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Abstract. We present new necessary and sufficient conditions under which
the sum of two generalized core-EP invertible elements in a Banach *-
algebra has generalized core-EP inverse. As an application, the generalized
core-EP invertibility for the matrices with generalized core-EP invertible
entries is investigated.

1. Introduction

Let A be a Banach algebra with an involution ∗. An element a ∈ A has
group inverse provided that there exists x ∈ A such that

xa2 = a, ax2 = x, ax = xa.

Such x is unique if exists, denoted by a#, and called the group inverse of
a. Evidently, a square complex matrix A has group inverse if and only if
rank(A) = rank(A2).

An element a ∈ A has core inverse if there exists x ∈ A such that

xa2 = a, ax2 = x, (ax)∗ = ax.

If such x exists, it is unique, and denote it by a#©. As is well known, an element
a ∈ A has core inverse if and only if a ∈ A has group inverse and it has (1, 3)-
inverse. Here, a ∈ A has (1, 3) inverse provided that there exists some x ∈ A
such that axa = a and (ax)∗ = ax.

In [10], Gao and Chen extended the core inverse and introduced the core-EP
inverse (i.e., pseudo core inverse). An element a ∈ A has core-EP inverse if
there exist x ∈ A and k ∈ N such that

ax2 = x, (ax)∗ = ax, xak+1 = ak.
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If such x exists, it is unique, and denote it by aD©. Evidently, a ∈ A has
core-EP inverse if and only if an has core inverse for some n ∈ N.

Many authors have investigated group, core and core-EP inverses from many
different views, e.g., [1, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22]. The additive
properties of generalized inverses mentioned above are attractive.

We use A#,A#© and AD© to denote the set of all group invertible, core
invertible and core-EP invertible elements in A, respectively.

Let a, b ∈ A#. In [?]B, Beńıtez, Liu and Zhu proved that a + b ∈ A# if
ab = 0. The additive property of group invertible was studied in [?]ZCZ under
the condition abb# = baa#. Recently, the authors investigated the additive
property of group inverses under the wider condition ab(1− aa#) = 0 (see [6,
Theorem 2.3]).

Let a, b ∈ A#©. In [20, Theorem 4.3], Xue, Chen and Zhang proved that
a+ b ∈ A#© if ab = 0 and a∗b = 0. In [22, Theorem 4.1], Zhou et al. considered
the core inverse of a+ b under the conditions a2a#©b#©b = baa#©, ab#©b = aa#©b.
In [7, Theorem 2.5], the authors studied the additive property of core inverses
under the conditions ab = ba and a∗b = ba∗.

Let a, b ∈ AD©. In [10, Theorem 4.4], Gao and Chen proved that a + b has
core-EP inverse if ab = ba = 0 and a∗b = 0.

As a natural generalization of core-EP invertibility, the authors introduced
the generalized core-EP inverse in Banach algebra with an involution (see [4,
5]). An element a ∈ A is generalized core-EP invertible if there exists x ∈ A
such that

ax2 = x, (ax)∗ = ax, lim
n→∞

||an − xan+1||
1
n = 0.

If such x exists, it is unique, and denote it by a d©.
Recall that an element a ∈ A has generalized Drazin inverse if there exists

x ∈ A such that
ax2 = x, ax = xa, a− a2x ∈ Aqnil.

Here, Aqnil = {a ∈ A | 1 +λa ∈ A−1}. Such x is unique, if exists, and denote
it by ad. The generalized Drazin inverse plays an important role in ring and
matrix theory (see [3]).

We use Ad,A d© and A(1,3) to denote the set of all generalized Drazin in-
vertible, generalized core-EP invertible and (1, 3)-invertible elements in A,
respectively. We list several characterizations of generalized core-EP inverse.

Theorem 1.1. (see [4, 5, 8])Let A be a Banach *-algebra, and let a ∈ A.
Then the following are equivalent:

(1) a ∈ A d©.
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(2) There exist x, y ∈ A such that

a = x+ y, x∗y = yx = 0, x ∈ A#©, y ∈ Aqnil.
(3) There exists a projection p ∈ A such that

a+ p ∈ A−1, pa = pap ∈ Aqnil.
(4) a ∈ Ad and ad ∈ A#©. In this case, a d© = (ad)2(ad)#©.
(5) a ∈ Ad and ad ∈ A(1,3). In this case, a d© = (ad)2(ad)(1,3).

