
Extended Abstract Modified TA-Prioritized: Task and Path Planning for Multi-Agent Pickup and Delivery 1

A Replication Study of the TA-Prioritized Algorithm
with a Modified Deadlock Avoidance Method
NICOLAAS PIETER CAWOOD

Corresponding author: pieter.cawood@gmail.com

Compiled June 4, 2020

This paper proposes a modified deadlock avoidance method for the TA-Prioritized algorithm by Liu et
al. [1]. Their algorithms were developed for the offline Multi-Agent Pickup and Delivery (MAPD) prob-
lems where a team of agents have delivery tasks with known release times (when the tasks are ready for
pickup.) Offline MAPD problems exist in settings such as warehouses and factories where the release
times of tasks are known in advance and Liu et al. [1] make use of this information to compute a good
task sequence for each agent using a travelling salesman problem (TSP) solver. The task sequences are
then used to plan agent paths accordingly and the deadlock avoidance method proposed attempts holding
the pickup locations (keeping an agent stationed at a vertex) if an agent has reached it before the release
time and retrying a 1 timestep delayed path from the agent’s initial parking location if any of the agent’s
tasks’ path finding fails.

1. INTRODUCTION

In an MAPD problem setting there exists multiple robots in a
shared environment intending to have the lowest makespan
and collision-free paths planned over the entire set of tasks
distributed amongst agents. Multi-Agent Path Finding (MAPF)
problems are known to be NP-hard, however, they might be
computed within polynomial time when treated as a max-flow
problem when allowing task goals to be swapped [2].

The TA-Hybrid and TA-Prioritized algorithms were designed
for an offline setting, where the tasks for an instance and their
release times (time that collection is ready) are known before
initialising the system. There are also settings of lifelong (online)
problems, where tasks are only known to exist after their release
times have expired. Online MAPD algorithms such as the one
studied by Ma et al. [3] may also be used to solve offline prob-
lems, however, Liu et al. [1] mention that they do not utilise all
of the information and may compute less effective solutions.

The main objective of this paper is to replace the original
"reserving dummy paths" [1] deadlock avoidance method and
conclude whether it improves makespans by implementing it
for the TA-Prioritized algorithm.

2. RELATED WORK

The MAPD problem is related to the Generalized Task Assign-
ment and Path Finding (G-TAPF) problem [4] where each agent
may have multiple tasks. Nguyen et al. [4] proposed using an-
swer set programming to perform both the task assignment and
path finding, however, their results found that it only scales to

20 agents and the number of tasks has to be less than the number
of agents.

Fig. 1. Kiva Robotics system. Now owned by Amazon and
used in their sortation centers as an autonomous delivery
system. [5].

Nunes et al [6] published a taxonomy paper on task allocation
problems with temporal constraint and Liu et al. [1] described
the most related approach as treating the task assignment prob-
lem as a travelling salesman problem (TSP.) The travelling sales-
man problem is a well known NP-complete problem and pickup
and delivery travelling salesman problems receive increasing
interest in recent studies [7–9].

The MAPF component has similarly attracted many re-
searchers and there are several different methods studied since
it is also NP-hard to solve optimally [10]. There exist Anony-
mous Multi-Agent Path Finding (AMAPF) methods that allow



Extended Abstract Modified TA-Prioritized: Task and Path Planning for Multi-Agent Pickup and Delivery 2

solving the path finding in polynomial time using max-flow
algorithms such as [11] for problems where agent goals may be
swapped. The MAPF problem may not swap agent goals on
the other hand and it may be solved with specialised solvers or
other combinatorial methods and [12, 13] are suggested surveys
on them.

3. OVERVIEW

This paper is structured from the following section with the
theoretical background of the TA-Prioritized algorithm. The
problem is then divided into a two sub-problems: to find good
task sequences for each agent using a Travelling Salesman Prob-
lem (TSP) solver and then to solve the MAPF for each agent
to its allocated tasks’ endpoints. Modifications to the original
algorithm’s deadlock avoidance method are then discussed and
the algorithm was then implemented and analyzed using the
original instance data sets.

