ADDITIVE PROPERTY OF GENERALIZED CORE-EP INVERSE IN BANACH *-ALGEBRA

HUANYIN CHEN

Abstract. We present new necessary and sufficient conditions under which the sum of two generalized core-EP invertible elements in a Banach * algebra has generalized core-EP inverse. As an application, the generalized core-EP invertibility for the matrices with generalized core-EP invertible entries is investigated.

1. INTRODUCTION

Let A be a Banach algebra with an involution ∗. An element $a \in \mathcal{A}$ has group inverse provided that there exists $x \in \mathcal{A}$ such that

$$
xa^2 = a, ax^2 = x, ax = xa.
$$

Such x is unique if exists, denoted by $a^{\#}$, and called the group inverse of a. Evidently, a square complex matrix A has group inverse if and only if $rank(A) = rank(A^2).$

An element $a \in \mathcal{A}$ has core inverse if there exists $x \in \mathcal{A}$ such that

$$
xa^2 = a, ax^2 = x, (ax)^* = ax.
$$

If such x exists, it is unique, and denote it by a^{\bigoplus} . As is well known, an element $a \in \mathcal{A}$ has core inverse if and only if $a \in \mathcal{A}$ has group inverse and it has $(1, 3)$ inverse. Here, $a \in \mathcal{A}$ has $(1,3)$ inverse provided that there exists some $x \in \mathcal{A}$ such that $axa = a$ and $(ax)^* = ax$.

In [\[10\]](#page-16-0), Gao and Chen extended the core inverse and introduced the core-EP inverse (i.e., pseudo core inverse). An element $a \in \mathcal{A}$ has core-EP inverse if there exist $x \in \mathcal{A}$ and $k \in \mathbb{N}$ such that

$$
ax^2 = x, (ax)^* = ax, xa^{k+1} = a^k.
$$

²⁰²⁰ Mathematics Subject Classification. 15A09, 16U90, 32A65.

Key words and phrases. core inverse; generalized core-EP inverse; additive property; Banach *-algebra.

If such x exists, it is unique, and denote it by $a^{\mathbb{O}}$. Evidently, $a \in \mathcal{A}$ has core-EP inverse if and only if a^n has core inverse for some $n \in \mathbb{N}$.

Many authors have investigated group, core and core-EP inverses from many different views, e.g., [\[1,](#page-16-1) [9,](#page-16-2) [11,](#page-17-0) [12,](#page-17-1) [13,](#page-17-2) [16,](#page-17-3) [17,](#page-17-4) [18,](#page-17-5) [19,](#page-17-6) [20,](#page-17-7) [22\]](#page-17-8). The additive properties of generalized inverses mentioned above are attractive.

We use $\mathcal{A}^{\#}, \mathcal{A}^{\oplus}$ and \mathcal{A}^{\oplus} to denote the set of all group invertible, core invertible and core-EP invertible elements in A , respectively.

Let $a, b \in \mathcal{A}^{\#}$. In [?]B, Benitez, Liu and Zhu proved that $a + b \in \mathcal{A}^{\#}$ if $ab = 0$. The additive property of group invertible was studied in [?] ZCZ under the condition $abb^{\#} = baa^{\#}$. Recently, the authors investigated the additive property of group inverses under the wider condition $ab(1 - aa^{\#}) = 0$ (see [\[6,](#page-16-3) Theorem 2.3]).

Let $a, b \in \mathcal{A}^{\oplus}$. In [\[20,](#page-17-7) Theorem 4.3], Xue, Chen and Zhang proved that $a+b \in \mathcal{A}^{\bigoplus}$ if $ab=0$ and $a^*b=0$. In [\[22,](#page-17-8) Theorem 4.1], Zhou et al. considered the core inverse of $a + b$ under the conditions $a^2 a^{\bigoplus} b^{\bigoplus} b = b a a^{\bigoplus}$, $ab^{\bigoplus} b = a a^{\bigoplus} b$. In [\[7,](#page-16-4) Theorem 2.5], the authors studied the additive property of core inverses under the conditions $ab = ba$ and $a^*b = ba^*$.

Let $a, b \in \mathcal{A}^{\mathbb{Q}}$. In [\[10,](#page-16-0) Theorem 4.4], Gao and Chen proved that $a + b$ has core-EP inverse if $ab = ba = 0$ and $a^*b = 0$.

As a natural generalization of core-EP invertibility, the authors introduced the generalized core-EP inverse in Banach algebra with an involution (see $[4,$ 5). An element $a \in \mathcal{A}$ is generalized core-EP invertible if there exists $x \in \mathcal{A}$ such that

$$
ax^{2} = x, (ax)^{*} = ax, \lim_{n \to \infty} ||a^{n} - xa^{n+1}||^{\frac{1}{n}} = 0.
$$

If such x exists, it is unique, and denote it by a^{\circledD} .

Recall that an element $a \in \mathcal{A}$ has generalized Drazin inverse if there exists $x \in \mathcal{A}$ such that

$$
ax^2 = x, ax = xa, a - a^2x \in \mathcal{A}^{qnil}.
$$

Here, $\mathcal{A}^{qnil} = \{a \in \mathcal{A} \mid 1 + \lambda a \in \mathcal{A}^{-1}\}\.$ Such x is unique, if exists, and denote it by a^d . The generalized Drazin inverse plays an important role in ring and matrix theory (see [\[3\]](#page-16-7)).

We use \mathcal{A}^d , $\mathcal{A}^{\textcircled{d}}$ and $\mathcal{A}^{(1,3)}$ to denote the set of all generalized Drazin invertible, generalized core-EP invertible and $(1, 3)$ -invertible elements in \mathcal{A} , respectively. We list several characterizations of generalized core-EP inverse.

Theorem 1.1. (see [\[4,](#page-16-5) [5,](#page-16-6) [8\]](#page-16-8))Let A be a Banach *-algebra, and let $a \in A$. Then the following are equivalent:

(1) $a \in \mathcal{A}^{\textcircled{d}}$.

(2) There exist $x, y \in \mathcal{A}$ such that

$$
a = x + y, x^*y = yx = 0, x \in \mathcal{A}^{\oplus}, y \in \mathcal{A}^{qnil}.
$$

(3) There exists a projection $p \in \mathcal{A}$ such that

$$
a + p \in \mathcal{A}^{-1}, pa = pap \in \mathcal{A}^{qnil}.
$$

- (4) $a \in \mathcal{A}^d$ and $a^d \in \mathcal{A}^{\bigoplus}$. In this case, $a^{\bigoplus} = (a^d)^2 (a^d)^{\bigoplus}$.
- (5) $a \in \mathcal{A}^d$ and $a^d \in \mathcal{A}^{(1,3)}$. In this case, $a^{(3)} = (a^d)^2 (a^d)^{(1,3)}$.

Let $a, b \in \mathcal{A}^{\mathfrak{S}}$. In [\[8,](#page-16-8) Theorem 3.4], the authors proved that $a + b \in \mathcal{A}^{\mathfrak{S}}$ provided that $ab = 0, a^*b = 0$ and $ba = 0$. The motivation of this paper is to present new additive results for the generalized core-EP inverses. We shall give necessary and sufficient conditions under which the sum of two generalized core-EP invertible elements has generalized core-EP inverse. As an application, the generalized core-EP invertibility for the matrices with generalized core-EP invertible entries is investigated.

Throughout the paper, all Banach *-algebras are complex with an identity. An element $p \in \mathcal{A}$ is a projection if $p^2 = p = p^*$. Let $a^{\pi} = 1 - aa^d$ and $a^{\sigma} = 1 - aa^{\circled{a}}$ for $a \in \mathcal{A}^{\circled{a}}$. Let $a, p^2 = p \in \mathcal{A}$. Then a has the Pierce decomposition relative to p, and we denote it by $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}_p$.

