
DERANGE: DICE-ENHANCED RANDOM NUMBER GENERATOR

Ravi Hassanaly
Sorbonne Université

Paris

Nemo Fournier
Sorbonne Université

Paris

Ghislain Vaillant
Paris

April 1, 2024

ABSTRACT

Upon review of the literature, it appears clear that Pseudo Random Number Generation (PRNG) used
extensively in the Machine Learning is intrinsically problematic. We propose here to reintroduce
True Random Number Generation in the ML field, and we publish a library which allows users to
replace the default PRNG provided in PYTHON by the results of dice rolls that have been performed
by the authors in very controlled conditions. This will ensure more sound theoretical foundations of
any downstream ML algorithm using our source of randomness.

Keywords Dice · Random Number Generation · Paradigm Shift

1 Introduction

1.1 The role of Random Number Generation in Computing, and focus on Machine Learning

Rare are the ramifications of modern computing that do not rely on Random Number Generation (RNG). Cryptography
of course comes to mind, of which many algorithms are centered around making encrypted data as close as possible to
random bits of information. This while enforcing reversibility and determinism of the operation to reach its practical
purpose (i.e. original data can be recovered from the seemingly random sequence of bits). One could even argue that
practical cryptography is nothing but the science of pseudo-random number generation.

Yet, many other applications of RNG are commonly encountered. One is the study of computational statistics and
machine learning algorithms. Algorithms developed in these fields often boil down to estimating and sampling
parameters or data from a probability distribution in which relevant information for the problem of interest is embedded.
Since such distributions are usually not practically observed nor computationally tractable, algorithms rely on stochastic
estimations of these parameters, by treating data as a random realization of an underlying distribution and performing
stochastic computations and estimations to estimate — hopefully likelihood-maximizing — model parameters. Random
Number Generation therefore plays a significant part in how such algorithms behave. Many recent advances in
generative machine learning, such as Diffusion Models [1] rely on the progressive rectification of a noise field (hence
generated by RNG) towards data that looks as though it was sampled from a source distribution. Other machine learning
algorithms also heavily rely on RNG at their core. One can for instance mention Genetic Algorithms [2], in which
random mutations are introduced and further selected according to the environmental pressure enforced to improve
performance in the learning task.

All of these intertwinements of computing and RNG mean that a source of RNG must be available in the implementation
platform of many of those algorithms[3].



Dice-Enhanced Random Number Generator

1.2 Pseudo-RNG

Because of the intrinsic deterministic nature of computers, randomness cannot be created out of sequential computing
steps. Either an external physical device must be used as a source of randomness through either chaotic systems (we for
instance quote the Lavarand device [4] or the double-pendulum based RNG [5]) or truly random processes, such as
Quantum-physics based RNG [6]. Such external devices, even though providing solid grounds for RNG, are not the
most practical and often space-consuming. Most machine learning laboratories would therefore have to choose between
using an external devices and hosting interns during intern season.

Thankfully, RNG on determinstic machines can still be approached, thanks to the development of Pseudo-RNG (PRNG)
algorithms. We refer to [7] for a recent survey about such PRNG algorithms. In a nutshell, these are based upon the use
of an initial entropy source (which is often stated as the seed of the PRNG system), which is then transformed through
a sequence of deterministic operations. The most common PRNG are the Linear Congruence Generators (LCG) [8],
defined by a set of (a, c,m) integers through which an iterative sequence of numbers (xn) is produced as the following
recurrence relation, of which the initial x0 is the seed.

xn+1 = (a · xn + c) mod m

The study of such PRNG (and especially LCG) has been extensive over the past decades, trying to define and ensure
desirable properties of these generators (such as uniformity, independance, large period, reproducibility, consistency,
disjoint subsequentiality, portability, efficiency, coverage, spectral characteristc and cryptographic security — we refer
here again to [7] for more comprehensive definitions). Despite their apparent simplicity, LCG have been prone to very
serious ill-designs even among very widespread implementations. Let us mention the RANDU LCG (characterized by
the

(
65539, 0, 231

)
triplet), which has been famously pointed as one of the worst generators ever used in production. Its

bad properties can famously be observed when sampling the unit cubes (all samples can be found to lie in at most 15
planes) and has been used as a "negative ground-truth" for randomness testing suite since then [9].