Let a, b ∈ A d©. In [8, Theorem 3.4], the authors proved that a + b ∈ A d©

provided that ab = 0, a∗b = 0 and ba = 0. The motivation of this paper is
to present new additive results for the generalized core-EP inverses. We shall
give necessary and sufficient conditions under which the sum of two generalized
core-EP invertible elements has generalized core-EP inverse. As an application,
the generalized core-EP invertibility for the matrices with generalized core-EP
invertible entries is investigated.

Throughout the paper, all Banach *-algebras are complex with an identity.
An element p ∈ A is a projection if p2 = p = p∗. Let aπ = 1 − aad and
aσ = 1 − aa d© for a ∈ A d©. Let a, p2 = p ∈ A. Then a has the Pierce

decomposition relative to p, and we denote it by

(
a11 a12
a21 a22

)
p

.

2. key lemmas

To prove the main results, some lemmas are needed. We begin with

Lemma 2.1. ( [8, Lemma 3.2])) Let a, b ∈ A d©. If ab = ba and a∗b = ba∗,
then a d©b = ba d©.

Lemma 2.2. ( [8, Theorem 3.3])) Let a, b ∈ A d©. If ab = ba and a∗b = ba∗,
then ab ∈ A d© and (ab) d© = a d©b d©.

Lemma 2.3. Let a ∈ A d© and b ∈ Aqnil. If a∗b = 0 and ba = 0, then
a+ b ∈ A d©. In this case,

(a+ b) d© = a d©.

Proof. Since a ∈ A d©, by virtue of Theorem 1.1, there exist x ∈ A#© and
y ∈ Aqnil such that a = x + y, x∗y = 0, yx = 0. As in the proof of [5,
Theorem 2.1], x = aa d©a and y = a − aa d©a. Then a = x + (y + b). Since
by = b(a− aa d©a) = 0, it follows by [14, Theorem 2.2] that y + b ∈ Aqnil. We
directly verify that

x∗(y + b) = x∗y + x∗b = (a d©a)∗(a∗b) = 0,
(y + b)x = yx+ (ba)a d©a = 0.
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In light of Theorem 1.1, a+ b ∈ A d©. In this case,

(a+ b) d© = x#© = a d©,

as asserted. �

Lemma 2.4. Let a ∈ A d© and m ∈ N. Then a d©ama d© = am−1a d©.

Proof. Since a(a d©)2 = a d©, we see that a d© = an−m+1(a d©)n−m for any n ≥
m+ 1. Then

(am−1 − a d©am)a d© = (an − a d©an+1)(a d©)n−m.

Hence,

||(am−1 − a d©am)a d©||
1
n ≤ ||an − a d©an+1||

1
n ||a d©||

n−m
n .

Since lim
n→∞

||an − a d©an+1|| 1n = 0, we deduce that

lim
n→∞

||(am−1 − a d©am)a d©||
1
n = 0.

Therefore am−1a d© = a d©ama d©. �

Lemma 2.5. Let a ∈ A d© and b ∈ A. Then the following are equivalent:

(1) (1− a d©a)b = 0.
(2) (1− aa d©)b = 0.
(3) aπb = 0.

Proof. (1)⇒ (3) Since (1−a d©a)b = 0, we have b = a d©ab. In view of Theorem
1.1, a d© = (ad)2(ad)#©. Thus, aπb = (1− aad)b = (1− aad)(ad)2(ad)#©ab = 0.

(3) ⇒ (2) Since ad = (ad)2a = ad[ad(ad)#©ad]a = [(ad)2(ad)#©]aad = a d©aad.
Then b = aadb = a d©a2adb; and so (1 − aa d©)b = (1 − aa d©)a d©a2adb = 0, as
desired.

(2)⇒ (1) In view of Lemma 2.4, aa d© = a d©a2a d©. Since (1− aa d©)b = 0, we
get b = aa d©b. Therefore (1− a d©a)b = (1− a d©a)aa d©b = (a− a d©a2)a d©b = 0,
as asserted. �

Let A be a Banach *-algebra. Then M2(A) is a Banach *-algebra with
*-transpose as the involution. We come now to generalized EP-inverse of a
triangular matrix over A.