2. key lemmas

To prove the main results, some lemmas are needed. We begin with

Lemma 2.1. ([\[8,](#page-16-8) Lemma 3.2])) Let $a, b \in \mathcal{A}^{\oplus}$. If $ab = ba$ and $a^*b = ba^*$, then $a^{\textcircled{d}}b = ba^{\textcircled{d}}$.

Lemma 2.2. ([\[8,](#page-16-8) Theorem 3.3])) Let $a, b \in \mathcal{A}^{\oplus}$. If $ab = ba$ and $a^*b = ba^*$, then $ab \in \mathcal{A}^{\oplus}$ and $(ab)^{\oplus} = a^{\oplus}b^{\oplus}$.

Lemma 2.3. Let $a \in \mathcal{A}^{\textcircled{d}}$ and $b \in \mathcal{A}^{qnil}$. If $a^*b = 0$ and $ba = 0$, then $a+b \in \mathcal{A}^{\tiny{\textcircled{d}}}$. In this case,

$$
(a+b)^{\circledcirc} = a^{\circledcirc}.
$$

Proof. Since $a \in \mathcal{A}^{\mathcal{D}}$, by virtue of Theorem 1.1, there exist $x \in \mathcal{A}^{\oplus}$ and $y \in \mathcal{A}^{qnil}$ such that $a = x + y, x^*y = 0, yx = 0$. As in the proof of [\[5,](#page-16-6) Theorem 2.1, $x = aa^{\textcircled{a}}a$ and $y = a - aa^{\textcircled{a}}a$. Then $a = x + (y + b)$. Since $by = b(a - aa^{\textcircled{d}}a) = 0$, it follows by [\[14,](#page-17-9) Theorem 2.2] that $y + \check{b} \in \mathcal{A}^{qnil}$. We directly verify that

$$
x^*(y+b) = x^*y + x^*b = (a^{@}a)^*(a^*b) = 0,
$$

(y+b)x = yx + (ba)a[@]a = 0.

In light of Theorem 1.1, $a + b \in \mathcal{A}^{\oplus}$. In this case,

$$
(a+b)^{@}=x^{\bigoplus}=a^{@},
$$

as asserted. \Box

Lemma 2.4. Let $a \in \mathcal{A}^{\oplus}$ and $m \in \mathbb{N}$. Then $a^{\oplus} a^m a^{\oplus} = a^{m-1} a^{\oplus}$.

Proof. Since $a(a^{(0)})^2 = a^{(0)}$, we see that $a^{(0)} = a^{n-m+1}(a^{(0)})^{n-m}$ for any $n \geq$ $m + 1$. Then

$$
(a^{m-1} - a^{\textcircled{d}} a^m) a^{\textcircled{d}} = (a^n - a^{\textcircled{d}} a^{n+1})(a^{\textcircled{d}})^{n-m}.
$$

Hence,

$$
||(a^{m-1} - a^{\textcircled{d}}a^m)a^{\textcircled{d}}||^{\frac{1}{n}} \leq ||a^n - a^{\textcircled{d}}a^{n+1}||^{\frac{1}{n}}||a^{\textcircled{d}}||^{\frac{n-m}{n}}.
$$

Since $\lim_{n\to\infty}||a^n - a^{\bigoplus}a^{n+1}||^{\frac{1}{n}} = 0$, we deduce that

$$
\lim_{n \to \infty} ||(a^{m-1} - a^{\textcircled{d}} a^m) a^{\textcircled{d}}||^{\frac{1}{n}} = 0.
$$

Therefore $a^{m-1}a^{\textcircled{0}} = a^{\textcircled{0}}a^ma^{\textcircled{0}}$

Lemma 2.5. Let $a \in \mathcal{A}^{\oplus}$ and $b \in \mathcal{A}$. Then the following are equivalent:

(1) $(1 - a^{\textcircled{a}} a) b = 0.$ $(2) (1 - aa^{\circledup})b = 0.$ $(3) \ \dot{a}^{\pi}b = 0.$

Proof. (1) \Rightarrow (3) Since $(1 - a^{\textcircled{a}} a)b = 0$, we have $b = a^{\textcircled{a}} ab$. In view of Theorem 1.1, $a^{(0)} = (a^d)^2 (a^d)^{(0)}$. Thus, $a^{\pi}b = (1 - aa^d)b = (1 - aa^d)(a^d)^2(a^d)^{(0)}$ $(3) \Rightarrow (2)$ Since $a^d = (a^d)^2 a = a^d [a^d (a^d) \hat{\mathcal{A}}] a = [(a^d)^2 (a^d) \hat{\mathcal{A}}] a a^d = a^{\text{d}} a a^d.$

Then $b = aa^db = a^{\textcircled{a}}a^2a^db$; and so $(1 - aa^{\textcircled{a}})b = (1 - aa^{\textcircled{a}})a^{\textcircled{a}}a^2a^db = 0$, as desired.

 $(2) \Rightarrow (1)$ In view of Lemma 2.4, $aa^{\textcircled{0}} = a^{\textcircled{0}}a^2a^{\textcircled{0}}$. Since $(1 - aa^{\textcircled{0}})b = 0$, we get $b = aa^{\textcircled{d}}b$. Therefore $(1 - a^{\textcircled{d}}a)b = (1 - a^{\textcircled{d}}a)aa^{\textcircled{d}}b = (a - a^{\textcircled{d}}a^2)a^{\textcircled{d}}b = 0$, as asserted. \Box

Let A be a Banach *-algebra. Then $M_2(\mathcal{A})$ is a Banach *-algebra with *-transpose as the involution. We come now to generalized EP-inverse of a triangular matrix over A.

Lemma 2.6. Let $p \in A$ be a projection and $x =$ $\int a b$ $0 \t d$ \setminus p .

.

(1) If
$$
a, d \in A^d
$$
, then $x \in M_2(A)_p^d$ and $x^d = \begin{pmatrix} a^d & z \ 0 & d^d \end{pmatrix}_p$, where
\n
$$
z = \sum_{i=0}^{\infty} (a^d)^{i+2} b d^i d^{\pi} + \sum_{i=0}^{\infty} a^i a^{\pi} b (d^d)^{i+2} - a^d b d^d.
$$
\n(2) If $a, d \in A^{\oplus}$ and $a^{\pi} b = 0$, then $x \in M_2(A)_p^{\oplus}$ and
\n
$$
x^{\oplus} = \begin{pmatrix} a^{\oplus} & -a^{\oplus} b d^{\oplus} \\ 0 & d^{\oplus} \end{pmatrix}_p.
$$

Proof. See [\[23,](#page-17-10) Lemma 2.1] and [\[19,](#page-17-6) Theorem 2.5].

We are ready to prove the following lemma which is repeatedly used in the sequel.

Lemma 2.7. Let $p \in A$ be a projection and $x =$ $\int a b$ $0 \quad d$ \setminus p $\in M_2(\mathcal{A})_p$ with $a, d \in \mathcal{A}^{\textcircled{d}}$. If

$$
\sum_{i=0}^{\infty} a^i a^{\pi} b (d^d)^{i+2} = 0,
$$

then $x \in M_2(\mathcal{A})_p^{\oplus}$ and

$$
x^{\textcircled{d}} = \left(\begin{array}{cc} a^{\textcircled{d}} & z \\ 0 & d^{\textcircled{d}} \end{array} \right)_p,
$$

where $z = -a^d b d^{\textcircled{d}}$.

