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Abstract

In the first part, we investigate the tiling of the plane by convex polygons, and
we introduce many constants. At the end, we calculate one. We provide an exam-
ple, where we cover the plane with convex 8-gons.
In a second part, we take other curves and convex polygons.
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1 Introduction

It is well-known that we can tile the plane R2 with n-gons, where n is a natural number larger
than 2, see [1], p. 11. If we restrict our efforts to convex polygons, in most cases it is impossible
to cover the plane completely without overlappings. It is known that we can tile the plane
with squares and regular 6-gons. We also can tile the plane with convex 5-gons, see the ‘Cairo
Tiling’ in [2]. For natural numbers larger than 6 we believe that it is impossible to tile the
plane completely with convex n-gons. Either we have to leave gaps or some polygons overlap
to cover R2 completely.

For additional information, see [3].

We believe that it is useful to repeat the definition of a simple polygon.
A simple polygon with n vertices consists of n different points of the plane (x1, y1), (x2, y2),
. . . (xn−1, yn−1), (xn, yn), called vertices, and the straight lines between (xi, yi) and (xi+1, yi+1)
for 1 ≤ i ≤ n − 1, called edges. Also the straight line between (xn, yn) and (x1, y1) belongs
to the polygon. We demand that it is homeomorphic to a circle, and that there are no three
consecutive collinear points (xi, yi), (xi+1, yi+1), (xi+2, yi+2) for 1 ≤ i ≤ n − 2. Also the three
points (xn, yn), (x1, y1), (x2, y2) and (xn−1, yn−1), (xn, yn), (x1, y1) are not collinear.
We call this just described simple polygon an n-gon.
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Theorem 1.1. There is a covering of the plane with k-gons for every natural number k larger
than 2

Proof. Well-known. See, for instance, [1] page 11

Note that we work from now on exclusively with convex curves. With ‘Polygon’ we always
mean a convex simple polygon. With ‘k-gon’ we always mean a convex k-gon.

Let r be any real numbers larger or equal to 1, and k a natural number larger than 2.

We define a set of polygons.

Definition 1.2.
We define k− Polygons as the class of k-gons.

Remark 1.3. In the next definition, we define some constants. They are actual percentages,
but we prefer numbers from 0 to 1.

The area of R2 is regarded as 1.

We try to tile R2 with simple polygons. For k > 6 either we fix tiles without any overlap-
ping, or we cover R2 completely, where there may be overlappings.

Definition 1.4.
Let k gap(r) be the supremum of the covered part of R2. The polygons do not overlap. We use
elements from the class k− Polygons, where the quotient of two edges of one or two used k-gons
is in the interval

[
1
r , r

]
.

Let k overlap(r) be the infimum of the part of R2 which is covered by polygons from the class
k− Polygons at least twice, where R2 is covered completely, and the quotient of two edges of
one or two used k-gons is in the interval

[
1
r , r

]
.

.

Conjecture 1.5. k gap(r) = 1 and k overlap(r) = 0 holds for all k for suitable numbers r.

For polygons with 8 vertices, see Proposition 2.3.

Let n be a natural number larger than 2.

Definition 1.6. A cyclic polygon is defined as a polygon such that all vertices are on a circle.
We define an elliptical polygon as a polygon such that all vertices are on an ellipse.
We define a convex Cassini polygon as a polygon such that all vertices are on a convex Cassini
curve.
We call a regular n-gon a regular polygon which has precisely n vertices.
We call a cyclic n-gon a cyclic polygon which has precisely n vertices.
We call an elliptical n-gon an elliptical polygon wich has precisely n vertices.
We call a convex Cassini n-gon a convex Cassini polygon wich has precisely n vertices.

We define a set of shapes.

Definition 1.7. shapes := {circle, ellipse, convex Cassini curve }
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Definition 1.8. Let Curves be the set of curves of a shape from the set shapes.
Let gapXXX(r) be the supremum of the covered part of R2, where we use curves from the set
Curves of shape XXX, where XXX is an element of shapes. The curves do not overlap. The
quotient of the arc lengths of two curves is in the interval

[
1
r , r

]
.

Let overlapXXX(r) be the infimum of the part of R2 which is covered at least twice, where we
use curves from the set Curves of shape XXX, where XXX is an element of shapes, and R2 is
covered completely. The quotient of the arc lengths of two curves is in the interval

[
1
r , r

]
.

Definition 1.9.
We define k reg(r) as the supremum of the covered part of the plane, where we use regular
k-gons. The polygons do not overlap. The quotient of two edges of the used polygons is in the
interval

[
1
r , r

]
.

