in general relativity

Now, the question arises what is the description of the rotation in the general theory of
relativity. If we use the the Minkowski element

ds2 = c2dt′
2 − dx′2 − dy′2 − dz′2 (45)

and the nonrelativistic transformation to the rotation system (Landau et al., 1988)

x′ = x cos Ωt− y sin Ωt, y′ = x sin Ωt+ y cos Ωt, z = z′ (46)

then we get:

ds2 = [c2 − Ω2(x2 + y2)]dt2 − dx2 − dy2 − dz2 + 2Ωydxdt− 2Ωxdydt, (47)

which is not relativistically invariant.
Frequently, the modified notation is used in the literature for the description of the

metric on the rotation Earth (Grib et al., 1987). The following tetrade system connected
with the observer is chosen. The unite vector ez lies on the prime going from the center of
rotation of the Earth to the place of the observer on the Earth. The vector ey is oriented
to the North pole and lies on the meridian, the vector ex is perpendicular to ez and ey and
it lies in the direction of the Earth rotation. The angle velocity of basic vector is identical
with the angle velocity of the Earth. The acceleration a in the observer system is the sum
of the gravitational acceleration g and the centrifugal acceleration ac. The metrics in a
such system is given by the appropriate components of the following line element:
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ds2 =
(

1 +
2z

c2
(Ω2R cos2 α− g)

)
(dct)2 − 2zΩ(dct)dx− dx2, (48)

where R is the radius of the Earth, Ω is the angle velocity of the Earth rotation, g is
the gravitational acceleration in the place of experiment, α is the Earth width of the
experimental arrangement.

The metrical tensor following from the line element (48) in the first approximation is
evidently given by the relations (Grib et al., 1987):

g00 = +
2zg

c2
, g01 = g10 = −Ω

c
z cosα, g11 = −1. (49)

The correctness of the transformation between inertial and rotation system is necessary
because it enables to describe the motion of the particle and spin in the LHC by the general
relativistic methods. The basic idea is the generalization of the so called Lorentz equation
for the charged particle in the electromagnetic field F µν (Landau et all., 1988):

mc
dvµ

ds
=
e

c
F µνvν . (50)

In other words, the normal derivative must be replaced by the covariant one and we get
the general relativistic equation for the motion of a charged particle in the electromagnetic
field and gravity (Landau et all., 1988):

mc

(
dvµ

ds
+ Γµαβv

αvβ
)

=
e

c
F µνvν , (51)

where

Γµαβ =
1

2
gµλ

(
∂gλα
∂xβ

+
∂gλβ
∂xα

− ∂gαβ
∂xλ

)
(52)

are the Christoffel symbols derived in the Riemann geometry theory (Landau et all., 1988).
In case that we consider motion in the rotating system, then it is necessary to insert

the metrical tensor gµν , following from the Minkowski element for the rotation system.
The construction of LHC with orbiting protons must be in harmony with equation (51)
because orbital protons ”feels” the Coriolis force from the rotation of the Earth. Let us
remark that this problem is not involved in the famous book on accelerators by Wille
(2000).

6 Spin on the rotating Earth

The analogical situation occurs for the motion of the spin. While the original Bargmann-
Michel-Telegdi equation for the spin motion is as follows (Berestetzkii et all., 1988)

daµ

ds
= 2µF µνaν − 2µ′µvµFαβvαaβ, (53)

where µ′ = µ − e/2m and aµ is the axial vector, which follows also from the classical
limit of the Dirac equation as ψ̄iγ5γµψ (Rafanelli et all., 1964; Pardy, 1973), the general
relativistic generalization of the Bargmann-Michel-Telegdi equation can be obtained by
the analogical procedure which was performed with the Lorentz equation. Or,
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(
daµ

ds
+ Γµαβv

αaβ
)

= 2µF µνaν − 2µ′µvµFαβvαaβ, (54)

where in case of the rotating system the metrical tensor gµν must be replaced by the
metrical tensor of the rotating system. Then, the last equation will describe the motion
of the spin in the rotating system.