Proof. In view of Theorem 1.1, $a, d \in \mathcal{A}^d$ and $a^d, d^d \in \mathcal{A}^{\oplus}$. By virtue of Lemma 2.6, we have

$$
x^d = \left(\begin{array}{cc} a^d & s \\ 0 & d^d \end{array}\right),
$$

where

$$
s = \sum_{i=0}^{\infty} (a^d)^{i+2} b d^i d^{\pi} + \sum_{i=0}^{\infty} a^i a^{\pi} b (d^d)^{i+2} - a^d b d^d.
$$

By hypothesis, we get $s = \sum_{n=1}^{\infty}$ $i=0$ $(a^d)^{i+2}b d^i d^{\pi} - a^d b d^d$. Since $(a^d)^{\pi} s = (1$ $a^d a^2 a^d$) $s = p^{\pi} s = a^{\pi} \left[\sum^{\infty} \right]$ $i=0$ $(a^d)^{i+2}bd^id^{\pi}-a^dbd^d]=0.$ In view of [\[19,](#page-17-6) Lemma

2.4, we have $[1 - a^d (a^d) \ddot{\mathcal{B}}] s = 0$. Then it follows by Lemma 2.6 that

$$
(x^d)^{\bigoplus} = \begin{pmatrix} (a^d)^{\bigoplus} & t \\ 0 & (d^d)^{\bigoplus} \end{pmatrix},
$$

where $t = -(a^d) \hat{\mathcal{B}} s(d^d) \hat{\mathcal{B}}$. Hence, $t = -(a^d) \hat{\mathcal{B}} \left[\sum_{k=1}^{\infty} \right]$ $i=0$ $(a^d)^{i+2}bd^id^{\pi}-a^dbd^d](d^d)^{\bigoplus} =$ $(a^d) \hat{\mathcal{B}} a^d b d^d (d^d) \hat{\mathcal{B}}$. Then we have

$$
(xd)2 = \begin{pmatrix} (ad)2 & w \\ 0 & (dd)2 \end{pmatrix},
$$

where
$$
w = \sum_{i=0}^{\infty} (a^d)^{i+3}bd^i d^{\pi} - (a^d)^2 b d^d - a^d b (d^d)^2
$$
. Therefore
\n
$$
x^{\textcircled{d}} = (x^d)^2 (x^d)^{\textcircled{d}}
$$
\n
$$
= \begin{pmatrix} (a^d)^2 & w \\ 0 & (d^d)^2 \end{pmatrix} \begin{pmatrix} (a^d)^{\textcircled{d}} & t \\ 0 & (d^d)^{\textcircled{d}} \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} a^{\textcircled{d}} & z \\ 0 & d^{\textcircled{d}} \end{pmatrix},
$$

where

$$
z = (a^d)^2 t + w(d^d) \oplus
$$

\n
$$
= (a^d)^2 [(a^d) \oplus a^d b d^d (d^d) \oplus] - [(a^d)^2 b d^d + a^d b (d^d)^2] (d^d) \oplus
$$

\n
$$
= (a^d)^2 b d^d (d^d) \oplus - a^d (a^d b + b d^d) d^d (d^d) \oplus
$$

\n
$$
= (a^d)^2 b d^d (d^d) \oplus - (a^d)^2 b d^d (d^d) \oplus - a^d [b (d^d)^2 (d^d) \oplus]
$$

\n
$$
= -a^d b d^d
$$

This completes the proof.

$$
\qquad \qquad \Box
$$

Lemma 2.8. Let $\alpha =$ $\int a b$ $0 \quad d$ \setminus p $\in M_2(\mathcal{A})_p$ with $a, d \in \mathcal{A}^{\tiny\textcircled{d}}$. If $a^{\pi}bd^{\tiny\textcircled{d}} = 0$, then $\alpha \in M_2(\mathcal{A})^{\tiny{\textcircled{d}}}$ and

$$
\alpha^{\textcircled{d}} = \left(\begin{array}{cc} a^{\textcircled{d}} & -a^{\textcircled{d}}bd^{\textcircled{d}} \\ 0 & d^{\textcircled{d}} \end{array} \right)_p.
$$

Proof. Since $a^{\pi}bd^{\circledD} = 0$, it follows by Theorem 1.1 that $a^{\pi}b(d^d)^2(d^d)^{\circled{m}} = 0$; hence,

$$
a^{\pi}bd^d = [a^{\pi}b(d^d)^2(d^d)\hat{\mathcal{B}}]b^db = 0.
$$

By using Lemma 2.5, we have $(1 - aa^{\textcircled{a}})bd^{\textcircled{a}} = 0$, and so $bd^{\textcircled{a}} = aa^{\textcircled{a}}bd^{\textcircled{a}}$. Then $a^d b d^{\textcircled{d}} = a a^d a^{\textcircled{d}} b d^{\textcircled{d}} = a^{\textcircled{d}} b d^{\textcircled{d}}.$

In light of Lemma 2.7,

$$
\alpha^{\circledA} = \left(\begin{array}{cc} a^{\circledA} & -a^{\circledA}bd^{\circledA} \\ 0 & d^{\circledA} \end{array} \right),
$$

as asserted. \square

3. main results

This section is devoted to investigate the generalized core-EP inverse of the sum of two generalized core-EP invertible elements in a Banach *-algebra. We come now to establish additive property of generalized core-EP inverse under orthogonal conditions.

Theorem 3.1. Let $a, b, a^{\sigma}b \in A^{\textcircled{d}}$. If

$$
a^{\pi}ab = 0, a^{\pi}ba = 0 \text{ and } a^{\pi}b^*a = 0,
$$

then the following are equivalent:

(1)
$$
a + b \in A^{\textcircled{d}}
$$
 and $a^{\pi}(a + b)^{\textcircled{d}}aa^{\textcircled{d}} = 0$.
\n(2) $(a + b)aa^{\textcircled{d}} \in A^{\textcircled{d}}$ and
\n
$$
\sum_{i=0}^{\infty} (a + b)^{i}(a + b)^{\pi}aa^{\textcircled{d}}(a + b)a^{\sigma}(b^{d})^{i+2} = 0.
$$

In this case,

$$
(a+b)^{l} = [(a+b)aal]l0 + (aσb)l0 - (a+b)laal0 (a+b)(aσb)l0.
$$

Proof. (1) \Rightarrow (2) Let $p = aa^{\textcircled{a}}$. By hypothesis and Lemma 2.5, we have $p^{\pi}ab = 0, p^{\pi}ba = 0$ and $p^{\pi}b^*a = 0$. Hence, $p^{\pi}bp = (p^{\pi}ba)a^{\textcircled{0}} = 0$,

$$
p^{\pi}ap = (1 - aa^{\textcircled{d}})a^2a^{\textcircled{d}} = 0
$$

and

$$
pap^{\pi} = aa^{\textcircled{d}}a(1 - aa^{\textcircled{d}}) = aa^{\textcircled{d}}a - a^2a^{\textcircled{d}}.
$$

Then we have

$$
a = \left(\begin{array}{cc} a_1 & a_2 \\ 0 & a_4 \end{array}\right)_p, b = \left(\begin{array}{cc} b_1 & b_2 \\ 0 & b_4 \end{array}\right)_p.
$$

Hence

$$
a + b = \begin{pmatrix} a_1 + b_1 & a_2 + b_2 \\ 0 & a_4 + b_4 \end{pmatrix}_p.
$$

Here, $a_1 = aa^{\textcircled{d}}a^2a^{\textcircled{d}} = a^2a^{\textcircled{d}}$ and $b_1 = aa^{\textcircled{d}}baa^{\textcircled{d}} = baa^{\textcircled{d}}$.

