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Abstract

A careful review of the literature reveals that electrodynamics is not free of
theoretical problems. For instance, Peskin and Schroeder say in their book on
Quantum Field Theory (QFT): “In fact, we will not discuss canonical quanti-
zation of the electromagnetic field at all in this book. It is an awkward subject,
essentially because of gauge invariance”. Additionally, although many texts
treat the components of the electromagnetic potential as a 4-vector Aµ, Wein-
berg argues in his QFT textbook: “...there is no ordinary four-vector field for
massless particles of helicity ±1”. The renormalization procedure is another
problematic topic and Feynman called it in his QED book “a dippy process”.
These alarming quotations encourage rigorous examination of the mathemat-
ical framework of electrodynamics, that this work undertakes. It proves sev-
eral quite unknown electromagnetic properties, and one of which explains why
Weinberg’s previous statement is right.
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1 Introduction

A careful observation of the literature indicates quite unknown problematic aspects

of the theoretical structure of quantum electrodynamics (QED). Contradictory as-

sertions of textbooks illustrate this unfortunate situation. For example, Feynman

stated: quantum electrodynamics is “the jewel of physics–our proudest possession”

(see [1], p. 28). Similarly, Griffith says that “the quantum theory of electrodynamics

was perfected by Tomonaga, Feynman, and Schwinger in the 19405” (see [2], p. 2).

The plain meaning of these statements is that QED is regarded as a flawless theory.

In contrast, Peskin and Schroeder state in their textbook on Quantum Field The-

ory (QFT): “In fact, we will not discuss canonical quantization of the electromagnetic

field at all in this book. It is an awkward subject, essentially because of gauge in-

variance” (see [3], p. 79). Obviously, Peskin and Schroeder point out that QED is

not a perfect theory and that its gauge invariance element is a problematic QED is-

sue. However, gauge invariance is regarded as a crucial part of the presently accepted

physical theories. For example, the review article of Jackson and Ocun [4] is dedicated

to this topic, and they say that “The principle of gauge invariance plays a key role in

the standard model”. Furthermore, while many texts treat the 4 components of the

electromagnetic potential as a 4-vector Aµ (see e.g., [5], p. 48; [4]), Weinberg clearly

negates this issue and states: “...there is no ordinary four-vector field for massless

particles of helicity ±1” (see [6], p. 251).

Another problem is the infinite energy that is associated with the field of a point-

like charge and the renormalization process that aims to settle it. Dirac said that

renormalization has an ”illogical character” [7] whereas Feynman derisively called it

“a dippy process” (see [1], 127). An analogous opinion is put forward in Ryder’s QFT

textbook (see [8], p. 390). In this book, Ryder compares quantum divergences with

classical ones and says: “In the quantum theory, these divergences do not disappear;

on the contrary, they appear to get worse, and despite the comparative success of
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renormalisation theory the feeling remains that there ought to be a more satisfactory

way of doing things.”

These excerpts clearly indicate that the current theoretical structure of electrody-

namics deserves a rigorous examination. This is a generally useful conclusion because

rigorous examination can only improve the status of scientific theories. The primary

purpose of this work is to examine well-established experimental data together with

theoretical principles and show erroneous elements in the present mathematical struc-

ture of electrodynamics. Although many erroneous issues are pointed out below, this

work does not claim that it shows all electromagnetic errors. The analysis uses funda-

mental physical theoretical elements, such as special relativity (SR), the least action

principle, etc.

The discussion uses units where h̄ = c = 1. In these units, there is one type of

dimension, and [Ln] denotes the power n of the length unit that designates the dimen-

sion of the relevant variable. The metric is diagonal and its entries are (1,-1,-1,-1).

The standard notation is used, and r sometimes denotes the four space-time coordi-

nates r = (t, x, y, z). The paper is organized in sections that are dedicated to specific

electrodynamics issues. The second section discusses problematic points of electro-

magnetic fields, and the third section discusses problematic points of electromagnetic

potentials. The fourth section analyzes gauge transformations. The fifth section dis-

cusses the relations between charges and photons. The sixth section shows how to

construct a coherent relativistic form for the potential components of radiation fields.

The seventh section shows how the Darwin Lagrangian (see [5], pp. 179-182, [9], pp.