1.3 Fundamental Limits of PRNG and Derandomization.

Many problems, such as the ELECTIONOFALEADER problem (in which a system of identical distributed nodes need to
collectively agree on a leader) can be shown to be insolvable if relying on classical pseudo RNG [10]. This is because
determinism (which encompasses PRNG) does not allow for symmetry breaking in the network of nodes. Only algorithm
that can access to true source of randomness can solve this problem in an exact manner [6]. More fundamentally, the
use of random-number generators is of first order importance in the theory of computation. Indeed many decision
and computation problems have been shown to belong to the BPP (Bounded-error Probabilistic Polynomial time)
complexity class [11]. One historically notable example is the PRIMALITYTESTING decision problem, which admits a
very simple BPP solution through the MILLER-RABIN algorithm [12]. Proving that algorithms of the BPP class behave
equivalently when using a pseudo-RNG as a source of "randomness" would be sufficient to collapse the BPP class
into P and thus a major step in mapping computational complexity. But so far this equivalence remains out of reach,
justifying the need for true sources of randomness in the framework of random algorithms.

These limitations shows that it’s quite a miracle that modern computing still holds on PRNG while their properties and
equivalence to truly random RNG is out of the reach of the contemporary mind.

1.4 Limitations of PRNG use in Machine Learning.

As mentioned earlier, Machine Learning relies on RNG at its core in many aspects. Yet contrary to the cryptography
field, the impact of the PRNG choice has not been studied extensively. Following the above-mentioned limits of PRNG,
and embracing the popular sayings that "an ounce of prevention is worth a pound of cure" as well as the "better safe
than sorry", our stance is that it is ill-advised to continue using PRNG in machine learning.

1.5 Dice: An Underrated source of Randomness

Dice are ancient analog mechanisms used to generate random numbers [13]. Their main advantage is that they are small,
easy to use, and considered truly random. Their use for RNG is further detailled in the Methods section of this article.

1.6 Our Proposal: Bringing Back True Randomization using Dice Throws

We propose to tackle the issue of potentially bad PRNG properties by leveraging physical random process for number
generation, in a manner that would be convenient for the overall community. We offer to perform and report the results

2



Dice-Enhanced Random Number Generator

of three thousands throws of 10 faces dice. These results are available in a PYTHON library that once imported replace
the underlying source of randomness by a reading of the results of our throws. For retro-compatibility, we still offer the
possibility to use a seed with this source of randomness, which influences the read-out order of the random number table.
For convenience and overall improved learning performances, an interface to perform seed-tuning of ML experiments is
also provided. This paper describes the methodological choices and methods used to generate these numbers, as well as
some additional results for the occasional dice-throwing interested reader.

2 Methods

In order to bring true randomness in computer science, we use a true random process in order to sample a large number
of numbers. At the genesis of this project, we had the issue of choosing a random value for a parameter of a deep
learning model, in the process of running a random search. A computer scientist would simply use the Python random1

package at the beginning of the script to initialize the model. However, at that particular moment, we had a deck of card
on our desk, and decided to draw cards in order to select a value for this parameter. This later gave us the idea to sample
random parameters using role play dices, that are numbered from 0 to 9 (it is the kind of dice that is used in Dungeons
& Dragons). We bought three 10-sided dices with three different colors. And then, when needing to set a parameter
between 0 and 1000, we just throw the three dices in order to have a value (with each color corresponding to a power of
10). This process was very satisfying as it was fun, but also truly random. As we strongly believe that true randomness
is essential for many purposes, but most importantly for science, we initiated this project in order to share our work
with the computer science community.

To this end, we developed a package that allows to randomly sample numbers between 0 and 1000 with true randomness.
We made 1000 throws of three 10-sided dices, so 3000 throws in total, and reported the result in a CSV file. This file
can then be read by the user in order to sample a number randomly generated. Variability can be added to the sampling:
the user can choose a seed that simply correspond to a different way of reading the table. To make it more practical, we
packaged this in a Python library, allowing to directly import the sampler in Python and replace the fake default random
sampler.