$8\,$ $\,$ $\,$ HUANYIN CHEN $\,$

Since $a^{\pi}(a+b)^{\textcircled{a}}aa^{\textcircled{a}}=0$, it follows by Lemma 2.5 that $p^{\pi}(a+b)^{\textcircled{a}}aa^{\textcircled{a}}=0$. Write

$$
(a+b)^{\circled{\theta}} = \left(\begin{array}{cc} \alpha & \gamma \\ 0 & \beta \end{array}\right)_p.
$$

Then

$$
(a_1+b_1)\alpha^2 = \alpha, \left[(a_1+b_1)\alpha \right]^* = (a_1+b_1)\alpha, \lim_{n \to \infty} ||(a_1+b_1)^n - \alpha(a_1+b_1)^{n+1}||_n^{\frac{1}{n}} = 0.
$$

We infers that $(a_1 + b_1)^{\circledcirc} = \alpha$, as required.

$$
(2) \Rightarrow (1)
$$
 Let $p = aa^{\textcircled{d}}$. Construct $a_i, b_i (i = 1, 2, 4)$ as in $(1) \Rightarrow (2)$. Then

$$
a + b = \begin{pmatrix} a_1 + b_1 & a_2 + b_2 \\ 0 & a_4 + b_4 \end{pmatrix}_p.
$$

Hence $a_1 + b_1 = (a+b)aa^{\textcircled{0}}$. Since $p^{\pi}(a+b) = a^{\pi}a + p^{\pi}b$ and $(p^{\pi}b)(p^{\pi}a) = 0$, it follows by [\[3,](#page-16-7) Lemma 15.2.2] that $p^{\pi}(a+b) \in \mathcal{A}^d$. As $p^{\pi}(a+b)aa^{\textcircled{0}} = 0$, by using $[21, \text{Lemma } 2.2],$ $[21, \text{Lemma } 2.2],$

$$
(a_1 + b_1)^d = [(a+b)aa^{\textcircled{d}}]^d = (a+b)^daa^{\textcircled{d}}.
$$

Moreover, we have

$$
(a_1 + b_1)^{\pi} = aa^{\textcircled{a}} - (a+b)^{d}aa^{\textcircled{a}}(a+b)aa^{\textcircled{a}}
$$

=
$$
aa^{\textcircled{a}} - (a+b)^{d}(a+b)aa^{\textcircled{a}}
$$

=
$$
(a+b)^{\pi}aa^{\textcircled{a}}.
$$

We see that

$$
a_1 + b_1 = (a+b)aa^{\textcircled{0}} \in \mathcal{A}^{\textcircled{0}}.
$$

Also we have $a_4 = p^{\pi}ap^{\pi} = p^{\pi}a$ and $b_4 = p^{\pi}bp^{\pi} = p^{\pi}b$, and so

$$
a_4 + b_4 = p^{\pi}a + p^{\pi}b.
$$

We claim that

$$
(p^{\pi}a)(p^{\pi}b) = p^{\pi}ab = 0,
$$

\n
$$
(p^{\pi}b)^{*}(p^{\pi}a) = (p^{\pi}bp^{\pi})^{*}(p^{\pi}a)
$$

\n
$$
= (1 - aa^{\circled{0}})b^{*}(1 - aa^{\circled{0}})(p^{\pi}a)
$$

\n
$$
= p^{\pi}b^{*}(p^{\pi}a) = 0.
$$

As in the proof of [\[5,](#page-16-6) Theorem 2.1], $a-a^{\text{$\mathbb{Q}$}}a^2 \in \mathcal{A}^{qnil}$. By using Cline's formula, $p^{\pi}a = a - aa^{\textcircled{d}} \in \mathcal{A}^{qnil}$. Thus, $a_4 + b_4 \in \mathcal{A}^{\textcircled{d}}$ and $(a_4 + b_4)^{\textcircled{d}} = (p^{\pi}b)^{\textcircled{d}}$ by Lemma 2.3.

We check that

$$
(a_4 + b_4)^d = p^{\pi}b^d,
$$

$$
(a_4 + b_4)^{\pi} = p^{\pi}b^{\pi}.
$$

Moreover, we see that

$$
\sum_{i=0}^{\infty} (a_1 + b_1)^i (a_1 + b_1)^{\pi} (a_2 + b_2) [(a_4 + b_4)^d]^{i+2}
$$

=
$$
\sum_{i=0}^{\infty} (a+b)^i (a+b)^{\pi} a a^{\textcircled{0}} (a+b) (1 - a a^{\textcircled{0}}) (b^d)^{i+2}
$$

= 0.

According to Lemma 2.7, $a + b \in \mathcal{A}^{\circledcirc}$. Furthermore, we have

$$
(a + b)^{①} = (a_1 + b_1)^{⑥} + (a_4 + b_4)^{④} + z
$$

=
$$
[(a + b)aa^{③}]^{④} + [(1 - aa^{③})b]^{④} + z,
$$

where

$$
z = -(a_1 + b_1)^d (a_2 + b_2) (a_4 + b_4)^{\textcircled{d}}
$$

= -(a + b)^daa^{{}d}(a + b)[(1 - aa^d)b]^d,

as asserted. \Box

Corollary 3.2. ([\[8,](#page-16-8) Theorem 3.4]) Let $a, b \in A^{\textcircled{0}}$. If $a^*b = 0$ and $ab = ba = 0$, then $a + b \in \mathcal{A}^{\oplus}$. In this case,

$$
(a+b)^{@}=a^{@}+b^{@}.
$$

Proof. This is immediate from Theorem 3.1. \Box

Corollary 3.3. Let $a, b \in \mathcal{A}^{\mathbb{G}}$. If $a^{\pi}b = 0$ and $a^{\pi}b^* = 0$, then the following are equivalent:

(1) $a + b \in \mathcal{A}^{\textcircled{d}}$ and $a^{\pi}(a + b)^{\textcircled{d}}aa^{\textcircled{d}} = 0$. (2) $(a + b)aa^{\circledD} \in \mathcal{A}^{\circledD}$.

In this case,

$$
(a+b)^{\circledcirc} = [(a+b)aa^{\circledcirc}]^{\circledcirc}.
$$

Proof. By hypothesis, we see that $a^{\pi}ab = a(a^{\pi}b) = 0, a^{\pi}ba = (a^{\pi}b)a =$ $(0, a^{\pi}b^*a = (a^{\pi}b^*)a = 0$. Since $a^{\pi}b = 0$, it follows by Lemma 2.5 that $a^{\sigma}b^d = 0$ $[(1-aa^{\textcircled{a}})b](b^d)^2 = 0$. In light of Theorem 3.1, $a+b \in \mathcal{A}^{\textcircled{a}}$ and $a^{\pi}(a+b)^{\textcircled{a}}aa^{\textcircled{a}} =$ 0 if and only if $(a + b)aa^{\circledD} \in \mathcal{A}^{\circledD}$. In this case, $a^{\sigma} = 0$, and therefore $(a + b)^{(i)} = [(a + b)aa^{(i)}]^{(i)}$.

Corollary 3.4. Let $a, b \in \mathcal{A}^{\oplus}$. If $a^{\pi}b = 0, a^{\pi}b^* = 0$ and $ba^d = 0$, then $a+b \in \mathcal{A}^{\textcircled{a}}$. In this case, $(a+b)^{\textcircled{a}} = a^{\textcircled{a}}$.