Lemma 2.6. Let p ∈ A be a projection and x =

(
a b
0 d

)
p

.
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(1) If a, d ∈ Ad, then x ∈M2(A)dp and xd =

(
ad z
0 dd

)
p

, where

z =
∞∑
i=0

(ad)i+2bdidπ +
∞∑
i=0

aiaπb(dd)i+2 − adbdd.

(2) If a, d ∈ A#© and aπb = 0, then x ∈M2(A)#©p and

x#© =

(
a#© −a#©bd#©
0 d#©

)
p

.

Proof. See [23, Lemma 2.1] and [19, Theorem 2.5]. �

We are ready to prove the following lemma which is repeatedly used in the
sequel.

Lemma 2.7. Let p ∈ A be a projection and x =

(
a b
0 d

)
p

∈ M2(A)p with

a, d ∈ A d©. If
∞∑
i=0

aiaπb(dd)i+2 = 0,

then x ∈M2(A) d©
p and

x d© =

(
a d© z
0 d d©

)
p

,

where z = −adbd d©.

Proof. In view of Theorem 1.1, a, d ∈ Ad and ad, dd ∈ A#©. By virtue of
Lemma 2.6, we have

xd =

(
ad s
0 dd

)
,

where

s =
∞∑
i=0

(ad)i+2bdidπ +
∞∑
i=0

aiaπb(dd)i+2 − adbdd.

By hypothesis, we get s =
∞∑
i=0

(ad)i+2bdidπ − adbdd. Since (ad)πs = (1 −

ada2ad)s = pπs = aπ[
∞∑
i=0

(ad)i+2bdidπ − adbdd] = 0. In view of [19, Lemma
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2.4], we have [1− ad(ad)#©]s = 0. Then it follows by Lemma 2.6 that

(xd)#© =

(
(ad)#© t

0 (dd)#©

)
,

where t = −(ad)#©s(dd)#©. Hence, t = −(ad)#©[
∞∑
i=0

(ad)i+2bdidπ − adbdd](dd)#© =

(ad)#©adbdd(dd)#©. Then we have

(xd)2 =

(
(ad)2 w

0 (dd)2

)
,

where w =
∞∑
i=0

(ad)i+3bdidπ − (ad)2bdd − adb(dd)2. Therefore

x d© = (xd)2(xd)#©

=

(
(ad)2 w

0 (dd)2

)(
(ad)#© t

0 (dd)#©

)
=

(
a d© z
0 d d©

)
,

where

z = (ad)2t+ w(dd)#©

= (ad)2[(ad)#©adbdd(dd)#©]− [(ad)2bdd + adb(dd)2](dd)#©

= (ad)2bdd(dd)#© − ad(adb+ bdd)dd(dd)#©

= (ad)2bdd(dd)#© − (ad)2bdd(dd)#© − ad[b(dd)2(dd)#©]
= −adbd d©

This completes the proof. �

Lemma 2.8. Let α =

(
a b
0 d

)
p

∈ M2(A)p with a, d ∈ A d©. If aπbd d© = 0,

then α ∈M2(A) d© and

α d© =

(
a d© −a d©bd d©

0 d d©

)
p

.

Proof. Since aπbd d© = 0, it follows by Theorem 1.1 that aπb(dd)2(dd)#© = 0;
hence,

aπbdd = [aπb(dd)2(dd)#©]bdb = 0.

By using Lemma 2.5, we have (1−aa d©)bd d© = 0, and so bd d© = aa d©bd d©. Then

adbd d© = aada d©bd d© = a d©bd d©.
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In light of Lemma 2.7,

α d© =

(
a d© −a d©bd d©

0 d d©

)
,

as asserted. �

3. main results

This section is devoted to investigate the generalized core-EP inverse of the
sum of two generalized core-EP invertible elements in a Banach *-algebra. We
come now to establish additive property of generalized core-EP inverse under
orthogonal conditions.