593-595) and the corresponding Breit interaction treat bound fields in a form that is

suitable for the least action principle. The eighth section discusses the self-field of a

charge. The last section comprises concluding remarks.
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2 The Electromagnetic Fields

Let us examine the radiation electromagnetic fields and the bound electromagnetic

fields. The hydrogen atom is useful for this end and the Schroedinger and the Dirac

equations adequately describe the states of this atom. Consider the ground state 1s

of this atom and an incoming photon whose energy equals the difference between the

2p atomic state and its 1s state. The transition between these states is an allowed

transition (see e.g. [10], p. 254). This process proves that the spin (namely, helicity)

and the parity of the photon are 1−. The photon part of the report of the particle data

group (PDG) [11] confirms these attributes. Moreover, the Dirac and the Schroedinger

theories use the electronic states of the hydrogen atom and define the spin and parity

of each energy level of this atom. The definitions of these successful theories in

terms of the electronic state completely ignore the atomic bound electromagnetic

field. Therefore, either this bound field represents no particle or the spin and parity

of this particle are 0+. The Wigner’s work [12] is relevant to this issue because it

proves that the state of a quantum system takes a definite spin. Hence, it supports

the following outcome:

Conclusion: Radiation electromagnetic fields and bound electromag-
netic fields are different physical objects. Hence, a coherent electro-
magnetic theory should treat them separately.

The present structure of electrodynamics relies on the variational principle, that

uses the least action of the system. The action is the appropriate integral of a given

Lagrangian/Lagrangian density. Thus, Landau and Lifshitz utilize this principle in

their book on classical electrodynamics [5], and this principle is also the basis of the

present QFT structure [3,6]. The electromagnetic field term of the Lagrangian density

of these theories is

LEM =
1

16π
FµνF

µν (1)

(see [5], p. 73; [3], p. 78). Here the electromagnetic fields F µµ is the sum of radiation
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fields F µν
R and bound fields F µν

B

F µν = F µν
R + F µν

B (2)

However, the foregoing discussion proves that these fields represent different physical

objects.

Conclusion: the electromagnetic fields term (1) of the Lagrangian
density of the present form of electrodynamics is an erroneous ex-
pression.

3 The Electromagnetic Potentials

Landau and Lifshits show the Lienard-Wiechert 4-potential of a given charge e

Aµ = evµ/(Rνv
ν) (3)

(see [5], p. 174). Here Rν and vν are respectively the 4-vector from the retarded

position of the radiating charge to a given point at the laboratory, and the retarded

velocity of the charge. The expression (3) is a 4-vector because it divides the velocity

4-vector by the scalar product of two 4-vectors.

The electromagnetic fields that are derived from (3) are (see [9], p. 657; [5], p.

175)

EEE = e
1− v2

(R−R · vR · vR · v)3
(RRR− vvvR) +

e

(R−R · vR · vR · v)3
RRR× [(RRR− vvvR)× aaa] (4)

and

BBB = RRR×EEE/R. (5)

Here RRR is the 3-vector that is related to the retarded 4-vector Rµ, and vvv and aaa denote

the charge’s retarded velocity and acceleration, respectively. The first term of (4) and

that of (5) are called velocity fields and the second ones are called acceleration fields.

At a large enough distance (called the far zone) the velocity fields decrease like R−2

and they are bound fields, whereas the acceleration fields decrease like R−1 and they

are radiation fields. Therefore, velocity fields can be ignored at the far zone.
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These expressions are mathematically correct descriptions of the potentials that

yields the sum of radiation electromagnetic fields and bound electromagnetic fields.

However, the previous analysis proves that bound fields and radiation fields are differ-

ent physical entities. Therefore, although (3) is a mathematically correct expression

of the potentials, it is physically unacceptable.

This is an inherent problem of the 4-potential: As a physical expres-
sion, it requires a coherent mathematical basis. However, the correct
mathematical expression is unacceptable.

This is a special aspect of theoretical physics. It shows that a correct mathe-

matical expression can be physically unacceptable. In mathematical parlance, this

example shows that a correct mathematical form is just a necessary condition for

an acceptable physical expression. (However, this condition is not sufficient for this

issue.)

Remark: The mathematical correctness of the Lienard-Wiechert 4-potential jus-

tifies its utilization in calculations. This work sometimes takes advantage of this

matter.