Proof. We easily verify that $(a^2a^{\textcircled{0}})a^{\textcircled{0}} = aa^{\textcircled{0}}$; hence, $[(a^2a^{\textcircled{0}})a^{\textcircled{0}}]^* = (a^2a^{\textcircled{0}})a^{\textcircled{0}}$. Moreover, we have $(a^2a^{\textcircled{0}})a^{\textcircled{0}}(a^{\textcircled{0}})^2 = a^{\textcircled{0}}$. By induction, we prove that $(a^2a^{\textcircled{0}})^n =$ $a^{n+1}a^{\textcircled{0}}$ and $(a^2a^{\textcircled{0}})^{n+1} = a^{n+2}a^{\textcircled{0}}$. Therefore

$$
(a^2a^{\textcircled{d}})^n - a^{\textcircled{d}}(a^2a^{\textcircled{d}})^{n+1} = [a^n) - a^{\textcircled{d}}a^{n+1}]aa^{\textcircled{d}}
$$

.

Since $\lim_{n\to\infty}||a^n - a^{\text{I}}a^{n+1}||^{\frac{1}{n}} = 0$, we deduce that

$$
\lim_{n \to \infty} ||(a^2 a^{\textcircled{d}})^n - a^{\textcircled{d}} (a^2 a^{\textcircled{d}})^{n+1}||^{\frac{1}{n}} = 0.
$$

Hence, $(a^2a^{\textcircled{d}})^{\textcircled{d}} = a^{\textcircled{d}}$. Therefore we complete the proof by Corollary 3.3. \Box

We next present the additive property of generalized core-EP inverse under commutative conditions. For the detailed formula of the generalized core-EP inverse of the sum, we leave to the readers as it can be derived by the straightforward computation according to our proof.

Theorem 3.5. Let $a, b \in A^{\textcircled{d}}$. If $ab = ba$ and $a^*b = ba^*$, then the following are equivalent:

(1)
$$
a + b \in \mathcal{A}^{\oplus}
$$
 and $a^{\pi}(a + b)^{\oplus}aa^{\oplus} = 0$.
\n(2) $1 + a^{\oplus}b \in \mathcal{A}^{\oplus}$ and
\n
$$
\sum_{i=0}^{\infty} (1 + a^{\oplus}b)^{i}a^{i}a^{\oplus}(1 + a^{\oplus}b)^{\pi}aa^{\oplus}a[(1 - aa^{\oplus})b^{\oplus}(1 + (1 - aa^{\oplus})ab^{d}]^{-1})]^{i+2} = 0.
$$

Proof. Since $ab = ba$ and $a^*b = ba^*$, it follows by Lemma 2.1 that $a^{\textcircled{d}}b = ba^{\textcircled{d}}$. Let $p = aa^{\textcircled{d}}$. Then $p^{\pi}bp = (1 - aa^{\textcircled{d}})baa^{\textcircled{d}} = (1 - aa^{\textcircled{d}})aa^{\textcircled{d}}b = 0$. Moreover, we have $pbp^{\pi} = aa^{\textcircled{d}}b(1 - aa^{\textcircled{d}}) = aba^{\textcircled{d}}(1 - aa^{\textcircled{d}}) = 0$. In light of Lemma 2.4, we have

$$
p^{\pi}ap = (1 - aa^{\textcircled{d}})aaa^{\textcircled{d}} = a^2a^{\textcircled{d}} - aa^{\textcircled{d}}a^2a^{\textcircled{d}} = 0.
$$

So we get

$$
a = \left(\begin{array}{cc} a_1 & a_2 \\ 0 & a_4 \end{array}\right)_p, b = \left(\begin{array}{cc} b_1 & 0 \\ 0 & b_4 \end{array}\right)_p.
$$

Hence

$$
a + b = \begin{pmatrix} a_1 + b_1 & a_2 \\ 0 & a_4 + b_4 \end{pmatrix}_p.
$$

Moreover,

$$
a_1 = aa^{\textcircled{d}}a^2a^{\textcircled{d}} = a^2a^{\textcircled{d}}.
$$

Obviously, $(1 - aa^{\textcircled{a}})baa^{\textcircled{a}} = b(1 - aa^{\textcircled{a}})aa^{\textcircled{a}} = 0$. It follows by Lemma 2.5 that $(1 - a^{\textcircled{a}}a)baa^{\textcircled{a}} = 0$. Hence we have $b_1 = aa^{\textcircled{a}}baa^{\textcircled{a}} = baa^{\textcircled{a}} = a^{\textcircled{a}}abaa^{\textcircled{a}} =$ $a^{\text{d}}ba^2a^{\text{d}}$, and then

$$
a_1 + b_1 = (1 + a^{\textcircled{a}}b)a^2 a^{\textcircled{a}} \in \mathcal{A}^{\textcircled{a}}.
$$

This implies that

$$
(a_1 + b_1)^i = (1 + a^{\textcircled{d}}b)^i (a^2 a^{\textcircled{d}})^i = (1 + a^{\textcircled{d}}b)^i a^{i+1} a^{\textcircled{d}}.
$$

Furthermore,

$$
(a_1 + b_1)^d = (1 + a^{\textcircled{d}}b)^d a^{\textcircled{d}}.
$$

Thus

$$
(a_1 + b_1)^{\pi} = 1 - (1 + a^{\textcircled{d}}b)(1 + a^{\textcircled{d}}b)^{d}aa^{\textcircled{d}}.
$$

Clearly, we have $(1 - aa^{\textcircled{a}})aaa^{\textcircled{a}} = a^2 a^{\textcircled{a}} - aa^{\textcircled{a}}aaa^{\textcircled{a}} = 0$. Then

$$
a_4 = (1 - aa^{\textcircled{a}})a(1 - aa^{\textcircled{a}}) = a - aa^{\textcircled{a}}a.
$$

As in the proof of [\[5,](#page-16-6) Theorem 2.1], $a-a^{\text{$\mathbb{Q}$}}a^2 \in \mathcal{A}^{qnil}$. By using Cline's formula, $a_4 \in \mathcal{A}^{qnil}$. Moreover,

$$
b_4 = (1 - aa^{\textcircled{d}})b(1 - aa^{\textcircled{d}}) = (1 - aa^{\textcircled{d}})b.
$$

Since $bp^{\pi} = p^{\pi}b, b^*p^{\pi} = (p^{\pi}b)^* = (bp^{\pi})^* = p^{\pi}b^*$. In light of Lemma 2.2, $b_4 = p^{\pi}b \in \mathcal{A}^{\textcircled{d}}$ and $b_4^{\textcircled{d}} = p^{\pi}b^{\textcircled{d}}$. Furthermore,

$$
a_4 + b_4 = (1 - aa^{\textcircled{a}})(a + b)
$$

$$
(a_4 + b_4)^i = (1 - aa^{\textcircled{a}})(a + b)^i.
$$

 $(1) \Rightarrow (2)$ We have

$$
(a+b)^{\circled{\theta}} = \left(\begin{array}{cc} \alpha & \beta \\ 0 & \gamma \end{array}\right)_p
$$

.

