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Abstract

We prove the famous Bloch’s Theorem using the symmetry for discrete translations in Dirac

notation.

1 Unitary transformations. The Translations group

Let Sq be a quantum system consisting of a nonrelativistic particle of mass m. In the presence of a
conservative force field of potential energy V (x), the Hamiltonian operator of the system is

Ĥ =
p̂2

2m
+ V (x̂) (1)

where x̂ = (x̂, ŷ, ẑ) and p̂ = (p̂x, p̂y, p̂z) are the hermitian operators representing the observable
position x and the observable momentum p respectively. In Dirac notation [1]-[2], the eigenvalue
equation for x̂ is written:

x̂ |x〉 = x |x〉 (2)

The eigenket system {|x〉} is a complete orthonormal system in the Hilbert space H associated with
the system:

〈x|x′〉 = δ(3) (x− x′) ,

∫

R3

d3x |x〉 〈x| = 1̂ (3)

where δ(3) (x− x′) = δ (x− x′) δ (y − y′) δ (z − z′) us theDirac 3-delta function, while 1̂ is the identity
operator in H.

Assuming {|x〉} as the orthonormal basis of H, we have that the representation of the impulse
operator in this basis is [2]

〈x|p̂|ψ〉 = −iℏ∇ψ (x) , ∀ |ψ〉 ∈ H (4)

where ψ (x) = 〈x|ψ〉 i.e. the representation in the base of the ket coordinates |ψ〉. If |ψ〉 is the state
ket of the particle at a given instant, ψ (x) is the wave function at that instant.

Definition 1 The translation operator according to an arbitrary direction l, is defined by:

T̂ (l) |x〉 = |x+ l〉 (5)

for any eigenket |x〉 of the position.

In other words, the operator T̂ (l) translates any |x〉 into |x+ l〉. From the completeness of the
system {|x〉} it follows that the (5) uniquely defines the aforementioned operator, in the sense that
the result of the application of T̂ (l) to any ket is well defined |ψ〉 (expanded into position autoket):

|ψ〉 =
∫

R3

d3x |x〉 〈x|ψ〉

The square of the ket norm |ψ〉 is

||ψ||2 = 〈ψ|ψ〉 =
〈
ψ|1̂|ψ

〉
=

〈

ψ|
∫

R3

d3x |x〉 〈x| |ψ
〉

=

∫

R3

|ψ (x)|2 d3x
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Interpreting |ψ (x)|2 as the probability density of finding the particle in the volume element d3x
centered at x, it must be ||ψ||2 = 1 or in any case < +∞ and then normalized to 1. It follows that
the Hilbert space H is identified with the functional space L2 (R3) whose elements are the summable
square modulus functions in R

3.
It is physically reasonable to require probability conservation with respect to translations (defi-

nition 1), so if |ψ′〉 is the translated ket i.e. T̂ (l) |ψ〉 = |ψ′〉, it must be

〈ψ′|ψ′〉 = 〈ψ|ψ〉 ⇐⇒
〈

ψ|T̂ † (l) T̂ (l) |ψ
〉

= 〈ψ|ψ〉 , ∀ |ψ〉 ∈ H

i.e. T̂ † (l) T̂ (l) = 1̂ ⇐⇒ T̂ (l) T̂ † (l) = 1̂ or what is the same, the adjoint T̂ † (l) of T̂ (l) coincides with
the inverse: T̂ † (l) = T̂−1 (l). It follows that the operator T̂ (l) is unitary.

Conclusion 2 For a nonrelativistic quantum system, a translation is a unit transformation in the

appropriate Hilbert space.

