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Abstract. In this paper, we speculate on a possible connection between the Bayes�s law and the Einstein�s 

general relativity equation to support the use of a metric based on an erfc gravitational potential that has been 

recently proposed to provide some cues to open problems in the solar systems. Starting from a basic 

interdependence premise, an analogy between Einstein�s equation and Bayes�s law is used to analyze the 

linear case of a weak field static symmetric massive object, providing a probabilistic context that takes into 

account the probability of presence of a given energy density in its corresponding 4D curved space-time 

manifold. Using the Central Limit Theorem to model globally the very slow process of star formation and 

mathematically express the corresponding probability density, the new framework provides a rationale for 

the emergence of a weighted Newton�s law of gravitation. One key feature of this modified gravity model is 

that it relies on the existence of an intrinsic emergent physical constant s  , a star-specific proper length that 

scales all its surroundings.  
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In its most general configuration, a complex system is a network of heterogeneous and usually simpler 

subsystems that interact among each other to give rise to emergent features that guides its self-organization 

into a more complex system. The description of the whole process simplifies at a given level of 

representation, leading to some emergent properties [1]. These emergent systems are omnipresent in physics, 

chemistry and biology [2]. 

Among the tools that can be used to study such systems and their convergence is the Central Limit Theorem 

[3]. This theorem has been developed over four centuries in the context of searching for the asymptotic 

probabilistic behavior of a sum of independent or quasi-independent random variables. The key feature of 

this theorem, which makes it practical for the study of complex systems, is that although the details of the 

individual sub-processes are unknown, the behavior of the whole system can be predicted, under some non-

restrictive conditions, to converge towards multivariate Gaussian functions.  

In this paper, we use this modeling approach to conjecture about emergent gravity, speculating from a 

possible connection between the Bayes�s law and the Einstein�s general relativity equation. The idea of 

modifying gravity to come up with new relativistic field descriptions has been proposed time and again in 

the last decades to provide among other things alternative explanations to some open problems in astronomy 

and astrophysics [4,5,6]. These extensions aimed at correcting and enlarging Einstein's theory to encompass 

several shortcomings when cosmological, astrophysical, mathematical and quantum mechanical observations 

and objections are taken into account [7,8,9]. In this mindset, in a recent paper [10], the static non-empty 

symmetric geometry described by a metric based on an erfc gravitational potential have been proposed and 

studied in detail. This new metric provides a consistent set of predictions and interpretations regarding some 

open problems in the solar system, like the fly-by anomalies, the secular increase of the astronomical unit, 

the residual Pioneers� delays [11]. 

In the present manuscript, a fundamental question is addressed: can we lay the foundations for an emergent 

model that predicts the existence of an erfc potential using the central limit theorem? In the next section, 

starting from a complementarity that has been pointed out by Wheeler, we propose a comparison between 

Einstein�s equation and Bayes�s law of conditional probabilities and use it to support our analogical and 

speculative argumentation. The whole framework relies on a global probabilistic description of a star 

formation from which a fundamental law of gravitation comes out as a consequence of an asymptotic 

convergence predicted by the Central Limit Theorem. In section 2, we put the general relativity in a 
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probabilistic context and in Section 3, we present the conditions under which a weighted Newton�s law 

automatically emerges from this new scheme and then conclude. 

2. Introducing a probabilistic context in general relativity

Einstein�s gravitation equation, which links the space-time curvature tensor G to the energy-momentum 

tensor T,

G KT= (1)

has been encapsulated by Wheeler as, �Space-time tells matter how to move; matter tells space-time how to 

curve.� [12]. This points out an interesting interdependence that can be used to put general relativity into a 

probabilistic context if this assertion is converted into a general and fundamental premise:

�Space-time curvature (S) and energy momentum (E) are two inextricable descriptive approaches to define 

the physically observable probabilistic universe (U); they must be mutually exploited to describe any subset 

