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Abstract

We prove the famous Bloch’s Theorem using the symmetry for discrete translations in Dirac
notation.

1 Unitary transformations. The Translations group

Let S, be a quantum system consisting of a nonrelativistic particle of mass m. In the presence of a
conservative force field of potential energy V' (x), the Hamiltonian operator of the system is
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where X = (2,79,2) and p = (Py, Py, D.) are the hermitian operators representing the observable
position x and the observable momentum p respectively. In Dirac notation [1]-[2], the eigenvalue
equation for X is written:

X [x) = x|x) (2)

The eigenket system {|x)} is a complete orthonormal system in the Hilbert space H associated with
the system:

) =69 (x=x). [ el (el = ®)

where @) (x —x') = (x — 2') 6 (y — y/) § (2 — 2) us theDirac 3-delta function, while 1 is the identity
operator in H.

Assuming {|x)} as the orthonormal basis of H, we have that the representation of the impulse
operator in this basis is [2]

(x[pl) = —ihVi (x), V) e H (4)

where 1 (x) = (x]1) i.e. the representation in the base of the ket coordinates |¢). If |¢) is the state
ket of the particle at a given instant, ¥ (x) is the wave function at that instant.

Definition 1 The translation operator according to an arbitrary direction 1, is defined by:
1) %) = x+ 1) 5)
for any eigenket |x) of the position.
In other words, the operator T (1) translates any |x) into |x +1). From the completeness of the

system {[x)} it follows that the (5) uniquely defines the aforementioned operator, in the sense that
the result of the application of T' (1) to any ket is well defined |¢)) (expanded into position autoket):

) = [ i) txiv)

The square of the ket norm |1) is

I = wl) = (ulil) = (o1 [ @ob) o) = [ o 6ol s



Interpreting |¢ (x)|° as the probability density of finding the particle in the volume element d®
centered at x, it must be |[¢||* = 1 or in any case < 400 and then normalized to 1. It follows that
the Hilbert space H is identified with the functional space £? (R?) whose elements are the summable
square modulus functions in R3.

It is physically reasonable to require probability conservation with respect to translations (defi-
nition 1), so if [¢)') is the translated ket i.e. T (1) [¢)) = |¢), it must be

WY = (lv) <= (BT O T O le) = @lv), VIe) e

ie. THI)T () = T ()Tt (1) = 1 or what is the same, the adjoint 7 (1) of T' (1) coincides with
the inverse: 7' (1 ) ~1(1). Tt follows that the operator 7' (1) is unitary.

Conclusion 2 For a nonrelativistic quantum system, a translation is a unit transformation in the
appropriate Hilbert space.

We compose two successive translations:
(TWT W) ) =T ) (TM) %) =T 1) (x+1)) =[x +1+1) =T (' +1) (6)
From the completeness of {|x)} it follows
TA+1)y=T0)T (), VLI eR®

In the set 7 = {T D|le R3} we can therefore define a law of internal composition x:
X:TxT—T (7)
X <T (1) ,T(l’)) T T )

which checks the following properties:

1. Associative property:

3. FEuxistence of the inverse:
vIr()eT, ITt Q) eT | TTQ)T (1) =1T(0)

From these properties it follows that the ordered pair (7, x) or the set 7 with the composition
law (7), takes on the group structure.

Definition 3 The group (T, x) is called translation group.



The composition law (7) manifestly verifies the commutative property, so the translation group
is abelian.
For an infinitesimal translation dx the operator (5) ddiffers from the identity operator 1 by a first

order term on dx right: . .
T (dx) = 1 —iG - dx (8)

where G = (GI, Gy, GZ> with G, Hermitian operators.
Definition 4 G is translation generator.

By analogy with classical mechanics: G =P being s > 0 a constant with the dimensions of the
reciprocal of an action. Old Quantum Theory says s = A~!, so

T(dx):i—i%-dx (9)

For (6) any translation 7' (1) is the result of the composition of N translations 7' (+) and in the limit
for N — +o00
. b 1N

2 Eigenfunctions of the momentum operator

SIEH

bl (10)

Without loss of generality we consider the one-dimensional case:

. P2
H =" i 11
2m+V(m) (11)