Theorem 3.1. Let a, b, aσb ∈ A d©. If

aπab = 0, aπba = 0 and aπb∗a = 0,

then the following are equivalent:

(1) a+ b ∈ A d© and aπ(a+ b) d©aa d© = 0.
(2) (a+ b)aa d© ∈ A d© and

∞∑
i=0

(a+ b)i(a+ b)πaa d©(a+ b)aσ(bd)i+2 = 0.

In this case,

(a+ b) d© = [(a+ b)aa d©] d© + (aσb) d© − (a+ b)daa d©(a+ b)(aσb) d©.

Proof. (1) ⇒ (2) Let p = aa d©. By hypothesis and Lemma 2.5, we have
pπab = 0, pπba = 0 and pπb∗a = 0. Hence, pπbp = (pπba)a d© = 0,

pπap = (1− aa d©)a2a d© = 0

and

papπ = aa d©a(1− aa d©) = aa d©a− a2a d©.

Then we have

a =

(
a1 a2
0 a4

)
p

, b =

(
b1 b2
0 b4

)
p

.

Hence

a+ b =

(
a1 + b1 a2 + b2

0 a4 + b4

)
p

.

Here, a1 = aa d©a2a d© = a2a d© and b1 = aa d©baa d© = baa d©.
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Since aπ(a+ b) d©aa d© = 0, it follows by Lemma 2.5 that pπ(a+ b) d©aa d© = 0.
Write

(a+ b) d© =

(
α γ
0 β

)
p

.

Then

(a1+b1)α
2 = α, [(a1+b1)α]∗ = (a1+b1)α, lim

n→∞
||(a1+b1)

n−α(a1+b1)
n+1||

1
n = 0.

We infers that (a1 + b1)
d© = α, as required.

(2)⇒ (1) Let p = aa d©. Construct ai, bi(i = 1, 2, 4) as in (1)⇒ (2). Then

a+ b =

(
a1 + b1 a2 + b2

0 a4 + b4

)
p

.

Hence a1 + b1 = (a+ b)aa d©. Since pπ(a+ b) = aπa+ pπb and (pπb)(pπa) = 0,
it follows by [3, Lemma 15.2.2] that pπ(a+ b) ∈ Ad. As pπ(a+ b)aa d© = 0, by
using [21, Lemma 2.2],

(a1 + b1)
d = [(a+ b)aa d©]d = (a+ b)daa d©.

Moreover, we have

(a1 + b1)
π = aa d© − (a+ b)daa d©(a+ b)aa d©

= aa d© − (a+ b)d(a+ b)aa d©

= (a+ b)πaa d©.

We see that
a1 + b1 = (a+ b)aa d© ∈ A d©.

Also we have a4 = pπapπ = pπa and b4 = pπbpπ = pπb, and so

a4 + b4 = pπa+ pπb.

We claim that

(pπa)(pπb) = pπab = 0,
(pπb)∗(pπa) = (pπbpπ)∗(pπa)

= (1− aa d©)b∗(1− aa d©)(pπa)
= pπb∗(pπa) = 0.

As in the proof of [5, Theorem 2.1], a−a d©a2 ∈ Aqnil. By using Cline’s formula,
pπa = a−aa d© ∈ Aqnil. Thus, a4+b4 ∈ A d© and (a4+b4)

d© = (pπb) d© by Lemma
2.3.

We check that
(a4 + b4)

d = pπbd,
(a4 + b4)

π = pπbπ.
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Moreover, we see that

∞∑
i=0

(a1 + b1)
i(a1 + b1)

π(a2 + b2)[(a4 + b4)
d]i+2

=
∞∑
i=0

(a+ b)i(a+ b)πaa d©(a+ b)(1− aa d©)(bd)i+2

= 0.

According to Lemma 2.7, a+ b ∈ A d©. Furthermore, we have

(a+ b) d© = (a1 + b1)
d© + (a4 + b4)

d© + z
= [(a+ b)aa d©] d© + [(1− aa d©)b] d© + z,

where

z = −(a1 + b1)
d(a2 + b2)(a4 + b4)

d©

= −(a+ b)daa d©(a+ b)[(1− aa d©)b] d©,

as asserted. �

Corollary 3.2. ( [8, Theorem 3.4]) Let a, b ∈ A d©. If a∗b = 0 and ab = ba = 0,
then a+ b ∈ A d©. In this case,

(a+ b) d© = a d© + b d©.