3 Experimental setting

It may be surprising to have an "Experimental setting" here, as the experiment is very simple. Indeed, it only consists in
throwing dices and reporting numbers. However, as it is a tedious and repetitive task, we optimized the process and
would like to share the tricks with you, in case you would like to generate your own list of random number.

The experiment will be realized with two operators: one will throw the dices, and read the result loudly, while the other
one will write it. Then, we strongly advise to directly report the results on a numeric spreadsheet that can be saved and
exported as a CSV file, rather than a blackboard that can be erased, or a paper notebook that can burn. It would be
really unfortunate to lose such valuable data.

The main material is three 10-sided dices: one brown, one purple and one orange. We used a table in a room, as we
believe that outside perturbation such as wind and rain could impact the results. The table needs to be large enough to
put three boxes on it. To optimize the reading of the results, even if the dices were of different colors, we throw each
dice in its own box, each box corresponding to a power of 10. It is indeed quite difficult and prone to errors to throw the
three dices at one time. It is trivial to prove that throwing the three dices separately in strictly equivalent in terms of
probabilities than throwing the three of them all at once. Moreover, the use of boxes reduces the risk of a die falling off
the table.

The protocol can be resumed as follows:

• operator A throws the brown dice in the left box and tells to operator B what number have been drawn,

• operator B notes the number on its spread shit,

• operator A throws the purple dice in the middle box and tells to operator B what number have been drawn,

• operator B notes the number on its spread shit,

• operator A throws the orange dice in the right box and tells to operator B what number have been drawn,

• operator B notes the number on its spread shit,

• operator B presses the key (usually enter) to go to the next line.

1https://docs.python.org/3/library/random.html

3

https://docs.python.org/3/library/random.html


Dice-Enhanced Random Number Generator

Table 1: Dices’ mass

Dice Mass (in g)
Brown data point lost while preparing the paper
Purple data point lost while preparing the paper
Orange data point lost while preparing the paper

Table 2: Boxes’ dimension

Box Length (in cm) Width (in cm) Height (in cm)
1 29.5 29.9 7.0
2 29.8 29.9 6.8
3 30. 30.3 8.1

This is then repeated 1000 time. The operations of operator A are illustrated in Figure 1. To avoid boredom, operator A
and B inverse their role every 100 iterations. In addition, a coffee break is suggested and the half of the experiment.

Figure 1: The tasks of operator A when the brown die gives a 5, the purple one a 2 and the orange one a 7.

In order to improve the reproducibility of the experiment, we report in Table 1 the exact mass of the three dices that we
used, and in Table 2 the dimensions of the three boxes. Unfortunately, we had written down the exact mass (measured
to the 10−4 grams) in a yellow notebook that we have since lost, please feel free to contact the corresponding author if
you run into it. We also tracked the temperature of the room over the time in order to enable any scientist that would
like to reproduce our results to reproduce the same environment. We also believe that the atmospheric pressure in the
room is a key component for the reproducibility of the experiment, but unfortunately it was very difficult to lend a
device to measure it, so we cannot report this data.

In total, including the pause, it took exactly 1 hour and 59 minutes to complete the experiment. We estimate that using
this protocol, if the operators are focused, it requires 1 minutes to sample 10 numbers, which corresponds to 30 dice
rolls. If they are awakened, it may require only 10 second to sample 10 number, but none of the operators could achieve
this state, despite their high level of experience.

4



Dice-Enhanced Random Number Generator

4 Results

4.1 Statistical analysis

As curious math enjoyers, having a list of 1000 randomly sampled numbers gives us the desire to carry out a statistical
study.

In total, 633 number out of 1000 have been drawn. In other words, 367 numbers have not been drawn. We unfortunately
did not draw any fixed point (meaning that the throw N give us the number N). The most obtained numbers are 394,
575, 911 and 828 with 5 occurrences for each of them. In Figure 2 we display the density of number obtained using
a count plot, to check if it is similar to the uniform distribution and make sure that no pattern emerges. To prove
it mathematically and show that our method surpasses the PRNG available in Python, we measure the Wasserstein
distance between our list of value and the uniform distribution and compared it to the Wasserstein distance between a
pseudo-random list generate with random.randint and the uniform distribution. We obtain respectively Wasserstein
distances of 10.68 and 11.09, proving that the proposed list is closer to a uniform law than the Python method (fun fact:
we did not even have to generate several lists for this result).