Another problematic feature of the 4-potential (3) is that it depends on the coor-

dinates of a charge that may be inaccessible to the laboratory coordinates where the

action is calculated. For example, charges of the Andromeda galaxy that emit radia-

tion are inaccessible to persons working in a laboratory on planet Earth. Therefore, it

is unuseful for the calculation of the action, which is a crucial theoretical requirement.

Unfortunately, contrary to the previous result stating that there is no 4-vector

potential for radiation fields, many texts use the 4-potential as a 4-vector (see e.g., [4]).

As a matter of fact, the inexistence of this 4-vector is already stated above in the

Introduction section: “...there is no ordinary four-vector field for massless particles

of helicity ±1” (see [6], p. 251).

Conclusion: A coherent electromagnetic theory should not use the
four potentials as components of a 4-vector.
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Please note that section 6 shows how one can construct an acceptable 4-potential

for radiation fields.

4 The Electromagnetic Gauge Transformations

The electromagnetic gauge transformation takes this form

A′µ = Aµ − χ,µ (6)

(see [5], p. 52; [9], p. 220), where the gauge function χ is an arbitrary function of

the space and time coordinates. However, it is proven above that the 4-potential is

unacceptable as a 4-vector. Hence, the electromagnetic gauge transformation suffers

from inherent problems.

The following arguments substantiate this assertion.

Ar.1 A fundamental physical requirement says that all terms of a sum must have the

same dimension. The dimension of the potentials Aµ is [L−1]. Hence, the gauge

function χ cannot be an arbitrary function of the space-time coordinates.

Ar.2 SR says that an electromagnetic quantity must have a definite tensorial struc-

ture. Hence, the gauge function χ cannot be an arbitrary function of the space-

time coordinates.

It turns out that the examination of the full form of the QED gauge transfor-

mation yields another attribute of the gauge function. Consider the full form of the

gauge transformation (see [3], p. 78; [6], p. 345):

Aµ(x)→ Aµ(x) + χ,µ; ψ(x)→ exp(−ieχ(x))ψ(x), (7)

where the symbol e of the exponent denotes the electronic charge. As stated above,

a significant attribute of the gauge function is that it is an arbitrary function of the

space-time coordinates (see e.g., [6], p. 342; [5], p. 52; [13] p. 70). The change of the
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phase χ(x) of the Dirac function ψ(x) of (7) is called a local phase rotation (see [3],

p. 78). The power series expansion of the exponent of (7)

e−ieχ(x) = 1− ieχ(x) + ... (8)

proves that χ must be a mathematically real dimensionless Lorentz scalar. Indeed,

the pure number 1 of the first term of (8) is a dimensionless Lorentz scalar. The same

is true with the pure imaginary number i and with the electric charge e. Hence, the

assertion stating that χ(x) must be a dimensionless Lorentz scalar holds.

This structure of χ(x) yields far-reaching results. Consider the power series ex-

pansion of the gauge function χ(x)

χ(t, x, y, z) = a0 + axm1ym2zm3tm4 + ... (9)

Here each mi of the power series (9) is a non-negative integer. Let us examine the

case where a 6= 0 for a given term where one mi > 0. The dimension of this term is

[LN ], where N ≥ mi > 0. Therefore, the dimensionless of the gauge function χ(x)

proves that a = 0, and the gauge function reduces to the constant a0.

Conclusion: The gauge function is a trivial uniform numerical con-
stant and it means that its derivative vanishes. Therefore, it adds a
null quantity to the potentials. Its quantum mechanical form is the
well-known global phase transformation (see e.g. [14], p. 314; [15], p.
121). Therefore, the electromagnetic version of the quantum concept
of local phase transformation does not hold.

5 Photons and Charges

An electromagnetic radiation wave carries energy. Therefore, due to the energy con-

servation law (see [5], pp. 88, 89), this wave must have a source of electric charges

that has supplied its energy. The location of the radiation source and the field point

where the radiation is measured define the direction of the wave propagation. The

retarded position of a charge at the radiation source is determined by the following

equation

t′ +R(t′)/c = t, (10)
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where t, t′ denote the measurement time and the retarded time, respectively, R is

the distance from the retarded position of the charge to the field point where the

measurement is carried out and the speed of light c is written explicitly (see [5],

p. 174). The retarded position and the retarded velocity of a specific charge at

the source define the retarded 4-potential (3) of this charge. However, the overall

radiation that is emitted from a given source is determined by the interference of the

fields of all charges of the radiating system. It means that the actual radiation is a

multi-charge effect. This conclusion is obvious because a charge that belongs to a

system that comprises just one charge does not accelerate, and such a system does

not emit radiation.

