INTEGER OPTIMIZATION AND P vs NP PROBLEM

YULY SHIPILEVSKY

Toronto, Ontario, Canada

ABSTRACT. We give a polynomial-time solution for the "modulo \mathcal{NP} -complete problem" on the base of integer optimization algorithms.

1. **Introduction.** Despite in general, Integer Programming is \mathcal{NP} -hard or even incomputable (see, e.g., Hemmecke et al. [10]), for some subclasses of target functions and constraints it can be computed in time polynomial.

A fixed-dimensional polynomial minimization in integer variables, where the objective function is a convex polynomial and the convex feasible set is described by arbitrary polynomials can be solved in time polynomial(see, e.g Khachiyan and Porkolab [11]), see Lenstra [13] as well.

A fixed-dimensional polynomial minimization over the integer variables, where the objective function is a quasiconvex polynomial with integer coefficients and where the constraints are inequalities with quasiconvex polynomials of degree at most ≥ 2 with integer coefficients can be solved in time polynomial in the degrees and the binary encoding of the coefficients(see, e.g., Heinz [8], Hemmecke et al. [10], Lee [12]).

Minimizing a convex function over the integer points of a bounded convex set is polynomial in fixed dimension, according to Oertel et al. [15].

Del Pia and Weismantel [4] showed that Integer Quadratic Programming can be solved in polynomial time in the plane.

It was further generalized for cubic and homogeneous polynomials in Del Pia et al. [5].

We are going to transform well-known \mathcal{NP} -complete problem to the polynomial-time integer minimization algorithm. It would mean, that $\mathcal{P} = \mathcal{NP}$, since if there is a polynomial-time algorithm for any \mathcal{NP} -hard problem, then there are polynomial-time algorithms for all problems in \mathcal{NP} (see Garey and Johnson [7], Manders and Adleman [14], Cormen et al. [2]).

²⁰²⁰ *Mathematics Subject Classification*. Primary: 90C11; Secondary: 90C48, 68Q25. *Key words and phrases*. Integer optimization, *NP*-complete, polynomial-time.

YULY SHIPILEVSKY

Fortnow in [6] stated: "We call the very hardest \mathcal{NP} problems (which include Partition Into Triangles, Clique, Hamiltonian Cycle and 3-Coloring) " \mathcal{NP} -complete", i.e. given an efficient algorithm for one of them, we can find efficient algorithm for all of them and in fact any problem in \mathcal{NP} ".

2. Polynomial-time Algorithm. Sliding Tangent.

Lemma 1 (De Loera et al. [3], Hemmecke et al. [10], Del Pia et al. [5]). *The problem of minimizing a degree-4 polynomial over the lattice points of a convex polygon is* \mathcal{NP} *-hard.*

Proof. They use the \mathcal{NP} -complete problem AN1 on page 249 of Garey and Johnson [7]. This problem states it is \mathcal{NP} -complete to decide whether, given three positive integers a, b, c, there exists a positive integer x < c such that x² is congruent with "a" modulo "b". This problem is clearly equivalent to asking whether the minimum of the quartic polynomial function $(x^2 - a - by)^2$ over the lattice points of the rectangle:

$$\{ (x,y) \mid 1 \le x \le c-1, 1-a \le by \le (c-1)^2 - a \}$$
 is zero or not. \Box

According to Del Pia and Weismantel [4], minimization problem, given in the above proof of Lemma 1 is equivalent to the following problem:

min {
$$(x^2 - a - by)$$
 subject to
 $x^2 - a - by \ge 0,$ (1)
 $1 \le x \le c - 1, 1 - a \le by \le (c - 1)^2 - a, x, y \in \mathbb{Z}$ }.

If
$$L := \{ (x, y) \in \mathbf{R}^2 \mid x^2 - a - by \ge 0, x \ge 0 \},$$

 $G := \{ (x, y) \in \mathbf{R}^2 \mid 1 \le x \le c - 1, 1 - a \le by \le (c - 1)^2 - a \},$

problem (1) can be rewritten as follows:

$$\mu := \min \{ (x^2 - a - by) \mid (x, y) \in (L \cap G) \cap \mathbb{Z}^2 \}.$$
(2)

If $by_{min} = 1 - a$, $by_{max} = (c - 1)^2 - a$, then the above defined rectangle:

$$G = \{ (x, y) \in \mathbf{R}^2 \mid 1 \le x \le c - 1, y_{\min} \le y \le y_{\max} \}.$$

Note that parabola: by = $bf(x) = x^2 - a$, $x \ge 0$ is a part of the border of set L (the top) and we have:

$$bf(1) = 1 - a = by_{min}, bf(c - 1) = (c - 1)^2 - a = by_{max}$$

Thus: $f(1) = y_{min}, f(c - 1) = y_{max}$.

Set L is not convex, as well as the set $L \cap G$ (see Boyd and Vandenberghe [1], Osborne [16]).