We compose two successive translations:

(

T̂ (l) T̂ (l′)
)

|x〉 = T̂ (l)
(

T̂ (l′) |x〉
)

= T̂ (l) (|x+ l′〉) = |x+ l′ + l〉 = T̂ (l′ + l) (6)

From the completeness of {|x〉} it follows

T̂ (l+ l′) = T̂ (l) T̂ (l′) , ∀l, l′ ∈ R
3

In the set T =
{

T̂ (l) | l ∈ R
3
}

we can therefore define a law of internal composition χ:

χ : T × T −→ T (7)

χ :
(

T̂ (l) , T̂ (l′)
)

−→ T̂ (l) T̂ (l′)

which checks the following properties:

1. Associative property :

T̂ (l)
(

T̂ (l′) T̂ (l′′)
)

=
(

T̂ (l) T̂ (l′)
)

T̂ (l′′)

2. Existence of the neutral element T̂ (0) = 1̂:

T̂ (0) |ψ〉 = |ψ〉 , ∀ |ψ〉 ∈ H

3. Existence of the inverse:

∀T̂ (l) ∈ T , ∃T̂ † (l) ∈ T | T̂ † (l) T̂ (l) = T̂ (0)

From these properties it follows that the ordered pair (T , χ) or the set T with the composition
law (7), takes on the group structure.

Definition 3 The group (T , χ) is called translation group.
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The composition law (7) manifestly verifies the commutative property, so the translation group
is abelian.

For an infinitesimal translation dx the operator (5) ddiffers from the identity operator 1 by a first
order term on dx right:

T (dx) = 1̂− iĜ · dx (8)

where Ĝ =
(

Ĝx, Ĝy, Ĝz

)

with Ĝk Hermitian operators.

Definition 4 Ĝ is translation generator.

By analogy with classical mechanics: Ĝ = κp̂ being κ > 0 a constant with the dimensions of the
reciprocal of an action. Old Quantum Theory says κ = ℏ

−1, so

T (dx) = 1̂− i
p̂

ℏ
· dx (9)

For (6) any translation T̂ (l) is the result of the composition of N translations T̂
(

l

N

)
and in the limit

for N → +∞
T̂ (l) = lim

N→+∞

(

1̂− i
p̂

ℏ
· l

N

)N

= e−
i
ℏ
p̂·l (10)

2 Eigenfunctions of the momentum operator

Without loss of generality we consider the one-dimensional case:

Ĥ =
p̂2

2m
+ V (x̂) (11)

Since
[

Ĥ, p̂
]

6= 0̂ i.e. Ĥ does not commute with the momentum, it follows that p is not a constant

of motion. On the other hand [

p̂, T̂ (l)
]

= 0̂, ∀l ∈ R

so that the operators p̂ and T̂ (l) have in common a complete orthonormal system of simultaneous
eigenkets. Recall that the spectrum of p̂ is purely continuous: σ (p̂) ≡ σc (p̂) = (−∞,+∞) so
the simultaneous eigenfunctions we are looking for are eigenfunctions in the improper sense (=⇒
/∈ L2 (R)). We write the respective eigenvalue equations:

{
p̂ |p〉 = p |p〉
T̂ (l) |p〉 = τ (p) |p〉 (12)

But T̂ (l) = e−
i
ℏ
p̂l so τ (p) = e−

i
ℏ
pl, ∀l ∈ R. In the coordinate representation, the second of (12) is

written: 〈

x|T̂ (l) |p
〉

= e−
i
ℏ
pl〈x|p〉
︸ ︷︷ ︸

up(x)

(13)

where up (x) is the eigenfunction of the impulse corresponding to the eigenvalue p. For the above,

up (x) is also an eigenfunction of T̂ (l) with eigenvalue e−
i
ℏ
pl, ∀l ∈ R. To evaluate the first member

of (13) we observe that
〈

x|T̂ (l) |p
〉

=
(

〈x| T̂ (l)
)

· |p〉

〈x| T̂ (l)
DC↔ T̂ † (l) |x〉 = |x− l〉
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where DC=dual correspondence. It follows

〈

x|T̂ (l) |p
〉

= 〈x− l|p〉 = up (x− l)

so (??) is written:

up (x− l) = e−
i
ℏ
plup (x) , ∀l ∈ R

equivalent to

up (x) = e−
i
ℏ
plup (x+ l) , ∀l ∈ R (14)

which is a functional equation in up (x). Since up (x) is an eigenfunction in the improper sense, we
attempt the solution:

up (x) = ϕp (x) e
i
ℏ
px (15)

where ϕp (x) it is a real function to be determined. By inserting the (15) into (14):

