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Abstract 

It is known that most of the formulae that hold for ordinary trigonometric 

functions hold for generalised trigonometric functions. In this study, we succeeded 

in generalizing lim
𝑥→0

𝑥

sin 𝑥
= 1 . This makes it possible to discuss the generalised case 

in unsolved problems involving trigonometric functions, such as the generalisation 

of the Flint Hills series. 

 

１ Introduction 

For 𝑝, 𝑞 > 1 , we define the function  

𝐹𝑝,𝑞(𝑥) = ∫ (1 − 𝑡𝑞)
−

1
𝑝

𝑥

0

𝑑𝑡    (𝑥 ∈ [0, 1]) . 

Since this function is strictly increasing it has an inverse, which we denote by sin𝑝,𝑞 𝑥 

sin𝑝,𝑞 𝑥 = 𝐹𝑝,𝑞
−1(𝑥)    (𝑥 ∈ [0,

𝜋𝑝,𝑞

2
]) , 

where 

𝜋𝑝,𝑞 = 2 ∫ (1 − 𝑡𝑞)
−

1
𝑝

1

0

𝑑𝑡 . 

Note that sin𝑝,𝑞 𝑥 is strictly increasing on [0,
𝜋𝑝,𝑞

2
] , we observe that sin𝑝,𝑞 𝑥 ∈ [0, 1] . We can 

extend sin𝑝,𝑞 𝑥 to [0, 𝜋𝑝,𝑞] by defining 

sin𝑝,𝑞 𝑥 = sin𝑝,𝑞(𝜋𝑝,𝑞 − 𝑥)   (𝑥 ∈ [
𝜋𝑝,𝑞

2
, 𝜋𝑝,𝑞]) . 

Furthermore we can extend to [−𝜋𝑝,𝑞, 𝜋𝑝,𝑞] by defining 

sin𝑝,𝑞(−𝑥) = − sin𝑝,𝑞 𝑥   (𝑥 ∈ [0, 𝜋𝑝,𝑞]) . 

Finally sin𝑝,𝑞 𝑥 is extended to whole of ℝ ． 
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  On the other hand, we define cos𝑝,𝑞 𝑥 by 

cos𝑝,𝑞 𝑥 =
𝑑

𝑑𝑥
(sin𝑝,𝑞 𝑥) . 

Generalising trigonometric function makes it possible to generalise various open problems. 

For example, Flint Hills series 

∑
1

𝑛3| sin 𝑛|2

∞

𝑛=1

 . 

Meiburg [2] studied the convergence of the Flint Hills series by extending the problem by 

defining a new function called sine-like function. 

In this study, the aim was to extend the lim
𝑥→0

𝑥

sin 𝑥
= 1 to a generalised form as shown in 

Theorem 1. 

 

２ The value of 𝐥𝐢𝐦
𝒙→𝟎

𝒙

𝐬𝐢𝐧𝒑,𝒒 𝒙
 

Theorem 1. lim
𝑥→0

𝑥

sin𝑝,𝑞 𝑥
= 1 . 

Lemma 2. If 𝑥 ∈ [0,
𝜋𝑝,𝑞

2
] , then sin𝑝,𝑞 𝑥 ≤ 𝑥 ≤

sin𝑝,𝑞 𝑥

cos𝑝,𝑞 𝑥
 . 

Proof. We defined the 𝑓(𝑥) and 𝑔(𝑥) as 𝑓(𝑥) = 𝑥 − sin𝑝,𝑞 𝑥 , 𝑔(𝑥) =
sin𝑝,𝑞 𝑥

cos𝑝,𝑞 𝑥
− 𝑥 . The value 

of 𝑓(0) and 𝑔(0) is zero. Furthermore 

𝑑

𝑑𝑥
𝑓(𝑥) = 1 − cos𝑝,𝑞 𝑥 = 1 − (1 − (sin𝑝,𝑞 𝑥)

𝑞
)

1
𝑝 ≥ 1 − 1 = 0 (1) 

𝑑

𝑑𝑡
𝑔(𝑥) =

𝑞

𝑝
⋅

(sin𝑝,𝑞 𝑥)
𝑞

(cos𝑝,𝑞 𝑥)
𝑝 ≥ 0 . (2) 

In (2) we used the fact that 

(sin𝑝,𝑞 𝑥)
𝑞

+ (cos𝑝,𝑞 𝑥)
𝑝

= 1 (3) 

holds．According to Edmunds et.al [1] (3) holds when 𝑥 > 0 is close enough to zero. So (1) 

and (2)  , both 𝑓(𝑥)  and 𝑔(𝑥)  are found to be monotonically increasing functions. 

Therefore, since 𝑓(𝑥), 𝑔(𝑥) > 0 whenever 𝑥 > 0 , so 

sin𝑝,𝑞 𝑥 ≤ 𝑥 ≤
sin𝑝,𝑞 𝑥

cos𝑝,𝑞 𝑥
 

holds. 

□ 
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Theorem 1. lim
𝑥→0

𝑥

sin𝑝,𝑞 𝑥
= 1 . 

Proof. Since if 𝑥 ∈ [0,
𝜋𝑝,𝑞

2
] , then sin𝑝,𝑞 𝑥 > 0 , the inequality in Lemma 2 can be transformed 

as follows that 

1 ≤
𝑥

sin𝑝,𝑞 𝑥
≤

1

cos𝑝,𝑞 𝑥
 . (4) 

Since (5) holds, the squeeze theorem can be used in conjunction with (4) . 

lim
𝑥→+0

1

cos𝑝,𝑞 𝑥
= lim

𝑥→+0
(1 − (sin𝑝,𝑞 𝑥)

𝑞
)

−
1
𝑝 = 1 (5) 

Therefore 

lim
𝑥→+0

𝑥

sin𝑝,𝑞 𝑥
= 1 . 

Next, we want to prove 

lim
𝑥→−0

𝑥

sin𝑝,𝑞 𝑥
= 1 . 

Let 𝑥 = −𝑡 , then 

1 = lim
𝑡→−0

−𝑡

sin𝑝,𝑞(−𝑡)
= lim

𝑡→−0

𝑡

sin𝑝,𝑞 𝑡
 

holds．Therefore 

lim
𝑥→0

𝑥

sin𝑝,𝑞 𝑥
= 1 . 

□ 

 

３ Conclusion 

In this study, it was shown that lim
𝑥→0

𝑥

sin 𝑥
= 1  is also valid for generalised trigonometric 

functions. Edmunds et.al [1] also succeeded in generalising well-known formulas such as 

sin2 𝑥 + cos2 𝑥 = 1  , so it is expected that many of the formulas that hold for ordinary 

trigonometric functions will hold in the generalised case. 
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