We define k overlap reg(r) as the infimum of the part of the plane which is covered at least
twice, where we use regular k-gons. R2 is covered completely. The quotient of two edges of the
used polygons is in the interval

[
1
r , r

]
.

We define k cyclic(r) as the supremum of the covered part of the plane, where we use cyclic
k-gons. The polygons do not overlap. The quotient of two edges of one or two used polygons is
in the interval

[
1
r , r

]
.

We define k overlap cyclic(r) as the infimum of the part of the plane which is covered at least
twice. We use cyclic k-gons. The quotient of two edges of one or two used k-gons is in the
interval

[
1
r , r

]
, and R2 is covered completely.

We define k elliptical(r) as the supremum of the covered part of the plane, where we use elliptical
k-gons. The polygons do not overlap. The quotient of two edges of one or two used k-gons is
in the interval

[
1
r , r

]
.

We define k overlap elliptical(r) as the infimum of the part of the plane which is covered at least
twice. We use elliptical k-gons. The quotient of two edges of one or two used k-gons is in the
interval

[
1
r , r

]
, and R2 is covered completely.

We define k Cassini(r) as the supremum of the covered part of the plane, where we use convex
Casssini k-gons. The polygons do not overlap. The quotient of two edges of one or two used
k-gons is in the interval

[
1
r , r

]
.

We define k overlap Cassini(r) as the infimum of the part of the plane which is covered at least
twice. We use convex Cassini k-gons. The quotient of two edges of one or two used k-gons is in
the interval

[
1
r , r

]
, and R2 is covered completely.

Remark 1.10. Note that r = 1 means that all edges of the polygons or all curves, respectively,
have the same length.

Remark 1.11. The used polygons or curves, respectively, can not be arbitrarily small since r
is a positive number.

We suggest the name ‘The first Thuerey constant’ for 5 reg(1), and for 5 overlap reg(1) we
suggest ‘The second Thuerey constant’.

2 Propositions

Proposition 2.1. The following equations hold for all r.

3 reg(r) = 4 reg(r) = 6 reg(r) = 3 gap(r) = 4 gap(r) = 6 gap(r) = 1

as well as

3 overlap reg(r) = 4 overlap reg(r) = 6 overlap reg(r) = 3 overlap(r) = 4 overlap(r) = 6 overlap(r) = 0
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Proof. Well-known.

Proposition 2.2. The following equations hold for all r.

5 gap(r) = 1 and 5 overlap(r) = 0

Hint. See the ‘Cairo Tiling’ in [2].

Proposition 2.3. It holds
8 overlap(r) = 0

for all r equal or larger than 2.

Proof. At first, we tile the plane with squares of sidelength 1. Into every square we inscribe a
regular octogon of sidelength

√
2 − 1. These octogons cover a part of R2. We call them ‘old’

octogons.
Please see Figure 1. There the right square has vertices A,B,C and D. Two vertices of the
right octogon are E and F. G is a vertex of the left octogon. We add another point W on one
diagonal of the right square. We connect E and W and also F and W. We add a point called
X on one diagonal of the left square. We connect E and X and also G and X. We define two
more points Y and Z on the diagonals of other squares, and in this way, we generate a ‘new’
8-gon. Seven of its vertices are W,X,Y,Z,E,F, and G. The tuples X, A, Z and Y, A, W,
C are collinear. By this way, we generate infinite many ‘new’ 8-gons between the ‘old’ 8-gons.
The ‘new’ 8-gons cover the area which is not yet covered. With the ‘new’ 8-gons together with
the ‘old’ 8-gons R2 is covered completely, where parts of R2 are covered twice. The number of
‘new’ 8-gons is countable. We can choose W such that the area of the triangle with vertices
E,F, and W is arbitrarily small. Hence, we can choose W,X,Y, and Z such that the area of
R2 which is covered twice is less than 1

2 . In the next ‘new’ 8-gon we can choose four vertices of
the 8-gon such that the area which is covered twice is less than 1

4 , et cetera.
Therefore, the part of R2 which is covered twice can be made arbitrarily small.

Figure 1:

We see two squares

which are partially

covered by regular 8-gons.

We set A = (0, 0) and B = (1, 0).

It holds

E =
(
0, 12 ·

√
2− 1

)
and F =

(
1− 1

2 ·
√
2, 0

)
.

W,X,Y, and Z are not fixed.
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The concept can be generalized into higher dimensions.
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