023457910111314151718192124252728293031323435374044454648495152575859606465666869707175767879808283848586878890929394969799100102103104106108109110111115117118119120122123124129130132135136138139140141143147148149150151153159160162164165167169170171173174180181185186189190191193195196198199201202203204205207208210212213214215216218219220221222223225226227229230231232233234236237238240241243246249250251252253254255257258261263265266268269271274275277278279283284285287290291294296297298299300301302303304306308309310311313314315317318321322323325326327328332333334338340343344345346348349350351356357359361363364365366367368369370371372374375376377378379380381382383384389390391392393394395396397399400401402403404407409410411412413414415416418419420422423424425426427429430431432434436438439440442445446447449451452454455456457458459460463465466467468469472473474475479481483488491492495496497499500502503504505509510512513516517519520521526527528529530531532535537538539540542543544545546547548549551553554555556557559560561563564565567569570571575577578579582586588589590591593594595596600601602604605606607608609611612615616617618619620621622623624625626627628629630631635636638640642644647650652653655658659660661662663664665668669671672673674678679680681682683684685686688689690691695696697698700703704706708710711716719720723724726728729731732733735737738739740741743746748749750751752757760762763764765768769772774775776777780783784786788790791792793794795797799802805814816820821823825826827828831832833834835837839840842843844845846848849850852853854855856858859860861862864866868869870872875877878880882883884889890891892893894895897899900901902903904905906908909910911912914916919921922925928929930932933934935936937938939942943944947948949952955957958959960963966967970971973974979980986989993994995996997998999
Dice

0

1

2

3

4

5

co
un

t

Figure 2: Distribution of numbers obtained from the 1000 dice rolls.

We illustrate in Figure 3 the different number over dice rolls. It would be a nice experiment to use it as an audio signal
and check if it sounds like a white noise in order to confirm the random nature of the experiment.

0 200 400 600 800 1000
0

200

400

600

800

1000

Figure 3: Numbers obtained over the 1000 dice rolls (in chronological order).

When throwing the dice, we realized that some pattern were much more exciting to obtain than the others, such as
hundreds or triples. We counted a total of 15 hundreds, which is way above the expectancy (that is 10), and 11 triples,
which is just above the expectancy. Can we consider our experiment as a lucky experiment? Actually not really. Indeed,
in Figure 4, we show the occurrences of each number for the three dice. We can see that the 0 is the most obtained
number with 349 occurrences, explaining why the hundreds are more probable (as the condition for a hundred is that
the 2nd and 3rd dice give a 0). If we consider that 3000 throws are enough to conclude, 0 is more probable than the
other numbers. This can be critical, especially when playing a role game, where a 0 outcome will probably lead you to
a defeat. Another interesting point is that the 7, usually considered in many cultures as a "lucky number", is the number
with the lowest frequency, with only 0.085% of appearance. Therefore, we would not recommend playing the 7 when
betting with these dices, especially if you gamble money.

In Figure 5, we separated the 3 dices. There is nothing much to add using this plot, except that the color code follows
the colors of the dice.

5



Dice-Enhanced Random Number Generator

0 4 9 3 2 6 1 5 8 7
Dice

0

100

200

300
co

un
t

Figure 4: Distribution of digits obtained from the 3000 dice rolls of the three dice used (summed over the dice).

0 1 2 3 4 5 6 7 8 9
D1

0

20

40

60

80

100

co
un

t

0 1 2 3 4 5 6 7 8 9
D2

0

20

40

60

80

100

120

co
un

t

0 1 2 3 4 5 6 7 8 9
D3

0

20

40

60

80

100

120

co
un

t

Figure 5: Distributions of digits obtained from the 1000 dice rolls for each of the die used.

We also had the feeling that many numbers had a double inside (for instance 101, 110 or 001 are numbers with double).
We checked and in total we have 295 numbers with doubles, where the expectancy is 270.

It is interesting to notice that no number outside the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} have been reported, probably meaning
that the operator did not try to make us believe that the dice are magical.