Ui of this universe. The probability of observing and describing a given subset of the universe P(Ui), i.e. the 

joint probability P(Si,Ei), can be studied from two equivalent methods: either by analyzing the curvature of 

space-time  iS   after hypothesizing a given energy momentum iE or by analyzing the energy momentum 

iE under the hypothesis of a given space-time curvature iS . In terms of conditional probabilities, this leads 

to two equivalent descriptions: 

P( ) = P( , ) = P( / )P( ) = P( / )P( )i i i i i i i i iU S E S E E E S S (2)

Using the corresponding probability density function ( )f of these conditional probabilities ( )P and 

rewriting (2) in a 4D Bayesian format, we get:
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In other words, we consider the space-time curvature and the energy momentum tensors as continuous 4D 

random variables and the values of their probability density functions define the probability that these random 

variables have a particular range of values within an infinitesimal space-time interval, providing an estimate 

of the relative likelihood that these random variables have these values in this interval.

This latter equation can be linked to Einstein�s equation (1) through the following analogy:
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In other words, ( / )f S Emn mn can be interpreted as describing the probability of space-time to be curved  

under the conditional probability of observing a given energy momentum density 

( )
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( )f E( )( )mn( )( )( )f E( )( )
mn m , which can be linked to Gmn and Tmn respectively.

3. Emergence of a weighted Newton�s law of gravitation

Under weak field, low speed, classical conditions, only the 00-component of (1) is significant:
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00 00 00 00

1

2
G R g R KT= - = (6)

Applying the previous analogy to such a system and using dimensional analysis, one can associate 

( )00 00/f S E , in (E/L-4), to the probability density of the space-time subset 00S   to be curved given a 

matter-energy 
00E , to 

00G , a curvature component in (L-2):

00 00 1 00( / )f S E k G= (7)

Similarly, 

00

00 00 2 00

00

( )
( / )

( )

f S
f E S k KT

f E
= (8)

where the coefficients k1 and k2 are unit-balancing constants

A way to perform estimate 
00 00( / )f E S is to analyze the very slow process of star formation using a 

simple stochastic model. Assuming that in a remote and isolated part of the Universe, a star is slowly building 

up from the gradual agglomeration of chunks of matter-energy. Considering these chunks as random variables 

described by their own density functions, this process, which involves hydrodynamics, thermodynamics, 

radiation transport, etc, is equivalent, from a global probabilistic point of view, to adding up random 

variables, i.e. making the convolution of their corresponding probability density functions. Since these 

densities respect the Lindeberg conditions [13], in the sense that they are real, normalized, non-negative 

functions with a finite third moment and a scaled dispersion, then the Central Limit Theorem applies and 

predicts that in a flat Euclidean space-time, when the number of random chunks is very large (N��), 

[ ]00 00 1 2( / ) ( ) lim ( ) ( ) ... ( )N
N

f E S f f f f
®¥

µ = * * *x x x x (9)

and the ideal form of the global probability density ( )f x will be a normal multivariate and will tend to the 

following general form: 

//
( ) exp ( ) ( )
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T 1

1 2n 2

1 1
f

22p
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x x x  , (10)

where x is an n dimension random vector measuring the distance from the mean vector � of the distribution, 

and TE[( ), ( ) ]S = - -x � x � is the statistical covariance matrix measuring the expected (E) dispersion of 

this distribution.

For a 4D pseudo-Euclidean static system 4n = , with the quadri-vector ( , , , )ct x y z=x , centered at 

( ,0,0,0)ct=� , Equation (10) can be rewritten as:

2

2 4 2

1
( ) exp

4 2

r
f r

p s s
æ ö

= -ç ÷
è ø

(11)

where r is the Euclidian distance ( )2 2 2 2r x y z= + + from the zero-centered mean of the ( )f r density. 