As in the proof of Theorem 3.1, $[p(a+b)p]^{(0)} = \alpha$. That is, $(a+b)aa^{(0)} \in \mathcal{A}^{(0)}$. We observe that

$$
1 + a^{\textcircled{a}}b = [1 - aa^{\textcircled{a}}] + [aa^{\textcircled{a}} + a^{\textcircled{b}}b] \n= [1 - aa^{\textcircled{a}}] + [aa^{\textcircled{a}} + ba^{\textcircled{a}}] \n= [1 - aa^{\textcircled{a}}] + [a + b]a^{\textcircled{a}}
$$

We easily check that $[(a + b)aa^{\textcircled{a}}]a^{\textcircled{a}} = a^{\textcircled{a}}[(a + b)aa^{\textcircled{a}}]$. In view of [\[3,](#page-16-7) Theorem 15.2.16], $(a + b)a^{\textcircled{0}} = [(a + b)aa^{\textcircled{0}}]a^{\textcircled{0}} \in \mathcal{A}^d$ and

$$
[a+b)a^{\textcircled{d}}]^d = [(a+b)aa^{\textcircled{d}}]^d [a^{\textcircled{d}}]^d.
$$

In view of Theorem 1.1, $[(a + b)aa^{\textcircled{0}}]^d$ has $(1, 3)$ -inverse. Then there exists $y \in \mathcal{A}$ such that

$$
[(a+b)aa^{\textcircled{a}}]^d = [(a+b)aa^{\textcircled{a}}]^d y [(a+b)aa^{\textcircled{a}}]^d,
$$

$$
([(a+b)aa^{\textcircled{a}}]^d y)^* = [(a+b)aa^{\textcircled{a}}]^d y.
$$

We verify that

$$
[(a + b)a^{\text{d}}]^{d}[(a^{2}a^{\text{d}})y][(a + b)a^{\text{d}}]^{d}[a^{2}a^{\text{d}}]
$$

= [(a + b)aa^{\text{d}}]^{d}y[(a + b)aa^{\text{d}}]^{d}
= [(a + b)aa^{\text{d}}]^{d}
= [(a + b)a^{\text{d}}]^{d}[a^{2}a^{\text{d}}].

Clearly, $[a^2 a^{\circledD}](a^{\circledD})^d = aa^{\circledD}$. Then

$$
[(a+b)a^{\textcircled{d}}]^{d}[(a^{2}a^{\textcircled{d}})y][(a+b)a^{\textcircled{d}}]^{d}
$$
\n
$$
= [(a+b)a^{\textcircled{d}}]^{d},
$$
\n
$$
[((((a+b)a^{\textcircled{d}})d(a^{2}a^{\textcircled{d}})y)]^{*}
$$
\n
$$
= ((a+b)aa^{\textcircled{d}})y
$$
\n
$$
= [(a+b)a^{\textcircled{d}}]^{d}(a^{2}a^{\textcircled{d}})y.
$$

Therefore $[(a + b)a^{\textcircled{0}}]^{d}$ has $(1, 3)$ -inverse $(a^{2}a^{\textcircled{0}})y$. In light of Theorem 1.1, $(a+b)a^{\textcircled{a}} \in \mathcal{A}^{\textcircled{a}}$.

Obviously, we have

$$
[1 - aa^{\textcircled{0}}](a + b)a^{\textcircled{0}} = [1 - aa^{\textcircled{0}}]^*[a + b]a^{\textcircled{0}} \\
= [a + b]a^{\textcircled{0}}[1 - aa^{\textcircled{0}}] = 0.
$$

According to Corollary 3.2, $1 + a^{\textcircled{d}}b \in \mathcal{A}^{\textcircled{d}}$. In view of Lemma 2.6,

$$
(a+b)^d = \begin{pmatrix} (a_1 + b_1)^d & z \\ 0 & (a_4 + b_4)^d \end{pmatrix}_p,
$$

where

$$
z = \sum_{i=0}^{\infty} [(a_1 + b_1)^d]^{i+2} a_2 (a_4 + b_4)^i (a_4 + b_4)^{\pi}
$$

+
$$
\sum_{i=0}^{\infty} (a_1 + b_1)^i (a_1 + b_1)^{\pi} a_2 [(a_4 + b_4)^d]^{i+2}
$$

-
$$
(a_1 + b_1)^d a_2 (a_4 + b_4)^d.
$$

By virtue of Theorem 1.1,

$$
(a+b)^{(i)} = [(a+b)^{d}]^{2}[(a+b)^{d}]^{\oplus}
$$

Hence,

$$
[(a+b)^d]^{\bigoplus} = (a+b)(a+b)^d[(a+b)^d]^{\bigoplus}
$$

= $(a+b)^2(a+b)^{00}$.

Since $p^{\pi}(a+b)^2p = p^{\pi}(a+b)^d p = 0$, we see that $p^{\pi}[(a+b)^d]$ \mathcal{D} $p = 0$. As in the proof of [\[19,](#page-17-6) Theorem 2.5], $[(a_1 + b_1)^d]^{\pi}z = 0$. Thus, we have $(a_1 + b_1)^{\pi}z = 0$; hence,

$$
\sum_{i=0}^{\infty} (a_1 + b_1)^i (a_1 + b_1)^{\pi} a_2 [(a_4 + b_4)^d]^{i+2} = 0.
$$

Thus,

$$
(a_4 + b_4)^d = (1 - aa^{\textcircled{d}})b^{\textcircled{d}}[1 + (1 - aa^{\textcircled{d}})ab^d]^{-1}].
$$

Therefore

$$
\sum_{i=0}^{\infty} (1 + a^{\textcircled{a}}b)^{i} a^{i+1} a^{\textcircled{a}} [1 - (1 + a^{\textcircled{a}}b)(1 + a^{\textcircled{a}}b)^{d} a a^{\textcircled{a}}] a
$$

$$
[(1 - aa^{\textcircled{a}})b^{\textcircled{a}}(1 + (1 - aa^{\textcircled{a}})ab^{d}]^{-1})]^{i+2} = 0.
$$

Accordingly,

$$
\sum_{i=0}^{\infty} (1 + a^{\textcircled{d}} b)^i a^i a^{\textcircled{d}} (1 + a^{\textcircled{d}} b)^{\pi} a a^{\textcircled{d}} a \left[(1 - a a^{\textcircled{d}}) b^{\textcircled{d}} (1 + (1 - a a^{\textcircled{d}}) a b^d \right]^{-1}) \right]^{i+2} = 0.
$$

 $(2) \Rightarrow (1)$ Step 1. Since $(1 + a^{\textcircled{d}}b)aa^{\textcircled{d}} = aa^{\textcircled{d}}(1 + a^{\textcircled{d}}b)$ and $(aa^{\textcircled{d}})^* = aa^{\textcircled{d}}$, it follows by Lemma 2.2 that

$$
(1 + a^{\textcircled{d}}b)aa^{\textcircled{d}} \in \mathcal{A}^{\textcircled{d}}.
$$

Then

$$
[(1+a^{\textcircled{d}}b)aa^{\textcircled{d}}]^d = (1+a^{\textcircled{d}}b)^daa^{\textcircled{d}} \in \mathcal{A}^{(1,3)}.
$$

Thus, we can find a $y \in \mathcal{A}$ such that

$$
(1+a^{\textcircled{a}}b)^{d}aa^{\textcircled{a}} = (1+a^{\textcircled{a}}b)^{d}aa^{\textcircled{a}}y(1+a^{\textcircled{a}}b)^{d}aa^{\textcircled{a}},
$$

$$
((1+a^{\textcircled{a}}b)^{d}aa^{\textcircled{a}}y)^{*} = (1+a^{\textcircled{a}}b)^{d}aa^{\textcircled{a}}y.
$$

We easily verify that

$$
(1 + a^{\textcircled{a}}b)^{d}a^{\textcircled{a}} = (1 + a^{\textcircled{a}}b)^{d}a^{\textcircled{a}}z(1 + a^{\textcircled{a}}b)^{d}a^{\textcircled{a}},
$$

$$
((1 + a^{\textcircled{b}}b)^{d}a^{\textcircled{a}}z)^{*} = (1 + a^{\textcircled{b}}b)^{d}a^{\textcircled{a}}z,
$$

where $z = a^2 a^{\textcircled{d}} y$.