The equation of the tangent to the parabola: by = $bf(x) = x^2 - a$, at the point i: $1 \le i \le c - 1$, $i \in \mathbb{Z}$, $x \in \mathbb{R}$ is given by:

$$by_i(x) = 2i(x-i) + i^2 - a.$$
 (3)

The segment of this tangent (hypotenuse), which is inside G and having one end $D_i = (d_{1i}, d_{2i})$ on the horizontal line by = 1 - a, and another end $H_i = (h_{1i}, h_{2i})$ on the vertical line x = c - 1, together with two other segments: on the horizontal line by = 1 - a and on the vertical line x = c - 1, both segments intersect at the point $E = (e_1, e_2)$: $e_1 = c - 1$, $be_2 = 1 - a$ (cathetuses), form some right triangle D_iH_iE :

$$D_iH_iE := S_i := \{ (x, y) \in G \mid y \le y_i(x) \}, \ 1 \le i \le c - 1, i \in \mathbb{Z}.$$

Proposition 1. $2id_{1i} = i^2 + 1, bd_{2i} = 1 - a,$ $h_{1i} = c - 1, bh_{2i} = 2i(c - 1) - i^2 - a,$ $1 \le i \le c - 1, i \in \mathbb{Z}.$

Proof. It follows from the definition of points D_i , H_i and (3): considering points D_i and H_i as intersections of the tangent (3) and the corresponding horizontal and vertical lines, described above, we have for the points D_i : $y_i(d_{1i}) = d_{2i} = y_{min}$, and for the points H_i : $h_{2i} = y_i(h_{1i}) = y_i(c-1)$.

Corollary 1.
$$d_{11} = 1$$
, $2(c - 1) d_{1c-1} = 1 + (c - 1)^2$,
 $d_{11} < d_{1i} < d_{1c-1}$, $i = 2, ..., c - 2$,
 $d_{1i} < d_{1i+1}$, $i = 1, ..., c - 2$.

YULY SHIPILEVSKY

Proof. Function d(t): $2d(t) = t + t^{-1}$ is a strictly increasing function over the interval $1 \le t \le c - 1$, since its derivative d'(t): $2d'(t) = 1 - t^{-2}$ is positive for t > 1 and equal to zero at the point t = 1, $t \in \mathbf{R}$.

Corollary 2.
$$bh_{21} = 2c - 3 - a, bh_{2c-1} = (c - 1)^2 - a,$$

 $h_{21} < h_{2i} < h_{2c-1}, i = 2, ..., c - 2,$
 $h_{2i} < h_{2i+1}, i = 1, ..., c - 2.$

Proof. Function h(t): $bh(t) = 2t(c-1) - t^2 - a$ is a strictly increasing function over the interval $1 \le t \le c-1$, since its derivative h'(t): bh'(t) = 2(c-1) - 2t is positive on the interval $1 \le t < c-1$ and equal to zero at the point t = c-1, $t \in \mathbf{R}$.

Lemma 2.
$$(L \cap G) \cap Z^2 = \bigcup (S_i \cap Z^2), l \le i \le c - l, i \in Z.$$

Proof. It follows from the above given definitions and properties of sets

L, G, S_i, $(1 \le i \le c - 1, i \in \mathbb{Z})$ and due to continuity, differentiability, convexity and monotonicity of function f(x), $(x \ge 0)$.

In particular, it is well-known that a differentiable function of one variable is convex on an interval Ω if and only if its graph lies above all of its tangents: $f(x) \ge f(y) + f'(y) (x - y), x, y \in \Omega$ (see, e.g., Boyd and Vandenberghe [1, section 3.1.3]).

Thus, instead of non-convex set $L \cap G$, we can consider a collection of right triangles: $\{S_i\}$, so that search space of the problem (2): $(L \cap G) \cap \mathbb{Z}^2$ is identical to the union: $\cup (S_i \cap \mathbb{Z}^2)$, $1 \le i \le c - 1$, $i \in \mathbb{Z}$.

Let us denote:

$$\mu_i := \min \{ (x^2 - a - by) \mid (x, y) \in S_i \cap \mathbb{Z}^2 \},$$

$$1 \le i \le c - 1, i \in \mathbb{Z}.$$
(4)

Theorem 1. $\mu = min \{ \mu_i \mid l \le i \le c - l, i \in \mathbb{Z} \}.$

Proof. It follows from the above given definitions of μ , μ_i and Lemma 2.

Each problem (4) is Integer Quadratic Programming problem in the plane. According to Del Pia and Weismantel [4], Theorem 1.1, they can be solved in polynomial time.

Recall that polynomial-time algorithms are closed under union, composition, concatenation, intersection, complementation and some other operations: see, e.g., Hopcroft et al. [9], pp. 425–426, Cormen et al. [2], p. 1055.