The diagonal covariance matrix ( )S reduces to 
2s , a weighting parameter that scales the norm of the quadri-

vector x , a Lorentz invariant. This scalar 
2s   is de facto a Lorentz invariant, an intrinsic and emergent 

feature of the central limit process. It reflects the system intrinsic proper length. This specific scale is the 

basic feature that can be used to get a curved space description ( )f r( )( )( ) of the star�s probability density and to 

point out some of its specific inherent properties.
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Indeed, Equation (11) is not practically useful in its present form, since it is only valid in a flat space-time 

that is, when an observer is at infinity from the star or locally, on a geodesic.

In other words, r defines the distance from the apparent star centre as seen from infinity in a hypothetical 

flat space while rr defines the physical curvilinear distance from the star centre in the curved space-time. 

In their simplest algebraic form, the relationship between  and r rr r can be summarized as follows:

0 at 

 at 0

r r s
r

r r r

= = ¥é ù
Þ =ê ú= ¥ =ë û

é ùr r= = ¥r ré ùr r
Þ =rê ú

é ùé ù

ë û0
ê úê ú

0

é ùr r= = ¥r r s

r
(12)

where s is a scale parameter that can be determined from the invariance of s :

2r r ss s= = Þ =s sÞ =s ss sr r sr r s (13)

This leads to making the following change of coordinates:

r

r

s
s
=

r

s
(14)

to get ( )f r )f r , a projection of ( )f r on a manifold of variable curvature described locally by the coordinate

rr . Making this change of coordinates making sure that the normalization of the probability densities in both 

representation spaces is maintained, this leads to:
2

3
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(15)

Equation (15) expresses the probability density of finding the star within an equivalent 3-ball of radius rr
, in a curved manifold under static, symmetric, weak field and low speed conditions. 

Pursing on this analogy, one can define the energy priori probability density by:

00 2

1
( )

tot

f E
M c

= (16)

Taking into account the mapping defined by equation (14)
00( )f S can be estimated in two steps. First, an 

invariant reference surface, valid both in the flat and curved descriptions, must be established. This is done 

assuming that the total energy of the star is distributed on the reference 2-spheres of constant curvature 21/s
in both representations: 

00 002

1
( ) ( )

4
r r

f S f Ss sps
( )

00 024
00 0

( )
00 000 000 000 0s s00 0000 0200 000 0

4
00 000 0 r00 0000 000 000 000 000 000 000 000 000 000 000 000 000 0ps

( )sr

1
( )( )( )

1
( )( )

00 00
( )( )

00 000 000 0
( )

00 00 r00 0000 000 0
( )( )

00 0000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 0
( )s( )( )

r
( )( ) , (17)

Second, a value of 00( )( )rf S valid all over the flat space is obtained by weighting the by the corresponding 

3-ball volumes defined at r and s respectively:

3
3

3b. 2
00 2 2 3

33b.

4

1 1 3( ) 4
44 4

3

r

r

r
V r

f S
V s

p

ps
pps ps ss

2

2 2 3

1 11 13b. 3 43b.

2 2 3

1 13b. 3
2 2 32 2 32 2 32 2 34 42 2 32 2 32 2 32 2 3

1 11 11 11 13b.3b.1 11 13b. r
2 2 32 2 32 2 32 2 3

ps
2 2 32 2 3

(18)

which, using Equation (14), leads to an expression for 00( )( )rf S ) )) valid at any corresponding r position: 

3

00 2 3 3

1
( )

4 4
r

f S
r r

s s
ps p

( )
r

( )( )
2 3 32 3 32 3 3r r2 3 32 3 3

s s3

2 3 32 3 32 3 32 3 3r rr r2 3 32 3 34 44 42 3 32 3 32 3 32 3 3

1

4 42 3 3

s s
2 3 32 3 32 3 3

s s
(19)

In other words, the mapping resulting from Equation (14) guarantees that the energy-momentum tensor 

00 r
T

r
affecting the curvature at a radial distance rr in the curved space is consistent with the energy-
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momentum tensor component 
00 r

T that would be measured in an ideal flat space at the corresponding 

distance r from the Gaussian density center.