Clearly, $[(1 + a^{\textcircled{d}})a^2 a^{\textcircled{d}}]^d = (1 + a^{\textcircled{d}}b)^d a^{\textcircled{d}} \in \mathcal{A}^{(1,3)}$. By virtue of Theorem 1.1, $(a+b)aa^{\circledD} = (1+a^{\circledD}b)a^2a^{\circledD} \in \mathcal{A}^{\circledD}$.

Step 2. Obviously, $a_4b_4 = b_4a_4$. Since $1+a_4^db_4 = 1$, it follows by [\[23,](#page-17-10) Theorem 3.3] that $(a_4 + b_4)^d = \sum_{n=1}^{\infty}$ $i=0$ $(b^d)^{i+1}(-a_4)^i = b_4^d(1 + a_4b_4^d)^{-1}$. Since $b_4 \in \mathcal{A}^{\oplus}$, by virtue of Theorem 1.1 that $b_4^d \in \mathcal{A}^{(1,3)}$. Then we can find a $y \in \mathcal{A}$ such that

$$
b_4^d = b_4^d y b_4^d, (b_4^d y)^* = b_4^d y.
$$

Set $z = (1 + a_4 b_4^d)y$. Then we verify that

$$
b_4^d (1 + a_4 b_4^d)^{-1} = b_4^d (1 + a_4 b_4^d)^{-1} z b_4^d (1 + a_4 b_4^d)^{-1},
$$

$$
(b_4^d (1 + a_4 b_4^d)^{-1} z)^* = (b_4^d y)^* = b_4^d y = b_4^d (1 + a_4 b_4^d)^{-1} z.
$$

Hence, $b_4^d(1 + a_4b_4^d)^{-1} \in \mathcal{A}^{(1,3)}$. In light of Theorem 1.1., $a_4 + b_4 \in \mathcal{A}^{\circledcirc}$.

Step 3. By virtue of Theorem 1.1, $a_1 + b_1$, $a_4 + b_4 \in \mathcal{A}^d$. By virtue of Lemma 2.6,

$$
(a+b)^d = \begin{pmatrix} (a_1 + b_1)^d & z \\ 0 & (a_4 + b_4)^d \end{pmatrix}_p,
$$

where

$$
z = \sum_{\substack{i=0 \ b>0}}^{\infty} [(a_1 + b_1)^d]^{i+2} a_2 (a_4 + b_4)^i (a_4 + b_4)^{\pi}
$$

+
$$
\sum_{i=0}^{\infty} (a_1 + b_1)^i (a_1 + b_1)^{\pi} a_2 [(a_4 + b_4)^d]^{i+2}
$$

-
$$
(a_1 + b_1)^d a_2 (a_4 + b_4)^d
$$

By hypothesis, we have

$$
\sum_{i=0}^{\infty} (1 + a^{\textcircled{d}} b)^i a^i a^{\textcircled{d}} (1 + a^{\textcircled{d}} b)^{\pi} a a^{\textcircled{d}} a \left[(1 - a a^{\textcircled{d}}) b^{\textcircled{d}} (1 + (1 - a a^{\textcircled{d}}) a b^d \right]^{-1}) \right]^{i+2} = 0.
$$

This implies that

$$
\sum_{i=0}^{\infty} (a_1 + b_1)^i (a_1 + b_1)^{\pi} a_2 [(a_4 + b_4)^d]^{i+2} = 0.
$$

Then $(a_1 + b_1)^{\pi}z = 0$; and so $[(a_1 + b_1)^d]^{\pi}z = 0$. In light of Lemma 2.8, $a + b \in \mathcal{A}^{\oplus}$. Moreover, we have $p^{\pi}(a + b)^{\oplus}p = 0$. In view of Lemma 2.5, $a^{\pi}(a+b)^{\textcircled{a}}aa^{\textcircled{a}}=0.$ This completes the proof.

Corollary 3.6. Let $a, b \in A^{\textcircled{d}}$. If $ab = ba$, $a^*b = ba^*$ and $1 + a^{\textcircled{d}}b \in A^{-1}$, then $a+b\in\mathcal{A}^{\textcircled{d}}$.

Proof. Since $1 + a^{\textcircled{d}}b \in \mathcal{A}^{-1}$, we have $(1 + a^{\textcircled{d}}b)^{\pi} = 0$. This completes the proof by Theorem 3.5. \Box

4. applications

Let $M =$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathcal{A})$. The aim of this section is to present the generalized core- EP invertibility of the square matrix M by using the generalized core-EP invertibility of its entries.

Lemma 4.1. Let $b, c \in \mathcal{A}$. If $bc, cb \in \mathcal{A}^{\circledR}$, then $Q := \begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix}$ $c \mid 0$ \setminus has generalized core-EP inverse. In this case,

$$
Q^{\textcircled{d}} = \left(\begin{array}{cc} 0 & b(cb)^{\textcircled{d}} \\ c(bc)^{\textcircled{d}} & 0 \end{array} \right).
$$

Proof. Since $Q^2 = \begin{pmatrix} bc & 0 \\ 0 & cb \end{pmatrix}$, we see that Q^2 has generalized core-EP inverse and

$$
(Q^2)^{\circled{\theta}} = \left(\begin{array}{cc} (bc)^{\circled{\theta}} & 0 \\ 0 & (cb)^{\circled{\theta}} \end{array} \right).
$$

In light of [\[4,](#page-16-5) Lemma 3.4], Q has generalized core-EP inverse and

$$
Q^{\textcircled{d}} = Q(Q^2)^{\textcircled{d}}
$$

=
$$
\begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix} \begin{pmatrix} (bc)^{\textcircled{d}} & 0 \\ 0 & (cb)^{\textcircled{d}} \end{pmatrix}
$$

=
$$
\begin{pmatrix} 0 & b(cb)^{\textcircled{d}} \\ c(bc)^{\textcircled{d}} & 0 \end{pmatrix},
$$

as asserted. \square

We are now ready to prove:

Theorem 4.2. Let $a, d, bc, cb \in \mathcal{A}^{\textcircled{d}}$. If $bd^d = 0, ca^d = 0, a^{\pi}b = 0, d^{\pi}c = 0, a^{\pi}c^* = 0, d^{\pi}b^* = 0,$

then M has generalized core-EP inverse.

Proof. Write $M = P + Q$, where

$$
P = \left(\begin{array}{cc} a & 0 \\ 0 & d \end{array}\right), Q = \left(\begin{array}{cc} 0 & b \\ c & 0 \end{array}\right).
$$

Since a and d have generalized core-EP inverses, so has P , and that

$$
P^d = \left(\begin{array}{cc} a^d & 0 \\ 0 & d^d \end{array}\right), P^{\pi} = \left(\begin{array}{cc} a^{\pi} & 0 \\ 0 & d^{\pi} \end{array}\right).
$$

In view of Lemma 4.1, Q has generalized core-EP inverse. By hypothesis, we check that

$$
P^{\pi}Q = \begin{pmatrix} 0 & a^{\pi}b \\ d^{\pi}c & 0 \end{pmatrix} = 0,
$$

\n
$$
P^{\pi}Q^* = \begin{pmatrix} 0 & a^{\pi}c^* \\ d^{\pi}b^* & 0 \end{pmatrix} = 0,
$$

\n
$$
QP^d = \begin{pmatrix} 0 & bd^d \\ ca^d & 0 \end{pmatrix} = 0.
$$

According to Corollary 3.4, M has generalized core-EP inverse. \Box

Corollary 4.3. Let $a, d, bc, cb \in \mathcal{A}^{\textcircled{d}}$. If

$$
a^{d}b = 0, d^{d}c = 0, bd^{\pi} = 0, ca^{\pi} = 0, b^{*}a^{\pi} = 0, c^{*}d^{\pi} = 0,
$$

then M has generalized core-EP inverse.