4. THEORETICAL BACKGROUND

The MAPD problem is formalised [1] as a set of agents, A =
{a1, ..., aM} with a set of task T = {t1, ..., tN} and an environ-
ment as an undirected graph G = (V, E), with vertices V that
contain locations of the environment and edges E that permit
travelling between possible vertices. Each agent has an assigned
parking location pi ∈ V where the agent is initially located and
moves to this location only again once it has finished executing
all of its tasks. Each task is characterised by a pickup location
(start) sj ∈ V, delivery location (goal) gj ∈ V and release time
(the time when the pickup is available) rj ∈ V.

Each agent has to move from its parking location to its first
task’s pickup location and may start moving to its delivery loca-
tion after the release time has expired. Agent paths may wait in a
vertex (hold it) for a period of timesteps or move to a neighbour-
ing vertex if it does not cause a collision. Once an agent reaches
its current task’s delivery location, it immediately assigns its next
task as its current task and assigns the task’s pickup location as
its next endpoint. There are two types of collisions that have to
be avoided; the first is called vertex collisions, which occur when
two agents occupy the same vertex at a given timestep and the
second type called edge collisions occur when two agents move
to each other’s location within the same timestep.

A. Task assignment
TA-Prioritized first computes an ordered task sequence for each
agent. The primary objective of MAPD is to minimize the
makespan- which is described as the timestep when all tasks
deliviries are complete [14].

Liu et al. [1] first construct a directed weighted graph for
all the tasks using their endpoint locations and release times to
determine the weights. They then use a TSP solver to compute
improved sets of task sequences and distribute them among all
of the MAPD instance agents.

A.1. Directed weighted graph

Liu et al. [1] constructed a directed weighted graph G′ = (V′, E′)
with V′ = A ∪ T. V′, which contains an integer representing the
order of each agent along with integers representing each task
of the instance. There are four types of edges in E′, which each
have an integer weight reflecting a timestep and they are listed
below:

1. The first type, max(dist(pi, sj), rj), computes the weight
as the distance from ai’s parking location to its first task’s

pickup location sj. If the agent arrives at the pickup location
before the task’s release time. The weight is taken as release
time instead.

2. The second edge type, dist(si, gi) + dist(gi, sj), computes
the edge weight from and agent’s current assigned task’s
pickup location si to its delivery location gi and then to its
pickup location of its next task sj.

3. The third type, dist(si, gi), computes the edge weight from
the agent’s last task’s pickup location si to its respective
delivery location gi.

4. And the last type is an edge with zero weight as the agent
has finished its tasks and does not add to the makespan any
further.

The concept is for G′ to be a complete graph that contains Hamil-
tonian cycles that may be divided into M partitions to allocate a
sequence to each agent.

A.2. TSP Solver

Liu et al. [1] then made use of the extended Lin-Kernighan-
Helsgaun TSP solver (LKH-3) [15] to improve the hamiltonian
cycles of G′ to more efficient sequences of task execution. The
graph is loaded and configured as a Pickup-and-delivery prob-
lem with time windows, and the solver is found to deliver good
task sequences.

B. Path finding
Once the task sequences have been computed, TA-Prioritized
then performs prioritized path planning based on each agent’s
execution time. Liu et al. [1] solve the Multi-Agent Path Find-
ing (MAPF) problem by planning agent paths one by one in
decreasing order of their execution times. The algorithm starts
by calculating each agent’s execution time by finding paths for
its entire sequence. The agent with the highest execution time’s
path is stored, while the others are reinitialised to be computed
again. The algorithm then finds the next agent with the highest
execution time while avoiding collision with the path already
found for the previous agent. This cycle continues until each
agent’s path for its entire task sequence has been calculated. This
approach aims to minimize the number of constraints that higher
execution-time agents have to keep the makespan minimal.

The paths of each agent are found as a concatenation of sub-
paths for all of its allocated tasks. The sub paths are computed
from the parking location (for the agent’s first task only) or deliv-
ery locations to the next task’s pickup location and then another
sub-path from this pickup location to its respective delivery lo-
cation. This cycle continues until the last delivery is complete
and a sub-path is then computed back to the agent’s parking
location.

