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ABSTRACT 

 

Elliptic curves are fundamental mathematical objects obeying two-variable equations in which the square of one variable 

relates to the third power of another.  Wondering whether elliptic curves might stand for the abstract counterpart of 

biological activities, we identified a correspondence between the two-dimensional plots of various elliptic curves and the 

electric waves detectable on the cortical surface by scalp EEG techniques.  Specifically, the patterns described by the 

intersection of elliptic curves’ three-dimensional contour plots and the two-dimensional projective plane overlap in a few 

terms of milliseconds with the patterns displayed by two-dimensional cortical EEG wave fronts.  Hence, elliptic curve-

like mathematical structures might correspond to the dynamical shapes produced by the real brain activity recorded from 

subjects performing various tasks.  We suggest that, apart from the usual applications in physics and cryptography, elliptic 

curves might theoretically disclose possible equations subtending the anatomical and functional neural routes endowed 

in the central nervous system.   
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INTRODUCTION 

 

In mathematics, an elliptic curve (henceforward EC) is a non-singular, plane curve enclosed in a two-dimensional finite 

algebraic field (Ciss and Moody, 2017) and defined by polynomial cubic equations in two variables: 

 

y2 = f(x),  

 

where the square of one variable y relates to the third power of another variable x and f(x) is a cubic polynomial with no 

repeated roots (Knapp 1992).   

With a suitable change of variables, every EC with real coefficients can be written in the standard form: 

 

y2 = x3 + Ax + B  

 

with some constants A and B meeting a few straightforward conditions.   

A more technical definition states that an EC (over a field k) is a smooth projective curve of genus 1 (defined over k) with 

a distinguished (k-rational) point.  Unlike ellipses, that are curves of genus 0, ECs display genus 1 (Heath-Brown, 2004).  

They are characterized by two-dimensional paths devoid of either cusps or intersections, except at the saddle point, where 

a transition occurs from a closed to an open curve.  ECs are curves and finite groups at the same time (Washington 2008) 

and can be defined in terms of points, integer numbers and rational numbers (Gebel et al., 1994).  Different types of EC 

do exist, including Weierstrass curves, Huff curves, Edwards curves, general quartics curves, and so on (Ciss and Moody, 

2017).  To provide an example, an elliptic curve E over a Fq (finite field) is given by the general Weierstrass equation 

(Zimmer 1989): 

 

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 

 

where a1, a3, a2, a4, a6 ∈ Fq.   

ECs have many practical applications.  They are used to tackle computational problems involving group laws, such as 

algorithms for factoring large integers.  Further, EC throws a bridge between Monster groups, number theory and physics, 

given its relationships with the Pariah group (Duncan e tal. 2017).  Analogies between quantum gravity and DNA/RNA 

packings have also been proposed (Planat et al. 2021).  In cryptography, the EC Diffie-Hellman key exchange protocols 

require that two parties combine their messages with a shared secret, allowing microprocessors to safely determine shared 

secret keys (Jiang et al., 2020).  

 

Here we investigate whether a mathematical object like EC can be correlated with the dynamics and/or functions of 

biological systems.  In particular, we explore the possibility that EEG traces from subjects performing different tasks 
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might exhibit the peculiar features of ECs.  In this proof-of-concept study, we report that the cortical electric activity 

which is generated during various metal activities matches the curves described by different ECs.  Our approach suggests 

feasible applications of ECs in the context of the neuroscientific investigation.  We conclude that the links between abstract 

mathematical concepts and biological activities are worth exploring.  

 

 

 

MATERIALS AND METHODS 

 

We utilized ECs from the Wolfram Demonstration Project, where intersection curves are illustrated in the real space 

(Cinkir 2011).  These ECs are generated by the intersection of the surface  with the plane 

.   Two types of ECs with their three-dimensional contour plots intersecting the two-dimensional plane are 

illustrated in Figures A and B.  Four frames are provided for each of the two ECs.   

In Figure A, the plane is  

z = Ax + B,  

where A (rotation) is a varying parameter and B (translation) = 12.   

The surface is  

z = x2 -a y2 +b x y2 + c x2 y,  

where a = -1; b = 1; c = 1.   

Therefore, the surface is described by z = x3 + y2.   

The parameter A (rotation) varies among the four frames, while the other parameters are kept constant. 

 

In Figure B, the plane is  

z = Ax + B,  

where A (rotation) is a varying parameter and B (translation) = 12.   

The surface is  

z = x2 -a y2 +b x y2 + c x2 y,  

where a = -0.26; b = -0.5; c = 0.6.   

Therefore, the surface is described by z = 0.6 x2 y – 0.5 x y2 + x3 + 0.26 y2. 

The parameter A (rotation) varies among the four frames, while the other parameters are kept constant. 

 

EEG traces.  We assessed digital EEG traces recorded by Norbert Jausovec, who made available his archive to us before 

his untimely end.  The recording procedures and the examined subjects are described in Jaušovec and Jaušovec (2010) 

and Tozzi et al. (2021).  The EEG activity was monitored according to the Ten-twenty Electrode Placement System of the 

International Federation over nineteen scalp locations.  The analysis system (SynAmps) had a bandpass of 0.15-100.0 Hz 

and voltage gain of –6dB at cutoff frequencies, resolution of 084 μV/bit in a 16 bit A to D conversion.  The traces were 

recorded using the following parameters: rate = 1000 Hz, HPF = 0.15 Hz, LPF = 100 Hz, Notch = off.  We extracted two-

dimensional ovals from the EEG traces depicting the brain areas detectable on the scalp (Figures C-J).  The sequence of 

ovals was taken at a temporal distance of 10 ms from each other.   