Since [ﬁ , ]5} £ 0 i.e. H does not commute with the momentum, it follows that p is not a constant

of motion. On the other hand R X
[ﬁ,T(l)] =0, VIeR

so that the operators p and T (1) have in common a complete orthonormal system of simultaneous
eigenkets. Recall that the spectrum of p is purely continuous: o (p) = o.(p) = (—00,+00) so
the simultaneous eigenfunctions we are looking for are eigenfunctions in the improper sense (=
¢ £ (R)). We write the respective eigenvalue equations:

plp) =plp)
{ () |p) = (7) Ip) (12)

But 7'(1) = e~ # so 7 (p) = e ##, VI € R. In the coordinate representation, the second of (12) is

written: _
(1T @) p) = e (alp) (13)

up(z)
where u, (z) is the eigenfunction of the impulse corresponding to the eigenvalue p. For the above,

u, (z) is also an eigenfunction of 7' (1) with eigenvalue e ##, VI € R. To evaluate the first member
of (13) we observe that

(2T 1) Ip) = (T M) - Ip)
(@ T (1) & 11|y = |z~ 1)



where DC=dual correspondence. It follows

(2l 1) Ip) = (& = Up) = wp (@ = 1)
so (77?) is written: |
u, (x —1) = e #u, (z), VI €R
equivalent to ‘
up, (r) = e Py, (x +1), VI €R (14)

which is a functional equation in w, (z). Since u, (z) is an eigenfunction in the improper sense, we
attempt the solution:

up (2) = p () €77 (15)
where ¢, (z) it is a real function to be determined. By inserting the (15) into (14):

op () =pp(x+1), VIER

cioe ¢, (z) is a periodic function of arbitrary period, i.e. a constant A. It follows that the eigenfunc-
tions of the impulse are

up () = Aeip?

The real constant A is obtained from the normalization of the eigenfunctions w, (z). Precisely,
reasoning in terms of autokets:

(plp') =8 (0 —p') <= (ILIY) =6 (p — 1) (16)
+00 +oo
<p| / dx |z) (x| |p'> =0(p—p) = / u,, (2)uy (z)dz=46(p—17p)
OO+OO i l o0
A? / e w02y = § (p — p)
But
1 [t
d(a) = Dy /_OO e " dx
i.e. the Fourier transform of the function f(z) = 1, so from the last of the (16) we obtain=

+ (27#) "% Assuming A > 0 we finally obtain the eigenfunctions of the impulse:

o
up(:c):\/%eﬁ (17)

Ne concludiamo che le autofunzioni dell’impulso sono onde piane di numero d’onde k£ = £. Nel caso
speciale della particella libera le (17) sono anche autofunzioni dell’energia con autovalore F = %,
per cui lo spettro dell’hamiltoniano della particella libera e puramente continuo: o (ﬁ > = [0, +00)
ed & degenere con ordine di degenerazione 2 giacché agli autokets |p) e |—p) corrisponde lo stesso
autovalore dell’energia.



3 Bloch Theorem

Let us consider the case of a period periodic potential a:
V(z+na)=V(z), VneZ (18)

It follows o X
[H,T(a)} ~0

so H and T (a) they have in common a complete orthonormal system of simultaneous eigenkets. We
write the respective eigenvalue equations:

H|k) = E (k) |k)
{ T (a) k) =7 (k) |k) (19)

where k € R. The unitarity of T (a) suggests 7 (k) = e~ In the coordinate representation, the
second of (19) is written:

<x\f(a) ]k> = alk) (20)
ug ()

being uy, () the energy eigenfunction corresponding to the eigenvalue E(k). Along the lines of the
procedure in the previous section, we arrive at the functional equation

uy () = e *uy, (z + a) (21)

Let’s try the solution: '
up, () = pp () € (22)

here ¢, () is a real function to be determined. Inserting the (22) into (21):

i () = i (v +a)

i.e. g (x) it is a periodic function of period a, i.e. with the same period as the potential V(x). It
follows that the energy eigenfunctions of a particle in a periodic potential are amplitude-modulated
plane waves. The modulation envelope is a periodic function with the same period as the potential.
This conclusion is the statement of Bloch Theorem. The real number £ is the wave number of the
aforementioned plane wave, and unlike the case of the free particle it is not identified with the impulse
ie. k#p/h.

For k varying from —oo to 400, the eigenvalues e™"*“of the translation operator T (a) repeat with
periodicity 27 /a since e~ = cos (ka) + isin (ka). It follows that for the values of k and therefore
of the corresponding eigenfunctions wy, is sufficient to refer to a single interval [—g + 277”, z+ QCLTW} ,
Vn € Z. For a question of symmetry it is preferable to take the interval [—;—r, ﬂ known as the first
Brillouin zone.
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