Proof. This is immediate from Theorem 3.1. �

Corollary 3.3. Let a, b ∈ A d©. If aπb = 0 and aπb∗ = 0, then the following
are equivalent:

(1) a+ b ∈ A d© and aπ(a+ b) d©aa d© = 0.
(2) (a+ b)aa d© ∈ A d©.

In this case,

(a+ b) d© = [(a+ b)aa d©] d©.

Proof. By hypothesis, we see that aπab = a(aπb) = 0, aπba = (aπb)a =
0, aπb∗a = (aπb∗)a = 0. Since aπb = 0, it follows by Lemma 2.5 that aσbd =
[(1−aa d©)b](bd)2 = 0. In light of Theorem 3.1, a+b ∈ A d© and aπ(a+b) d©aa d© =
0 if and only if (a + b)aa d© ∈ A d©. In this case, aσ = 0, and therefore
(a+ b) d© = [(a+ b)aa d©] d©. �

Corollary 3.4. Let a, b ∈ A d©. If aπb = 0, aπb∗ = 0 and bad = 0, then
a+ b ∈ A d©. In this case, (a+ b) d© = a d©.
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Proof. We easily verify that (a2a d©)a d© = aa d©; hence, [(a2a d©)a d©]∗ = (a2a d©)a d©.
Moreover, we have (a2a d©)a d©(a d©)2 = a d©. By induction, we prove that (a2a d©)n =
an+1a d© and (a2a d©)n+1 = an+2a d©. Therefore

(a2a d©)n − a d©(a2a d©)n+1 = [an) − a d©an+1]aa d©.

Since lim
n→∞

||an − a d©an+1|| 1n = 0, we deduce that

lim
n→∞

||(a2a d©)n − a d©(a2a d©)n+1||
1
n = 0.

Hence, (a2a d©) d© = a d©. Therefore we complete the proof by Corollary 3.3. �

We next present the additive property of generalized core-EP inverse under
commutative conditions. For the detailed formula of the generalized core-
EP inverse of the sum, we leave to the readers as it can be derived by the
straightforward computation according to our proof.

Theorem 3.5. Let a, b ∈ A d©. If ab = ba and a∗b = ba∗, then the following
are equivalent:

(1) a+ b ∈ A d© and aπ(a+ b) d©aa d© = 0.
(2) 1 + a d©b ∈ A d© and

∞∑
i=0

(1 + a d©b)iaia d©(1 + a d©b)πaa d©a
[
(1− aa d©)b d©

(
1 + (1− aa d©)abd]−1

)]i+2
= 0.

Proof. Since ab = ba and a∗b = ba∗, it follows by Lemma 2.1 that a d©b = ba d©.
Let p = aa d©. Then pπbp = (1 − aa d©)baa d© = (1 − aa d©)aa d©b = 0. Moreover,
we have pbpπ = aa d©b(1− aa d©) = aba d©(1− aa d©) = 0. In light of Lemma 2.4,
we have

pπap = (1− aa d©)aaa d©

= a2a d© − aa d©a2a d©

= 0.

So we get

a =

(
a1 a2
0 a4

)
p

, b =

(
b1 0
0 b4

)
p

.

Hence

a+ b =

(
a1 + b1 a2

0 a4 + b4

)
p

.

Moreover,

a1 = aa d©a2a d© = a2a d©.
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Obviously, (1 − aa d©)baa d© = b(1 − aa d©)aa d© = 0. It follows by Lemma 2.5
that (1−a d©a)baa d© = 0. Hence we have b1 = aa d©baa d© = baa d© = a d©abaa d© =
a d©ba2a d©, and then

a1 + b1 = (1 + a d©b)a2a d© ∈ A d©.

This implies that

(a1 + b1)
i = (1 + a d©b)i(a2a d©)i = (1 + a d©b)iai+1a d©.

Furthermore,

(a1 + b1)
d = (1 + a d©b)da d©.

Thus

(a1 + b1)
π = 1− (1 + a d©b)(1 + a d©b)daa d©.