The Figure illustrates the electric activity of subjects undergoing easy Raven tasks (C-F), verbal analogy tasks (G-H), 

visual stimuli tasks (I-J).   
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Figures A-B.  Three-dimensional plots of two different elliptic curves with varying parameter A (modified from Cinkir 

2011).  Note that the EC plots are bidirectional, i.e., they may proceed on the four illustrated frames in both the ways.  

Figures C-J.  Unidirectional two-dimensional wave fronts of electric activity extracted from EEG traces, with ovals 

temporally spaced 10 ms from each other.  The bar on the right depicts the electric waves amplitudes.  The numbered grey 

disks point out the similarities between the shapes of the ECs and the electric wavefronts.  For further details, see the 

main text.    
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RESULTS 

 

We found that the mathematical patterns described in Figures A-B match the real electric activity portrayed in the oval 

frames of the Figures C-J.  The patterns described by the intersection of ECs’ three-dimensional contour plots and the 

two-dimensional plane match the wave fronts generated by the electric activity detected by scalp EEG.  The numbered 

grey disks highlight the patterns in common between the mathematical ECs and the real cortical findings.  Note that the 

EEG wave fronts can follow both the forward and backward ECs profile and can change their shape in a few terms of 

milliseconds.  Summarizing, our data suggest that different kinds of ECs can be found in EEG traces recorded during 

various tasks.   

 

 

 

CONCLUSIONS 

 

We evaluated the possibility to detect the occurrence of ECs in the brain activity and found a correspondence between the 

two-dimensional paths predicted by the mathematical theory of EC and the electric wave fronts detectable by scalp EEG.  

The results of our proof-of-concept study pave the way for new methodological developments to investigate elusive brain 

functions.  We found a matching between EEG waves and ECs by investigating the relatively short timescale of 10 ms, 

but our results could theoretically be extended also to longer temporal frames like, e.g., the slow waves underlying the 

spontaneous activity of the brain.  We examined the electric wave front of EEG traces, but our approach could be used to 

investigate also the neuronal dynamics provided by other neuro-techniques.  To provide and example, it has been 

suggested that diffusion tensor imaging and diffusion tensor tractography (Tsai 2018; Alizadeh et al., 2019) designate 

anatomic nervous structures such as tracts, commissures, fasciculi, radiations that are arranged as arcs roughly resembling 

ECs (Tozzi and Mariniello, 2022).  Therefore, ECs might stand for the abstract counterpart of the anatomical and 

functional neural projections endowed in the central nervous system.   

 

What would be the practical benefit for neuro-researchers when assessing the brain activity in the mathematical terms of 

ECs?  The abelian EC are equipped with intrinsic symmetries that are hidden at first sight (Kühne 2021).  Further, their 

oscillating patterns display scale invariance (He et al, 2022; Zubrilina 2023).  The occurrence of EC’s hidden symmetries 

and scale invariance in the brain could explain the long-range, simultaneous activation of neurons located in distant brain 

areas and detected via pairwise comparison (Volgushev et al., 2006; Keren and Marom, 2016).  A great deal of modern 

cryptography is based upon ECs, guaranteeing authentication mechanisms with low computational cost (Nita and 

Mihailescu, 2023).  Since two points on the curve intercept the curve at a third point and these points can be plotted on 

cartesian coordinates, two users could arrive at a shared secret by moving around an EC (Blake et al, 2005).  The same 

methodology employed by elliptic-curve cryptography could theoretically be used to detect hypothetical, hidden cortical 

codes.  Yet, ECs could provide the possibility to use simple geometries with plane curves for the study of brain dynamics.  

For instance, it is well-known that the solutions of the cubic ECs are confined to spatial regions that are topologically 

equivalent to a torus.  The fact that EC datapoints can be easily mapped onto the surface of the torus suggests that the 

anatomical and functional nervous pathways crossed by the brain electric activity could be methodologically evaluated 

in terms of trajectories taking place inside manageable toroidal manifolds (Tozzi and Peters 2016). 

 

The theoretical occurrence of EC could allow researchers to investigate the cortical activity extracted from neurodata with 

the mathematical weapons of algebraic geometry, complex analysis, number theory, integral-differential algorithm.  This 

would allow the assessment of brain functions through a large family of algorithms that can generate different series of 

identities.  To provide an example, an integral-differential algorithm has been introduced to describe elliptic real period 

functions featuring dihedral symmetry (Klee 2019):  

 

 
 

with signatures  as in the Ramanujan theory of elliptic functions that involves integral period functions , 

 and  (Ramanujan 1914; Shen 2017).  It is noteworthy that the Hamiltonian can be associated with the period function 

 which satisfies a special case of the hypergeometric differential equation (Klee 2019):  

 

. 

 

In the context of neuroscience, this means that the cortical electric activity could be evaluated in terms of elliptic 

Hamiltonians.  When the local cortical electric potential reaches a minimum, it might be hypothesized that the phase 

curves become loops, each one characterized by the period function  (Klee 2019).  This leads to the occurrence of 

elliptic hypergeometric functions (Olde Daalhuis 2010) that could be useful in the study of the cortical harmonic 

oscillators (Aravanis 2010).  The above-mentioned set of elliptic period functions satisfies an easily calculable ordinary 
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differential equation, namely, the Picard-Fuchs equation (henceforward PF) (Klee 2018).  The use of PF for the assessment 

of elliptic matrices extracted from neuroscientific recordings might allow the evaluation of integrals without resorting to 

direct integration techniques.  Yet, PF could be useful in the investigation of brain’s thermodynamic contraints, entropy 

and energetic demands, since this versatile equation can encompass the energy as a parameter (Kreshchuk and Gulden, 

2019).   

 

In conclusion, an EC-framed account of the cortical electric activity could suggest the occurrence of mathematical 

functional structures underlying nervous routes.   
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