(a)(a) (b)(b)

pp

qq qq

pp

-q-q

Figure 1: Two radiating systems. (a) A charge q moves uniformly along a circle. (b)
Two charges, ±q move uniformly along a circle. (See text.)

The following example illustrates this issue. Consider the two radiating systems

of Fig. 1. Fig. 1(a) comprises a single charge q that moves uniformly along a circle

that is embedded in the (x, y) plane and its center coincides with the origin of the

coordinates. The point p lies on the z-axis at the radiation zone. The circular motion

of the charge q proves that it accelerates towards the center of the circle. The Lienard-

Wiechert fields (4), (5) show that due to the acceleration aaa, a nonvanishing amount

of radiation streams at the vicinity of point p (see [5], p. 175; [9], p. 657).

Let us examine the radiation fields EEE, BBB at point p and compare the fields of Fig.

1(a) with those of Fig. 1(b). In Fig. 1(b) there are two charges ±q, that are located

at two antipodal points of this circle. These charges move along the circle with the

same velocity as that of the charge q of Fig. 1(a). For point p, the retarded time

of the charge +q is the same as that of the charge −q. The radiation fields parts of
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formulas (4) and (5) prove that, at point p, the electric field and the magnetic field

of the charge +q are the same as those of the charge −q. It means that at point p,

the radiation fields EEE, BBB of Fig. 1(b) are twice as strong as those of Fig. 1(a). Now,

the Poynting vector (see [5], p. 81 or [9], p. 237)

SSS = EEE ×BBB/4π (11)

shows the energy current of electromagnetic fields. This vector proves that at point p

of Fig. 1(b) the energy current is four times greater than that of Fig. 1(a). Further-

more, since the same frequency holds for the fields of the two cases, one concludes

that at the vicinity of point p, the number of photons of Fig. 1(b) is four times

greater than the number of photons of Fig. 1(a). This example proves the following

important conclusion:

The radiation emitted from a system of charges is a multi-charge
effect. Moreover, generally one cannot associate a given photon with
a specific charge.

6 Components of the Potential of Radiation Fields

It is shown above that the 4-potential of electromagnetic fields cannot take a coherent

form of a 4-vector (see section 3). However, it is explained here that a relativistically

coherent expression for the 4 components of a potential of radiation fields can be con-

structed for every inertial frame. Consider the two invariants of the electromagnetic

fields

BBB2 −EEE2; E ·BE ·BE ·B (12)

(see [5], p. 68). These invariants vanish for radiation fields that are emitted from

a given source. Let us use specific axes and examine radiation fields that move in

the z-direction and the radiation is linearly polarized in the x-direction. Here the

non-vanishing fields’ components at a given (t, z) are

Ex = W, By = W, (13)
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where W takes a specific value. These fields satisfy the two invariants (12), and they

are derived from the vector potential

AAA(z, t) = (W/k sin(kz − ωt), 0, 0), (14)

where k = ω in the vacuum. Relation (14) means that if the radiation fields are

known then the 4 components of the potential can be constructed (the 0-component

obviously vanishes). This expression is consistent with SR because it is based on

the Maxwellian fields F µν that transform relativistically. It means that although

the 4-potentials of radiation fields are not components of a 4-vector, they undergo a

relativistically coherent transformation. This analysis was published in [16].

The 4-potential of (14) enables to use the radiation fields in the QED Lagrangian

density, which is the primary theoretical expression

LQED = ψ̄[γµ(i∂µ − eAµ)−m]ψ − 1

16π
FRµνF

µν
R (15)

(see e.g., [3], p. 78; [13], p. 84). Here the subscript R denotes radiation fields.

These expressions show how one can use the radiation fields in the
standard QED theoretical structure, namely, in the theory’s La-
grangian density.