The paths may be found by an A* search in the space of
location-time pairs (x, t) and TA-Prioritized plans the paths with-
out backtracking as it avoids deadlocks with a method referred
to as "reserving dummy paths". The dummy paths may also be
found with an A* search from every sub-path’s goal location to
the agent’s parking location. The dummy paths are replaced by
the agent’s new calculated path to its goal after every iteration
and agent paths have to avoid collisions with other agents’ paths
and their dummy paths. Agents never move along their dummy
paths, except for the last one that takes the agent back to its
parking location from its last delivery location. Collision free
paths are guaranteed to exist for each agent when the MAPD
instance is regarded as well-formed and in this case, no path
should not transverse parking locations.



Extended Abstract Modified TA-Prioritized: Task and Path Planning for Multi-Agent Pickup and Delivery 3

Algorithm 1. TA-Prioritized

Input G, agents (A), tasks
Output none

1: sequences← TaskAssignment(G, agents, tasks)
2: paths← ∅
3: closed← ∅
4: while size of closed 6= size of A do
5: a← HighestExecutionTime(∀A /∈ closed)
6: for each task in sequences[a] do
7: path1← PickupSubPath(G, paths, sj)
8: path2← DeliverySubPath(G, paths, gj)
9: paths[a]← paths[a] + (path1 + path2)

10: end for
11: closed← closed + a
12: end while

5. MODIFICATIONS

A. Deadlock avoidance modification
The TA-Prioritized deadlock avoidance method- "reserving
dummy paths", was replaced with modifying the A* search to
attempt holding the pickup location of a task for as long as the
release-time of the task has not yet expired. If a higher priority
agent’s path leads to the same pickup location, the A* search
finds a path for the current (lower priority) agent to the near-
est safe neighbouring vertex of the pickup location (or to other
vertices), and finds the path back to the task’s pickup location
should it become safe again. The goal is to keep the agent as
close as possible to the pickup location, instead of holding the
agent’s initial location, which might be constraint more when
planning the path back to the pickup location.

Deadlocks still occur and the path planning might fail to find
any safe path once the agent gets surrounded by more than one
higher priority agent, which results in a failed A* search. When
this occurs, the agent path is recalculated after holding the initial
parking location for 1 timestep.

The original algorithm makes use of the final dummy path
to make the agent travel back to its parking location and this
modification requires an additional sub-path calculated from
the agent’s last delivery location to its parking location.

Algorithm 2. Modified TA-Prioritized

Input G, agents (A), tasks
Output none

1: sequences← TaskAssignment(G, agents, tasks)
2: paths← ∅
3: closed← ∅
4: while size of closed 6= size of A do
5: while a.path = False do
6: a← HighestExecutionTime(∀A /∈ closed)
7: while path1 = False or path2 = False do
8: for each task in sequences[a] do
9: path1← PickupSubPath(G, paths, sj, rj)

10: path2← DeliverySubPath(G, paths, gj)
11: paths[a]← paths[a] + (path1 + path2)
12: end for
13: paths[a]← paths[a] + ParkingSubPath(G, paths, pi)
14: closed← closed + a
15: end while

*Modifications in blue

Fig. 2. A 33×46 grid with 180 agents and 2000 tasks in simula-
tion.

TA-Hybrid (Original results[1]) TA-Prioritized (Original results[1])
Modified

TA-Prioritized

f agents makespan
runtime

(secs)
makespan

runtime

(secs)
makespan

runtime

(mins)

10 1087 13 1094 10 1087 0.4

20 612 38 608 21 610 3.2

1 30 528 118 546 35 547 12.1

40 525 182 534 44 549 24.1

50 525 727 540 58 535 32.1

10 1048 10 1056 10 1046 0.5

20 561 23 569 20 554 1.1

2 30 385 38 394 29 403 1.9

40 323 94 328 39 335 3.6

50 300 130 327 44 324 4.9

10 1039 10 1054 10 1044 0.4

20 549 19 551 19 538 1.0

5 30 377 21 370 29 372 1.9

40 285 31 289 41 288 3.3

50 241 17 244 48 248 4.8

10 1045 10 1036 10 1048 0.5

20 541 19 559 19 532 1.1

10 30 373 21 369 19 371 1.9

40 285 31 294 40 282 3.3

50 241 57 236 50 235 4.8

10 1037 11 1045 10 1041 0.4

20 539 14 535 19 529 1.0

500 30 362 21 370 29 364 1.7

40 280 22 275 39 280 3.0

50 231 28 235 50 233 4.5

average 532 30 538 30 537 4.68

Table 1. Small warehouse results.