Clearly, we have (1− aa d©)aaa d© = a2a d© − aa d©aaa d© = 0. Then

a4 = (1− aa d©)a(1− aa d©) = a− aa d©a.

As in the proof of [5, Theorem 2.1], a−a d©a2 ∈ Aqnil. By using Cline’s formula,
a4 ∈ Aqnil. Moreover,

b4 = (1− aa d©)b(1− aa d©) = (1− aa d©)b.

Since bpπ = pπb, b∗pπ = (pπb)∗ = (bpπ)∗ = pπb∗. In light of Lemma 2.2,

b4 = pπb ∈ A d© and b d©4 = pπb d©. Furthermore,

a4 + b4 = (1− aa d©)(a+ b)

(a4 + b4)
i = (1− aa d©)(a+ b)i.

(1)⇒ (2) We have

(a+ b) d© =

(
α β
0 γ

)
p

.

As in the proof of Theorem 3.1, [p(a+ b)p] d© = α. That is, (a+ b)aa d© ∈ A d©.
We observe that

1 + a d©b = [1− aa d©] + [aa d© + a d©b]
= [1− aa d©] + [aa d© + ba d©]
= [1− aa d©] + [a+ b]a d©

We easily check that [(a + b)aa d©]a d© = a d©[(a + b)aa d©]. In view of [3,
Theorem 15.2.16], (a+ b)a d© = [(a+ b)aa d©]a d© ∈ Ad and

[a+ b)a d©]d = [(a+ b)aa d©]d[a d©]d.
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In view of Theorem 1.1, [(a + b)aa d©]d has (1, 3)-inverse. Then there exists
y ∈ A such that

[(a+ b)aa d©]d = [(a+ b)aa d©]dy[(a+ b)aa d©]d,(
[(a+ b)aa d©]dy

)∗
= [(a+ b)aa d©]dy.

We verify that

[(a+ b)a d©]d[(a2a d©)y][(a+ b)a d©]d[a2a d©]
= [(a+ b)aa d©]dy[(a+ b)aa d©]d

= [(a+ b)aa d©]d

= [(a+ b)a d©]d[a2a d©].

Clearly, [a2a d©](a d©)d = aa d©. Then

[(a+ b)a d©]d[(a2a d©)y][(a+ b)a d©]d

= [(a+ b)a d©]d,
[(((a+ b)a d©)d(a2a d©)y)]∗

= [((a+ b)aa d©)y]∗

= ((a+ b)aa d©)y
= [(a+ b)a d©]d(a2a d©)y.

Therefore [(a + b)a d©]d has (1, 3)-inverse (a2a d©)y. In light of Theorem 1.1,
(a+ b)a d© ∈ A d©.

Obviously, we have

[1− aa d©](a+ b)a d© = [1− aa d©]∗[a+ b]a d©

= [a+ b]a d©[1− aa d©] = 0.

According to Corollary 3.2, 1 + a d©b ∈ A d©.
In view of Lemma 2.6,

(a+ b)d =

(
(a1 + b1)

d z
0 (a4 + b4)

d

)
p

,

where

z =
∞∑
i=0

[(a1 + b1)
d]i+2a2(a4 + b4)

i(a4 + b4)
π

+
∞∑
i=0

(a1 + b1)
i(a1 + b1)

πa2[(a4 + b4)
d]i+2

− (a1 + b1)
da2(a4 + b4)

d.

By virtue of Theorem 1.1,

(a+ b) d© = [(a+ b)d]2[(a+ b)d]#©
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Hence,

[(a+ b)d]#© = (a+ b)(a+ b)d[(a+ b)d]#©

= (a+ b)2(a+ b) d©.

Since pπ(a+ b)2p = pπ(a+ b)dp = 0, we see that pπ[(a+ b)d]#©p = 0. As in the
proof of [19, Theorem 2.5], [(a1 + b1)

d]πz = 0. Thus, we have (a1 + b1)
πz = 0;

hence,
∞∑
i=0

(a1 + b1)
i(a1 + b1)

πa2[(a4 + b4)
d]i+2 = 0.

Thus,

(a4 + b4)
d = (1− aa d©)b d©[1 + (1− aa d©)abd]−1].