Proof. Obviously, $M^* = \begin{pmatrix} a^* & c^* \\ a^* & a^* \end{pmatrix}$ b^* d^* \setminus . By hypothesis, we have $c^*(d^*)^d = 0, b^*(a^*)^d = 0, (a^*)^{\pi}c^* = 0, (d^*)^{\pi}b^* = 0, (a^*)^{\pi}b = 0, (d^*)^{\pi}c = 0.$

Applying Theorem 4.2 to the operator M^* , we prove that M^* has generalized core-EP inverse. Therefore M has generalized core-EP inverse, as asserted. \square

Theorem 4.4. Let $a, d, bc, cb \in \mathcal{A}^{\textcircled{d}}$. If

$$
ab = bd, dc = ca, a^*b = bd^*, d^*c = ca^*
$$

and $a^{\bigoplus}bd^{\bigoplus}c \in \mathcal{A}^{qnil}$, then M has generalized core-EP inverse.

Proof. Write $M = P + Q$, where

$$
P = \left(\begin{array}{cc} a & 0 \\ 0 & d \end{array} \right), Q = \left(\begin{array}{cc} 0 & b \\ c & 0 \end{array} \right).
$$

As in the proof of Theorem 4.2, P and Q have generalized core-EP inverses.

It is easy to verify that

$$
PQ = \left(\begin{array}{cc} 0 & ab \\ dc & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & bd \\ ca & 0 \end{array}\right) = QP.
$$

Likewise, we verify that $P^*Q = QP^*$. Moreover, we check that

$$
I_2 + P^{\textcircled{d}}Q = \left(\begin{array}{cc} 1 & a^{\textcircled{d}}b \\ d^{\textcircled{d}}c & 1 \end{array}\right).
$$

Obviously, we have

$$
\left(\begin{array}{cc} 1 & a^{\textcircled{d}}b \\ d^{\textcircled{d}}c & 1 \end{array}\right) = \left(\begin{array}{cc} 1 - a^{\textcircled{d}}bd^{\textcircled{d}}c & a^{\textcircled{d}}b \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ d^{\textcircled{d}}c & 1 \end{array}\right).
$$

As $a^{\textcircled{d}}bd^{\textcircled{d}}c \in \mathcal{A}^{qnil}$, $1 - a^{\textcircled{d}}bd^{\oplus}c \in \mathcal{A}^{-1}$. This implies that $\begin{pmatrix} 1 & a^{\textcircled{d}}b & a^{\textcircled{d}}b \\ a^{\textcircled{d}}c & a^{\textcircled{d}}c & a^{\textcircled{d}}c \end{pmatrix}$ $d^{\textcircled{d}}c=1$ \setminus is invertible. This implies that $I_2 + P^{\textcircled{d}}Q$ is invertible. By using Corollary 3.6, M has generalized core-EP inverse.

Corollary 4.5. Let $a, d, bc, cb \in \mathcal{A}^{\textcircled{d}}$. If

$$
ab = bd, ca = dc, a^*b = bd^*, ac^* = c^*d
$$

and $bd^{\bigoplus}ca^{\bigoplus} \in \mathcal{A}^{qnil}$, then M has generalized core-EP inverse.

Proof. Analogously to Corollary 4.3, we complete the result by applying Theorem 4.4 to $M^* = \begin{pmatrix} a^* & c^* \\ a^* & a^* \end{pmatrix}$ b^* d^* \setminus .

REFERENCES

- [1] O.M. Baksalary and G. Trenkler, Core inverse of matrices, Linear Multilinear Algebra, 58(2010), 681–697.
- [2] J. Benitez; X. Liu and T. Zhu, Additive results for the group inverse in an algebra with applications to block operators, Linear Multilinear Algebra, 59(2011), 279–289.
- [3] H. Chen and M. Sheibani, Theory of Clean Rings and Matrices, World Scientific, Hackensack, NJ, 2023.
- [4] H. Chen and M. Sheibani, On generalized core-EP invertibility in a Banach algebra, arXiv:2309.09862 [math.FA] 18 Sep 2023.
- [5] H. Chen and M. Sheibani, Generalized weighted core inverse in Banach *-algebras, Filomat, 38(2024), 3691–3706.
- [6] H. Chen; D. Liu and M. Sheibani, Group invertibility of the sum in rings and its applications, Georgian Math. J., $31(2024)$, https://doi.org/10.1515/gmj-2024-2010.
- [7] H. Chen and M. Sheibani, The core inverse of the sum in a ring with involution, Filomat, 38(2024), to appear.
- [8] H. Chen and M. Sheibani, Properties of generalized weighted core inverses in Banach *-algebras, *J. Algebra Appl.*, **23**(2024), to appear.
- [9] J. Chen; H. Zhu; P. Patricio and Y. Zhang, Characterizations and representations of core and dual core inverses, Canad. Math. Bull., 2016, http://dx.doi.org/10.4153/CMB-2016-045-7.
- [10] Y. Gao and J. Chen, Pseudo core inverses in rings with involution, Comm. Algebra, 46(2018), 38–50.

- [11] Y. Gao and J. Chen, The pseudo core inverse of a lower triangular matrix, Rev. Acad. Cienc. Exactas Fis Nat., Ser. A Mat., 113(2019), 423–434.
- [12] Y. Gao; J. Chen; P. Patricio and D. Wang, The pseudo core inverse of a companion matrix, Stud. Sci. Math. Hung., 55(2018), 407–420.
- [13] Y. Ke; L. Wang and J. Chen, The core inverse of a product and 2×2 matrices, *Bull.* Malays. Math. Sci. Soc., 42(2019), 51–66.
- [14] Y. Liao; J. Chen and J. Cui, Cline's formula for the generalized Drazin inverse, Bull. Malays. Math. Sci. Soc., 37(2014), 37–42.
- [15] N. Mihajlovic and D.S. Djordjevic, On group invrtibility in rings, Filomat, 33(2019), 6141–6150.
- [16] N. Mihajlovic, Group inverse and core inverse in Banach and C^* -algebras, $Comm.$ Algebra, 48(2020), 1803–1818.
- [17] D. Mosić, Core-EP inverses in Banach algebras, *Linear Multilinear Algebra*, $69(2021)$, 2976–2989.
- [18] D.S Rakic; N.C. Dincic and D.S. Djordjevic, Group, Moore-Penrose, core and dual core inverse in rings with involution, Linear Algebra Appl., 463(2014), 115–133.
- [19] S. Xu, Core invertibility of triangular matrices over a ring, Indian J. Pure Appl. Math., 50(2019), 837–47.
- [20] S. Xu; J. Chen and X. Zhang, New characterizations for core inverses in rings with involution, Front. Math. China, 12(2017), 231–246.
- [21] D. Zhang and D. Mosić, Explicit formulae for the generalized Drazin inverse of block matrices over a Banach algebra, Filomat, 32(2018), 5907–5917.
- [22] M. Zhou; J. Chen and X. Zhu, The group inverse and core inverse of sum of two elements in a ring, Comm. Algebra, 48(2020), 676-690.
- [23] H. Zou; D. Mosić snd J. Chen, Generalized Drazin invertibility of the product and sum of two elements in a Banach algebra and its applications, Turk. J. Math., $41(2017)$, 548-563.

School of Big Data, Fuzhou University of International Studies and Trade, Fuzhou 350202, China

 $E-mail$ address: λ huanyinchenfz@163.com>