ϕp (x) ≡ ϕp (x+ l) , ∀l ∈ R

cioè ϕp (x) is a periodic function of arbitrary period, i.e. a constant A. It follows that the eigenfunc-
tions of the impulse are

up (x) = Ae
i
ℏ
px

The real constant A is obtained from the normalization of the eigenfunctions up (x). Precisely,
reasoning in terms of autokets:

〈p|p′〉 = δ (p− p′) ⇐⇒
〈
p|1̂|p′

〉
= δ (p− p′) (16)

〈

p|
∫ +∞

−∞

dx |x〉 〈x| |p′
〉

= δ (p− p′) ⇐⇒
∫ +∞

−∞

u∗p (x) up′ (x) dx = δ (p− p′)

A2

∫ +∞

−∞

e−
i
ℏ
(p−p′)xdx = δ (p− p′)

But

δ (α) =
1

2π

∫ +∞

−∞

e−iαxdx

i.e. the Fourier transform of the function f(x) = 1, so from the last of the (16) we obtain=

± (2πℏ)−1/2. Assuming A > 0 we finally obtain the eigenfunctions of the impulse:

up (x) =
1√
2πℏ

e
i
ℏ
px (17)

Ne concludiamo che le autofunzioni dell’impulso sono onde piane di numero d’onde k = p
ℏ
. Nel caso

speciale della particella libera le (17) sono anche autofunzioni dell’energia con autovalore E = p2

2m
,

per cui lo spettro dell’hamiltoniano della particella libera è puramente continuo: σ
(

Ĥ
)

= [0,+∞)

ed è degenere con ordine di degenerazione 2 giacché agli autokets |p〉 e |−p〉 corrisponde lo stesso
autovalore dell’energia.
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3 Bloch Theorem

Let us consider the case of a period periodic potential a:

V (x+ na) ≡ V (x) , ∀n ∈ Z (18)

It follows [

Ĥ, T̂ (a)
]

= 0̂

so Ĥ and T̂ (a) they have in common a complete orthonormal system of simultaneous eigenkets. We
write the respective eigenvalue equations:

{
Ĥ |k〉 = E (k) |k〉
T̂ (a) |k〉 = τ (k) |k〉 (19)

where k ∈ R. The unitarity of T̂ (a) suggests τ (k) = e−ika. In the coordinate representation, the
second of (19) is written:

〈

x|T̂ (a) |k
〉

= e−ika〈x|k〉
︸ ︷︷ ︸

uk(x)

(20)

being uk (x) the energy eigenfunction corresponding to the eigenvalue E(k). Along the lines of the
procedure in the previous section, we arrive at the functional equation

uk (x) = e−ikauk (x+ a) (21)

Let’s try the solution:
uk (x) = ϕk (x) e

ikx (22)

here ϕk (x) is a real function to be determined. Inserting the (22) into (21):

ϕk (x) ≡ ϕk (x+ a)

i.e. ϕk (x) it is a periodic function of period a, i.e. with the same period as the potential V (x). It
follows that the energy eigenfunctions of a particle in a periodic potential are amplitude-modulated
plane waves. The modulation envelope is a periodic function with the same period as the potential.
This conclusion is the statement of Bloch Theorem. The real number k is the wave number of the
aforementioned plane wave, and unlike the case of the free particle it is not identified with the impulse
i.e. k 6= p/ ℏ.

For k varying from −∞ to +∞, the eigenvalues e−ikaof the translation operator T̂ (a) repeat with
periodicity 2π/a since e−ika = cos (ka) + i sin (ka). It follows that for the values of k and therefore
of the corresponding eigenfunctions uk, is sufficient to refer to a single interval

[
−π

a
+ 2nπ

a
, π
a
+ 2nπ

a

]
,

∀n ∈ Z. For a question of symmetry it is preferable to take the interval
[
−π

a
, π
a

]
known as the first

Brillouin zone.
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