Therefore
∞∑
i=0

(1 + a d©b)iai+1a d©[1− (1 + a d©b)(1 + a d©b)daa d©]a[
(1− aa d©)b d©

(
1 + (1− aa d©)abd]−1

)]i+2
= 0.

Accordingly,
∞∑
i=0

(1 + a d©b)iaia d©(1 + a d©b)πaa d©a
[
(1− aa d©)b d©

(
1 + (1− aa d©)abd]−1

)]i+2
= 0.

(2)⇒ (1) Step 1. Since (1 + a d©b)aa d© = aa d©(1 + a d©b) and (aa d©)∗ = aa d©,
it follows by Lemma 2.2 that

(1 + a d©b)aa d© ∈ A d©.

Then

[(1 + a d©b)aa d©]d = (1 + a d©b)daa d© ∈ A(1,3).

Thus, we can find a y ∈ A such that

(1 + a d©b)daa d© = (1 + a d©b)daa d©y(1 + a d©b)daa d©,(
(1 + a d©b)daa d©y

)∗
= (1 + a d©b)daa d©y.

We easily verify that

(1 + a d©b)da d© = (1 + a d©b)da d©z(1 + a d©b)da d©,(
(1 + a d©b)da d©z

)∗
= (1 + a d©b)da d©z,

where z = a2a d©y.
Clearly, [(1 + a d©b)a2a d©]d = (1 + a d©b)da d© ∈ A(1,3). By virtue of Theorem

1.1, (a+ b)aa d© = (1 + a d©b)a2a d© ∈ A d©.
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Step 2. Obviously, a4b4 = b4a4. Since 1+ad4b4 = 1, it follows by [23, Theorem

3.3] that (a4 + b4)
d =

∞∑
i=0

(bd)i+1(−a4)i = bd4(1 + a4b
d
4)
−1. Since b4 ∈ A d©, by

virtue of Theorem 1.1 that bd4 ∈ A(1,3). Then we can find a y ∈ A such that

bd4 = bd4yb
d
4, (b

d
4y)∗ = bd4y.

Set z = (1 + a4b
d
4)y. Then we verify that

bd4(1 + a4b
d
4)
−1 = bd4(1 + a4b

d
4)
−1zbd4(1 + a4b

d
4)
−1,

(bd4(1 + a4b
d
4)
−1z)∗ = (bd4y)∗ = bd4y = bd4(1 + a4b

d
4)
−1z.

Hence, bd4(1 + a4b
d
4)
−1 ∈ A(1,3). In light of Theorem 1.1., a4 + b4 ∈ A d©.

Step 3. By virtue of Theorem 1.1, a1 + b1, a4 + b4 ∈ Ad. By virtue of Lemma
2.6,

(a+ b)d =

(
(a1 + b1)

d z
0 (a4 + b4)

d

)
p

,

where

z =
∞∑
i=0

[(a1 + b1)
d]i+2a2(a4 + b4)

i(a4 + b4)
π

+
∞∑
i=0

(a1 + b1)
i(a1 + b1)

πa2[(a4 + b4)
d]i+2

− (a1 + b1)
da2(a4 + b4)

d

By hypothesis, we have
∞∑
i=0

(1 + a d©b)iaia d©(1 + a d©b)πaa d©a
[
(1− aa d©)b d©

(
1 + (1− aa d©)abd]−1

)]i+2
= 0.

This implies that
∞∑
i=0

(a1 + b1)
i(a1 + b1)

πa2[(a4 + b4)
d]i+2 = 0.

Then (a1 + b1)
πz = 0; and so [(a1 + b1)

d]πz = 0. In light of Lemma 2.8,
a + b ∈ A d©. Moreover, we have pπ(a + b) d©p = 0. In view of Lemma 2.5,
aπ(a+ b) d©aa d© = 0. This completes the proof. �

Corollary 3.6. Let a, b ∈ A d©. If ab = ba, a∗b = ba∗ and 1 + a d©b ∈ A−1, then
a+ b ∈ A d©.