6. EXPERIMENTAL RESULTS

The modified TA-Prioritized algorithm was implemented in
python 3 and was ran on a PC with an i7 CPU at 2.6 GHz with 16
GB installed RAM. An agent-based modelling framework called
Mesa [16] was used to simulate the computed MAPF instances.
The source code may be found on GitHub.

The original map, task and TSP sequence instance data
were supplied by the authors and used to compute makespans
that may be compared to the original results. The runtimes
(program execution) captured were considerably larger than the
original findings since this implementation was done in Python-
a dynamically typed programming language as opposed to
the original results found with c++. The deadlock avoidance
modification is expected to reduce the runtimes and since the
main objective of MAPD problems is to compute the lowest
makespans- only the makespans are considered to compare the
results.

https://github.com/Pieter-Cawood/M-TA-Prioritized-MAPD


Extended Abstract Modified TA-Prioritized: Task and Path Planning for Multi-Agent Pickup and Delivery 4

TA-Hybrid (Original results[1]) TA-Prioritized (Original results[1])
Modified

TA-Prioritized

f agents makespan
runtime

(secs)
makespan

runtime

(secs)
makespan

runtime

(mins)

60 991 500 1045 507 1009 79.5

90 699 637 721 789 729 226.7

2000 120 556 1091 578 1098 563 459.7

150 479 1803 524 1317 505 593.3

180 419 2457 475 1683 470 1162.5

average 629 1298 669 1079 655 504

Table 2. Large warehouse results.

A. Small warehouses
The original small warehouse instances were simulated for a
total of 500 tasks each. Each instance includes 5 different fre-
quencies of tasks being released and they include frequencies of
1, 2, 5, 10 and 500 tasks per timestep. The results show that the
modified TA-Prioritized algorithm’s makespan was lower than
the other algorithms in three more instances than before and its
average makespan was reduced by 1 timestep.

B. Large warehouses
The original large warehouse instances were simulated for a total
of 2000 tasks each. All tasks were released at the first timestep.
The modified TA-Prioritized algorithm’s results almost consis-
tently improved the makespans for the large warehouse instance
and the average makespan was reduced by 14 timesteps.

7. CONCLUSION AND FUTURE WORK

A modified deadlock avoidance method was proposed in this pa-
per by replacing the original "reserving dummy path" [1] dead-
lock avoidance method. The modification was implemented
for the TA-Prioritized algorithm and the results show a minor
improvement for smaller instance makespans and a more signif-
icant improvement for the large instance makespans.

The modification was only implemented for the TA-
Prioritized algorithm, and future work may modify other algo-
rithms that use dummy paths as a deadlock avoidance method
to provide a richer set of results for analysis.

REFERENCES

1. M. H. Liu, H. Ma, J. Li, and S. Koenig, “Task and path planning for
multi-agent pickup and delivery,” in AAMAS, (2019).

2. W. Hönig, S. Kiesel, A. Tinka, J. W. Durham, and N. Ayanian, “Conflict-
based search with optimal task assignment,” in AAMAS, (2018).

3. H. Ma, J. Li, T. K. S. Kumar, and S. Koenig, “Lifelong multi-agent path
finding for online pickup and delivery tasks,” CoRR abs/1705.10868
(2017).

4. V. Nguyen, P. Obermeier, T. C. Son, T. Schaub, and W. Yeoh, “General-
ized target assignment and path finding using answer set programming,”
in Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI-17, (2017), pp. 1216–1223.

5. “Kiva systems’ robots shuttled merchandise around a
gilt groupe distribution center in shepherdsville, ky.”
Available at https://bostonglobe-prod.cdn.arcpublishing.
com/resizer/_xPRAp2x2DM90dvR1xpZzv5hnEo=/1024x0/
arc-anglerfish-arc2-prod-bostonglobe.s3.amazonaws.com/public/
32LCY3DSHAI6DFFXFPJTA4U56U.jpg (2012).