The class of languages decidable in polynomial time, class \mathcal{P} , is closed under union, concatenation and the other above mentioned operations. This means that if you have two languages in \mathcal{P} , their union, concatenation, etc., is also in \mathcal{P} . Using mathematical induction, it can be trivially extended to any finite number of languages and combinations of the above given operations.

That is why, due to Theorem 1, our original \mathcal{NP} -complete problem (2) can be solved in polynomial time as well.

As a result, since due to the above algorithm, \mathcal{NP} -complete problem can be solved in polynomial time, we can conclude that $\mathcal{P} = \mathcal{NP}$, since as we mentioned above, if there is a polynomial-time algorithm for any \mathcal{NP} -hard problem, then there are polynomial-time algorithms for all problems in \mathcal{NP} .

Since the original \mathcal{NP} -complete problem is asking whether the corresponding minimum is zero or not, we can, finally, give the following algorithm (polynomial-time) for its solution:

Input: positive integers a, b, c. **Output**: Zero_Or_Not.

```
Set Zero_Or_Not = "Not_Zero".
```

```
\label{eq:starsest} \begin{array}{l} \mbox{for } i=1,\,\ldots\,,\,c-1\ \mbox{do} \\ \mbox{if} & \min \left\{ \, (x^2-a-by) \ \big| \ (x,\,y) \in S_i \cap {\bf Z}^2 \, \right\} = 0 \\ \mbox{then Set Zero_Or_Not} = "Zero" \\ \mbox{break} \\ \mbox{end} \\ \mbox{end} \\ \mbox{return Zero_Or_Not} \end{array}
```

YULY SHIPILEVSKY

3. **Conclusion.** We reduced \mathcal{NP} -complete problem to the polynomial-time algorithm, Thus, we can conclude that $\mathcal{P} = \mathcal{NP}$, since if there is a polynomial-time algorithm for any \mathcal{NP} -hard problem then there are polynomial-time algorithms for all problems in \mathcal{NP} .

REFERENCES

- [1] S. Boyd and L. Vandenberghe, *Convex Optimization*, Cambridge University Press, 2004.
- [2] T. Cormen, C. Leiserson, R. Rivest and C. Stein, *Introduction To Algorithms*, fourth ed., The MIT Press, Cambridge, 2022.
- [3] J. A. De Loera, R. Hemmecke, M. Köppe and R.Weismantel, Integer polynomial optimization in fixed dimension, *Mathematics of Operations Research*, 31 (2006), 147–153.
- [4] A. Del Pia and R. Weismantel, Integer quadratic programming in the plane, *SODA* (*Chandra Chekuri, ed.*), *SIAM*, (2014), 840–846.
- [5] A. Del Pia, R. Hildebrand, R. Weismantel and K. Zemmer, Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane, *Mathematics of Operations Research*, **41** (2015a), 511–530.
- [6] L. Fortnow, The Status of the P versus NP Problem, Northwestern University, 2009.
- [7] M. R. Garey and D. S. Johnson, *Computers and intractability*, W. H. Freeman and Co., San Francisco, Calif., A guide to the theory of NP-completeness, A Series of Books in the Mathematical Sciences, 1979.
- [8] S. Heinz, Complexity of integer quasiconvex polynomial optimization, *J. of Complexity*, **21** (2005), 543–556.
- [9] J. E. Hopcroft, R. Motwani and J. D. Ullman, *Introduction to automata theory, lang-uages and computation*, second ed., Addison-Wesley, Boston, 2001.
- [10] R. Hemmecke, M. Köppe, J. Lee and R. Weismantel, Nonlinear Integer Programming, in: M. Jünger, T. Liebling, D. Naddef, W. Pulleyblank, G. Reinelt, G. Rinaldi, L.Wolsey (Eds.), 50 Years of Integer Programming 1958–2008: The Early Years and State-of-the-Art Surveys, Springer-Verlag, Berlin, (2010), 561–618.
- [11] L. G. Khachiyan and L. Porkolab, Integer optimization on convex semialgebraic sets, *Discrete and Computational Geometry*, **23** (2000), 207–224.
- [12] J. Lee, On the boundary of tractability for nonlinear discrete optimization, *in: Cologne Twente Workshop 2009, 8th Cologne Twente Workshop on Graphs and Combinatorial Optimization, Ecole Polytechnique, Paris,* (2009), 374–383.
- [13] H.W. Jr. Lenstra, Integer programming with a fixed number of variables, *Mathematics of Operations Research*, **8** (1983), 538–548.
- [14] K. Manders and L. Adleman, NP-complete decision problems for binary quadratics, Journal of Computer and System Sciences, **16** (1978), 168–184.

- [15] T. Oertel, C. Wagner and R. Weismantel, Convex integer minimization in fixed dimension, preprint, 2012, arXiv:1203.4175.
- [16] M. J. Osborne, *Mathematical Methods for Economic Theory: a tutorial*, University of Toronto, 2007.

E-Mail: yulysh2000@yahoo.ca