Proof. Since 1+a d©b ∈ A−1, we have (1+a d©b)π = 0. This completes the proof
by Theorem 3.5. �
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4. applications

Let M =

(
a b
c d

)
∈M2(A). The aim of this section is to present the gen-

eralized core-EP invertibility of the square matrix M by using the generalized
core-EP invertibility of its entries.

Lemma 4.1. Let b, c ∈ A. If bc, cb ∈ A d©, then Q :=

(
0 b
c 0

)
has generalized

core-EP inverse. In this case,

Q d© =

(
0 b(cb) d©

c(bc) d© 0

)
.

Proof. Since Q2 =

(
bc 0
0 cb

)
, we see that Q2 has generalized core-EP inverse

and

(Q2) d© =

(
(bc) d© 0

0 (cb) d©

)
.

In light of [4, Lemma 3.4], Q has generalized core-EP inverse and

Q d© = Q(Q2) d©

=

(
0 b
c 0

)(
(bc) d© 0

0 (cb) d©

)
=

(
0 b(cb) d©

c(bc) d© 0

)
,

as asserted. �

We are now ready to prove:

Theorem 4.2. Let a, d, bc, cb ∈ A d©. If

bdd = 0, cad = 0, aπb = 0, dπc = 0, aπc∗ = 0, dπb∗ = 0,

then M has generalized core-EP inverse.

Proof. Write M = P +Q, where

P =

(
a 0
0 d

)
, Q =

(
0 b
c 0

)
.

Since a and d have generalized core-EP inverses, so has P , and that

P d =

(
ad 0
0 dd

)
, P π =

(
aπ 0
0 dπ

)
.
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In view of Lemma 4.1, Q has generalized core-EP inverse. By hypothesis, we
check that

P πQ =

(
0 aπb
dπc 0

)
= 0,

P πQ∗ =

(
0 aπc∗

dπb∗ 0

)
= 0,

QP d =

(
0 bdd

cad 0

)
= 0.

According to Corollary 3.4, M has generalized core-EP inverse. �

Corollary 4.3. Let a, d, bc, cb ∈ A d©. If

adb = 0, ddc = 0, bdπ = 0, caπ = 0, b∗aπ = 0, c∗dπ = 0,

then M has generalized core-EP inverse.

Proof. Obviously, M∗ =

(
a∗ c∗

b∗ d∗

)
. By hypothesis, we have

c∗(d∗)d = 0, b∗(a∗)d = 0, (a∗)πc∗ = 0, (d∗)πb∗ = 0, (a∗)πb = 0, (d∗)πc = 0.

Applying Theorem 4.2 to the operator M∗, we prove that M∗ has generalized
core-EP inverse. Therefore M has generalized core-EP inverse, as asserted. �

Theorem 4.4. Let a, d, bc, cb ∈ A d©. If

ab = bd, dc = ca, a∗b = bd∗, d∗c = ca∗

and a#©bd#©c ∈ Aqnil, then M has generalized core-EP inverse.

Proof. Write M = P +Q, where

P =

(
a 0
0 d

)
, Q =

(
0 b
c 0

)
.

As in the proof of Theorem 4.2, P and Q have generalized core-EP inverses.
It is easy to verify that

PQ =

(
0 ab
dc 0

)
=

(
0 bd
ca 0

)
= QP.

Likewise, we verify that P ∗Q = QP ∗. Moreover, we check that

I2 + P d©Q =

(
1 a d©b
d d©c 1

)
.
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Obviously, we have(
1 a d©b
d d©c 1

)
=

(
1− a d©bd d©c a d©b

0 1

)(
1 0
d d©c 1

)
.

As a d©bd d©c ∈ Aqnil, 1 − a d©bd#©c ∈ A−1. This implies that

(
1 a d©b
d d©c 1

)
is

invertible. This implies that I2 + P d©Q is invertible. By using Corollary 3.6,
M has generalized core-EP inverse. �

Corollary 4.5. Let a, d, bc, cb ∈ A d©. If

ab = bd, ca = dc, a∗b = bd∗, ac∗ = c∗d

and bd#©ca#© ∈ Aqnil, then M has generalized core-EP inverse.

Proof. Analogously to Corollary 4.3, we complete the result by applying The-

orem 4.4 to M∗ =

(
a∗ c∗

b∗ d∗

)
. �
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