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1 Introduction

The numbers :
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b0:1, bzzg, b4:_%, b6:E,
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are called Bernoulli numbers, they can be defined by the following exponential
generating function:

where |t| < 2.

It was shown in the 19th century that an explicit formula for b,, is[1]:
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Many proofs have been given to formula (1), but we will present here the most
simplest of them [2, 3].

2 Stirling numbers of the second kind

Let Y be an arbitrary function of x, and set :
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D™ = x(..x(x(xY ")) ...)

n

If we expand DY forn = 1,2, 3,4, we find :
DY = xY'

D?Y = xY' + x?Y"

D3Y = xY’ + 3x%Y" + x3y®

D*Y = xY' 4+ 7x2Y" + 6x3Y ) 4 x4y ®

We see that :

D™Y = SOY + SixY' + SZx2Y" + - 4 SEx"Y™ (2)
In fact, the numbers S,’f are called Stirling numbers of the second kind.
3 The explicit formula of Stirling numbers of the second kind

If we put Y = e* in the formula (2) we obtain :
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One can easily prove that D"x" = i"x!, so :

 (—1))x) = iyt -
NET)- T
Jj! , i!
k

j=0




If we expand the left-hand side we obtain :

z(z( D l()l> zsk .

k=0 \i=0

Comparing coefficients in both summations we conclude that :

4 Relation between Stirling numbers of the second kind and Bernoulli
numbers

Putting Y = x¥ in the formula (2), we get :
n
D"xY = Z Sk xk(x¥)tO
k=0
We know that (x¥)® = y(y — 1) ...(y — k + Dx¥* and D"x¥ = y"x”so we get :

Sxyy—1) ..(y—k+1) (4)
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The polynomial y(y — 1) ...(y — k + 1) is called the falling factorial of order k of y.
Pochhammer used the symbol (y), to denote it, so the formula (4) becomes using
Pochhammer symbol :

n
n= ) Skod @)
k=0
One interesting property of the falling factorial function is the following :
Proposition 1
Let n and y be non-negative integers, then:
O+ D1 = s = (0 + D(O)n

Proof
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We are going to use this property in the proof of the following proposition.

Proposition 2

Letn € Nand m € N*. We have :
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k+1 ®)
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Proof
If we sum for y in the formula (4’) we find :
m—1 m—1 n m—1 n m—1
k k
y=0 y=0 k=0 y=0 k=0 y=0
m—1 n m—1
O+, . —O)
= N Y (Y e O
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y=0 k=0
Therefore :
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y " k+1
y=0 k=
Definition
Letn € N

Bernoulli’s polynomials B,(x) are defined by the following exponential generating

function :

tetx ® tn
et —1 =ZBn(x)E
n=0



One interesting observation to make about Bernoulli’s polynomials is that if we put
x =0 weget:

t - ¢n
et—1 ZB"(O)H
n=0

This generating function corresponds to the generating function of Bernoulli numbers
b,,. Hence for all n € N, we have :

B,(0) = by
Another interesting property of the Bernoulli polynomials is the following :

Proposition 3

Letn €N
B,(x +1) —B,(x) = nx™!

Proof

On the one hand :

> Bl + D =B, ()= = (Z B + 1)%) - (Z By () %)
n=0 n=0 n=0

tet(x+1) tetx

et—1 et—1
tet* et — tet*
et —1
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et —1
= tet®

On the other hand :
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Comparing coefficients of both summations we conclude that for all n € N:



B,(x +1) — B,(x) = nx™!

Proposition 4

Letn €N
= n
B,(x) = Z (k) b x"
k=0
Proof
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Therefore :

B,(x) = z bk (:) x*
k=0

Summing for y in the relation B,.1(y + 1) — B,41(y) = (n + 1)y™ we obtain :

m—1 m—1
(n+ 1) Z y'oo= Z{Bn+1<y +1) = B, )}
y=0 y=0

Bn+1 (m) - Bn+1 (O)

Bn+1 (m) - bn+1
Thus :

(41 ) Y =By —bpyr (6)
y=0

Comparing formula (5) with formula (6) we conclude that :
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If we develop the expression of (X), in terms of the powers of X we find :

(X)k+1 = XX -1.(X—-k)
Y (Xk k(k+1)
2

k
= XZC]X]
j=0
k
— j+1
= ZC]'X]+

j=0

Xyt (—1)"k!>

Therefore :
k

X411 = Z ¢ XI+1

j=0

If we apply the above formula for (m);.4 in the formula (7) we find:

LNt 1 .
Bui1(m) —byiq = Z S C] m/+t

Substituting also B,,,;(m) by its explicit expression, we finally get :

n+1 n k
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We have equality between two polynomials in m, both of degree n, so the
coefficients of the terms of the same degree are equal. In particular for j = 0 we
have :

<n+1)b = Skn+1 b, S"( 1*k! o
= e
1 n Z”k+1c0 Z” k+1 (8)



To get the explicit expression of b,, in terms of n, we substitute S¥ in the above
identity by its explicit expression, and after simplification we obtain the remarkable
formula (1) for the Bernoullian numbers.

5 Some observations

From formula (6) we can deduce Bernoulli’s formula, we have :

m—1

1
z y*r o= n__H{Bn+1(m) — byy1}

y=0

We can deduce identity (8) directly from the explicit formula of Stirling numbers of
the second kind. We know from formula (3) thatforall 0 < k < n:

k
ik
k1 Sk = z(—nk-l ( _)i”
i=0 !

If we invert the above formula using the binomial inversion theorem we find that :

k
km =) sk,
i=0

This formula is similar to formula (4’) with the exception that the sum is taken here
from 0 to k, this is valid only for k € {0, 1, ...,n}, while in formula (4’) the sum was
taken from 0 to n, and that was valid for every real number y.

Now summing for k in the last formula we obtain :



kmo= i (i Sf;(k)l)

=
||M:
o

k=0 \i=0
n n
= ZS;;Z(k)i
i=0 k=i
n
_ zsi ((n+1)1+1 (l)z+1)
" i+1
=0
n
— ZSL (n+ 1)l+1
" i+
1=
n i
— Sl 1 1 +1
B Ty 14.9 (n+1)
=0 Jj=0
n n
— Si J 1 j+1
Z Z I R
Jj=0 \i=j

Thus we have :

n n c
kn/:::E: :E:‘Si J 1)/+1
L\ L+ (n+1)

Using Bernoulli’s formula we conclude that :

&
NG
(=}

n+1 n n

n
j+1 , . Cj .
b,_; n+11+1=z zS‘— n+1)/*1
Zn+1]( ) i __”i+1( )
j=0 Jj=0 \i=J
The coefficients of (n + 1) in both representations are equal so :

(n+1) i ZS‘ (— 1)ll|

i=0
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