7 The Action of Bound Fields

Landau and Lifshitz show the Darwin Lagrangian of a system of charges. The elec-

tromagnetic part of this Lagrangian is

LDarwin = −
∑
j

∑
i>j

ejei
Rij

+
∑
j

∑
i>j

ejei
2Rij

[vvvj·v·v·vi + (vvvj·n·n·nij)(vvvi·n·n·nij)] (16)

(see [5], pp. 179-182, [9], pp. 593-595). Here vvvi denotes the velocity of the ith charge

and nnnij is the unit vector from the ith charge to the jth charge. This Lagrangian

takes the classical structure where the position and velocity of all charged particles

are the values of the laboratory time t. The derivation of this Lagrangian shows that
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it is correct up to the second power v2 of the particles’ velocity. Hence, it pertains to

bound fields, because “acceleration fields are typical radiation fields” ( [9], p. 657).

This form of the Lagrangian is suitable for the quantum domain because here the

time-independent Heisenberg picture can be utilized (see [17], p. 352). Thus, the

quantum version of the Darwin Lagrangian is called the Breit interaction (see [18],

pp. 170, 195). In other words, the bound fields are treated in the classical and

quantum domains that belong to the framework of the least action principle.

8 Fields and Charges

Consider Jackson’s definition of the electric field. He uses the limit of the force that

is exerted on a test particle whose charge tends to zero (see [9], p. 28). Hence, one

may argue that the exclusion of the self-interactions of the field of a point charge

is a consistent concept. Note that the Darwin Lagrangian (16) describes a 2-body

interaction and that it ignores the self-field interaction. This approach also has a

favorable virtue because it removes the infinite energy of the self-field interaction of

an elementary pointlike charge.

Let us consider the theoretical and experimental properties of elementary point-

like particles. Thus, Landau and Lifshitz use SR and prove that “elementary particles

must be treated as points.” (see [5], p. 47). The general form of the QFT Lagrangian

density yields the same outcome. The form of this Lagrangian density is

L(ψ(x), ψ(x),µ), (17)

where x ≡ (t,xxx) denotes the four space-time coordinates. QFT textbooks support

this approach: ”All field theories used in current theories of elementary particles have

Lagrangians of this form” (see [6], p. 300).

Let us examine the pointlike properties of the quantum function ψ(x) of the

Lagrangian density (17). This function depends on a single set of four space-time

coordinates. It means that this function can describe the probability of finding the
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particle at the space-time point x = (t,xxx), but it cannot describe the distribution of

the particle around x. Hence, the form of the QFT Lagrangian density (17) applies

to elementary pointlike particles. The experimental side provides amazing support

for this issue. Indeed, the measured upper bound of the electron’s radius is about 7

orders of magnitude smaller than the proton’s radius [19]. This is an example of the

pointlike attribute of an elementary quantum particle and of the suitability of the

above-mentioned form of its Lagrangian density.

Experimental data of the hydrogen atom strongly support the exclusion of the

self-interaction of the field of a pointlike particle. Indeed, the quantum calculations

that ignore the self-interaction of the electron’s field yield very good results (see

e.g., [20] section 4.4; [17], pp. 202-211). Another favorable issue of the exclusion of

the self-interaction of the field of a pointlike charge is the removal of the 4/3 problem

of the relativistic transformation of the energy and momentum of a point charge [21].

9 Concluding Remarks

This work points out erroneous issues of electrodynamics. The contradictory quota-

tions from the literature indicate the need for this publication. In particular, this work

proves that the electromagnetic radiation fields F µν
R and the bound fields F µν

B are dif-

ferent physical entities. Hence, they should be treated separately. Moreover, contrary

to the assertion of many publications, the electromagnetic potential components are

not entries of a 4-vector. This conclusion agrees with Weinberg’s assertion (see [6],

p. 251). However, the analysis proves that one can construct the 4 components of

the potential of radiation fields that are consistent with SR. This construction uses

the radiation fields F µµ
R that undergo a Lorentz transformation. The discussion also

proves that there is no freedom for the gauge function – it is just a uniform constant

and its derivative vanishes. The analysis proves that it is impossible to assign a given

photon to a specific charge. This work proves that the Darwin Lagrangian and the

Breit interaction adequately describe bound fields. Furthermore, the discussion ex-
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plains why one can remove the self-interaction of the field of a pointlike particle as

well as its infinities.
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