The motion of the polarized proton in LHC will be described by the last equation
because our Earth rotates. During the derivation we wrote Γµαβv

αaβ and not Γµαβv
αvβ,

because every term must be the axial vector. In other words, the last equation for the
motion of the spin in the rotating system was not strictly derived but created with regard
to the philosophy that physics is based on the creativity and logic (Pardy, 2005).

On the other hand, the equation (54) must evidently follow from the Dirac equation
in the rotating system, by the same WKB methods which were used by Rafanelli, Schiller
and Pardy ( Rafanelli and Schiller, 1964; Pardy, 1973). The derived BMT equation in the
metric of the rotation of the Earth are fundamental for the proper work of LHC because
every orbital proton of LHC ”feels” the rotation of the Earth and every orbital proton
spin ”feels” the Earth rotation too. So, LHC needs equations (51) and (54) and vice
versa.

7 Discussion

We have presented the Lagrange theory of the noninertial classical systems and we applied
the theory to the so called Foucault pendulum, the isosceles triangle pendulum with two
equal masses and to the triangle pendulum with the nonequal legs and masses. We have
shown that Every pendulum is suitable for the demonstration of the rotation of the earth.
The isosceles triangle with two equal masses and the triangle with the nonequal legs and
masses fixed to the ball swimming on the water was not considered. The article is the
modified and improved version of the previous author text (Pardy, 2006).

We know from history of science that Galileo Galilei (1564 - 1642) - Italian scientist
and philosopher - studied the mathematical pendulum before Foucault. While in a Pisa
cathedral, he noticed that a chandelier was swinging with the same period as timed by
his pulse, regardless of his amplitude. It is probable, that Galileo noticed the rotation of
the swinging plane of the pendulum. However, he had not used this fact as the proof of
the Earth rotation when he was confronted with the Inquisition tribunal. Nevertheless,
his last words were ”E pur si muove”.

For the demonstration of the galaxy rotation, we have analyzed the elliptical motion
of our planet and we have shown that the orbital motion of our planet can be used as
gigantic gyroscope for the proof of the rotation of our galaxy in the universe. The orbit
of our planet with regard to the rest of the universe has the stable stationary position
while the galaxy rotates. The orbital planetary stability can be used as the method of the
investigation of the rotation of all galaxies in the rest of the universe. To our knowledge
this method was not still used in the galaxy astrophysics.

It is possible to consider also the rotation of the Universe. If we define Universe as
the material bodies immersed into vacuum, then the rotation of the Universe is physically
meaningful and the orbit of our planet is of the constant position with regard to the
vacuum as the rest system. The idea that the vacuum is the rest system is physically
meaningful because only vacuum is the origin of the inertial properties of every massive
body. In other words, the inertial mass m in the Newton-Euler equation F = ma is the
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result of the interaction of the massive body with vacuum and in no case it is the result
of the Mach principle where the inertial mass is generated by the mass of rest of the
Universe. At present time, everybody knows that Mach principle is absolutely invalid for
all time of the existence of Universe.

The theory discussed in our article can be also applied to the pendulum where the
fiber is elastic. The corresponding motion is then described by the wave equation with
the initial and boundary conditions.

It is evident that there are many physical problems, classical and quantum mechanical
considered in the rotation system. Some problems were solved and some problems will be
solved in the future. Let us define some of these problems.

Mössbauer effect in the rotating system, Schrödinger equation for a particle in the
rotating system, Schrödinger equation for the pendulum in the inertial system and in
the rotating system, Schrödinger equation of H-atom in the rotating system, Schrödinger
equation of harmonic oscillator in the rotating system, the Čerenkov effect in the rotating
dielectric medium, the relic radiation in the rotating galaxy, the N-dimensional blackbody
radiation in the rotating system, conductivity and superconductivity in the rotating
system, laser pulse in the rotating system, Berry phase, Sagnac effect, and so on. All
these problems can be formulated classically, or in the framework of the general theory of
relativity with the Γ-connections corresponding to the geometry of the rotating system.
We hope that the named problems are interesting and their solution will be integral part
of the theoretical physics.
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