Substituting equations (15) and (19) in  equation (6) leads to the description of a central force field as a 

function of the curvilinear distance from the star center:
2 2 2 2

2

3 25

2
�(r) exp

24

Kc Mc

rr

s s

ps

22s s
2

3

2
�(r) exp

3

2Kc s sMcs ss s
22r 22r 22

, (20)

where K = k3/k1 (with k1 and k2 in L-2 and k3 in L4 E-1) and where, from now on, the curved hat over the 

coordinate r is omitted ( )r r® )r r®r rr r . 

This Laplacian can be solved to get an expression for the magnitude of the linear radial gravitational field:

2 2 2

3 22

2
( ) �(r) exp

24

Kc Mc
g r

rr

s

ps

2 2 22 2 2s2 2 22 2 2

3
2

2
�(r) exp

3

2Kc Mc
�(r)

ss
22r 22r 22

, (21)

which reduces to the Newton description for large r values.

The gravitational potential can be obtained, if Equation (21) is integrated:

( )

2 2

3

0

2
( ) ( ) ( )

2 24

r

erfc

Kc Mc
r g r dr erfc r

r

p s

sps

æ ö æ ö
F = = = Fç ÷ ç ÷ç ÷ è øè ø

ò (22)

where the integration limits, from 0 to r , are consistent, according to Equation (14), with integration from 

 to 0r = ¥ in the corresponding flat space representation, which leads to an erfc potential. In other words, 

in a flat space, the gravitational potential is fixed to zero at r = ¥ and the Minkowskian metric is recovered 

under this condition. But when the flat model is projected into a curved space, according to the inverse 

relationship (14) between  and r rr r , equation (22) predicts a constant potential at r=infinity. This is the 

particular feature of an erfc potential which leads to an original description of the space-time surrounding a 

massive object as previously published [7,8]. Equation (22)  also converges towards the Newton limit, if the 

constant term included in the erfc function is arbitrarily subtracted, which leads to an erf potential that tends 

towards a 1/r behavior at large r values. 

4 Conclusion

Under the paradigm of a self-organizing universe, the laws of physics should emerge from the space time 

and matter energy distribution. From a global perspective, the analogical and speculative approach presented 

in this paper can be seen as a heuristic strategy to mathematically take into account Mach�s principle [9]. On 

top of Einstein�s arguments [14], Equation (3) provides a rationale based on a fundamental law of 

probabilities, the Bayes�s law [15]. Applying this interdependence principle and the Central Limit Theorem, 

we have pinpointed a possible explanation for the emergence of a weighted Newton�s law of gravitation in 

such a system. One key feature of the present theory [16] is that it is based on the existence of an intrinsic 

star specific physical constant, the parameter 2s , which automatically emerges from a convergence process 

described by the Central Limit Theorem. As reported in [7] and [8], the new erfc potential once incorporated 

into a spherically symmetric metric, describes various features of the resulting modified Schwarzchild 

geometry. For examples, computing the systematic errors that emerge when the effect of s is neglected,  the 

Hubble constant 0H can be linked to Suns and the secular increase of the astronomical unit AUV to Earths
, which leads to accurate numerical predictions: ( ) 1

0 AU74.42(.02) km/s / Mpc and 7.8cm-yrH V -= @ . 

Moreover, investigating the expected impacts of the erfc potential on the flybys anomalies and the residual 

Pioneers' delay lead to corrections for the osculating asymptotic velocity of a flyby at the perigee of the order 

of 10 mm/s and an inward radial acceleration of  10 28.34 10 m/s-´ affecting the Pioneer space crafts. 
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To the best of our knowledge, the Bayesian paradigm proposed in this paper has never been investigated. 

Bayesian approaches have extensively been used to explore complex problems from a probabilistic point of 

view in numerous fields of science [17,18], including quantum physics [19], astronomy [20], artificial 

intelligence [21] and neuroscience [22],to name a few examples. The present model adds up to this exhaustive 

list. 
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