6. E. Nunes, M. Manner, H. Mitiche, and M. Gini, “A taxonomy for task
allocation problems with temporal and ordering constraints,” Robotics
Auton. Syst. 90, 55–70 (2017).

7. E. Osaba, F. Diaz, E. Onieva, P. López-García, R. Carballedo, and
A. Perallos, “A parallel meta-heuristic for solving a multiple asymmetric
traveling salesman problem with simulateneous pickup and delivery
modeling demand responsive transport problems,” in International

Conference on Hybrid Artificial Intelligence Systems, (Springer, 2015),
pp. 557–567.

8. K. Helsgaun, “An extension of the lin-kernighan-helsgaun tsp solver for
constrained traveling salesman and vehicle routing problems,” Roskilde:
Roskilde Univ. (2017).

9. S. Yoon and J. Kim, “Efficient multi-agent task allocation for col-
laborative route planning with multiple unmanned vehicles,” IFAC-
PapersOnLine. 50, 3580 – 3585 (2017). 20th IFAC World Congress.

10. J. Yu and S. M. LaValle, “Planning optimal paths for multiple robots
on graphs,” in 2013 IEEE International Conference on Robotics and
Automation, (IEEE, 2013), pp. 3612–3617.

11. H. Ma and S. Koenig, “Optimal target assignment and path finding for
teams of agents,” arXiv preprint arXiv:1612.05693 (2016).

12. A. Felner, R. Stern, S. E. Shimony, E. Boyarski, M. Goldenberg,
G. Sharon, N. Sturtevant, G. Wagner, and P. Surynek, “Search-based
optimal solvers for the multi-agent pathfinding problem: Summary and
challenges,” in Tenth Annual Symposium on Combinatorial Search,
(2017).

13. H. Ma, S. Koenig, N. Ayanian, L. Cohen, W. Hönig, T. Kumar,
T. Uras, H. Xu, C. Tovey, and G. Sharon, “Overview: Generaliza-
tions of multi-agent path finding to real-world scenarios,” arXiv preprint
arXiv:1702.05515 (2017).

14. K. Okumura, M. Machida, X. Défago, and Y. Tamura, “Priority inheri-
tance with backtracking for iterative multi-agent path finding,” CoRR
abs/1901.11282 (2019).

15. K. Helsgaun, “An extension of the lin-kernighan-helsgaun tsp solver for
constrained traveling salesman and vehicle routing problems,” (2017).

16. D. Masad and J. Kazil, “Mesa: an agent-based modeling framework,”
in 14th PYTHON in Science Conference, (2015), pp. 53–60.

https://bostonglobe-prod.cdn.arcpublishing.com/resizer/_xPRAp2x2DM90dvR1xpZzv5hnEo=/1024x0/arc-anglerfish-arc2-prod-bostonglobe.s3.amazonaws.com/public/32LCY3DSHAI6DFFXFPJTA4U56U.jpg
https://bostonglobe-prod.cdn.arcpublishing.com/resizer/_xPRAp2x2DM90dvR1xpZzv5hnEo=/1024x0/arc-anglerfish-arc2-prod-bostonglobe.s3.amazonaws.com/public/32LCY3DSHAI6DFFXFPJTA4U56U.jpg
https://bostonglobe-prod.cdn.arcpublishing.com/resizer/_xPRAp2x2DM90dvR1xpZzv5hnEo=/1024x0/arc-anglerfish-arc2-prod-bostonglobe.s3.amazonaws.com/public/32LCY3DSHAI6DFFXFPJTA4U56U.jpg
https://bostonglobe-prod.cdn.arcpublishing.com/resizer/_xPRAp2x2DM90dvR1xpZzv5hnEo=/1024x0/arc-anglerfish-arc2-prod-bostonglobe.s3.amazonaws.com/public/32LCY3DSHAI6DFFXFPJTA4U56U.jpg

	Introduction
	Related work
	Overview
	Theoretical background
	Task assignment
	Directed weighted graph
	TSP Solver

	Path finding

	Modifications
	Deadlock avoidance modification

	Experimental results
	Small warehouses
	Large warehouses

	Conclusion and Future work