Finally, we report in Figure 7, the evolution of the temperature during the experiment. We can observe that the
temperature increase as the number of dice rolls augment. However, even is there is a clear correlation, it is not enough
to conclude that throwing dices causes the augmentation of the agitation of the gas molecule in the atmosphere of
the room. The most probable explanation for this temperature increase is the effect of the sun warming the earth’s
atmosphere, or maybe due to global warming.

To end this statistical analysis, we present an interesting 3D(ice) visualization of the number generated in Figure ??.

4.2 Table

The final table of generated numbers in available in Appendix A.

5 Discussion and future direction

As a result of all this intense work, we built a Python package, the link will be shared soon. Currently, the code and
CSV file can be found on the following repository: https://github.com/ravih18/DERaNGe.

We are currently planning on an online platform in which everybody that throws a die can report the result of the throw.
We will manually check that each contributed number is random enough and add it to the next release of the library.

6

https://github.com/ravih18/DERaNGe


Dice-Enhanced Random Number Generator

0 200 400 600 800 1000
Throws

18.6

18.7

18.8

18.9

19.0

19.1

19.2

19.3
Te

m
pe

ra
tu

re
 (°

C)

Figure 6: Evolution of the temperature during the experiment.

D1

0
2

4
6

8

D2

0
2

4
6

8

D3

0
2
4

6

8

Figure 7: 3D scatter plot of the obtained numbers, with each axis representing one die.

Anonymity of contributions will be ensured using dice-based cryptographic schemes, allowing any user willing to
participate in this project to do so without any consequence other than overall better science.

6 Conclusion

To wrap-up our work, our investigation has provided compelling evidence to support the use of traditional dice-rolling
as a viable method for Random Number Generation (RNG) in machine learning experiments. The stochastic nature of
dice outcomes demonstrated a level of randomness comparable to contemporary computational RNG algorithms. Thus,
it appears that this age-old practice may offer a feasible alternative for researchers seeking reliable RNG sources for
their experimental designs in Machine Learning. In light of these findings, further studies are warranted to explore
the full potential and applicability of dice-rolling as a legitimate RNG methodology in scientific research and policy
making in general.

Acknowledgments

The research leading to these results has received the help of:

7



Dice-Enhanced Random Number Generator

• Maëlys Solal that generously lent us the dices.
• Fanny Namysl that helped us to use the high precision weighing machine.
• Agnes Rastetter that provided us an accurate thermometer.
• Gaia Gentile for her kind supervision during the dice rolls.

Ethics

The operators (that are also the authors) were fully cooperative and agreed to spend 2 hours of their Saturday morning
to throw 1000 times three dices. They have rewarded themselves with a cup of coffee and a biscuit.

References

[1] Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion Models in Vision: A
Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(9):10850–10869, September 2023.
Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2] Kenneth De Jong. Learning with genetic algorithms: An overview. Machine Learning, 3(2):121–138, October
1988.

[3] Benjamin Antunes and David R. C. Hill. Reproducibility, energy efficiency and performance of pseudoran-
dom number generators in machine learning: a comparative study of python, numpy, tensorflow, and pytorch
implementations, February 2024. arXiv:2401.17345 [cs].

[4] Landon Curt Noll, Robert G. Mende, and Sanjeev Sisodiya. Method for seeding a pseudo-random number
generator with a cryptographic hash of a digitization of a chaotic system, March 1998.

[5] Chokri Nouar and Zine El Abidine Guennoun. A Pseudo-Random Number Generator Using Double Pendulum.
Applied Mathematics & Information Sciences, 14(6):977–984, November 2020.

[6] Marcin M. Jacak, Piotr Jóźwiak, Jakub Niemczuk, and Janusz E. Jacak. Quantum generators of random numbers.
Scientific Reports, 11(1):16108, August 2021. Publisher: Nature Publishing Group.

[7] Kamalika Bhattacharjee and Sukanta Das. A search for good pseudo-random number generators: Survey and
empirical studies. Computer Science Review, 45:100471, August 2022.

[8] GEORGE Marsaglia. The Structure of Linear Congruential Sequences. In S. K. Zaremba, editor, Applications of
Number Theory to Numerical Analysis, pages 249–285. Academic Press, January 1972.

[9] George S. Fishman and Louis R. Moore. A Statistical Evaluation of Multiplicative Congruential Random Number
Generators with Modulus 231 — 1. Journal of the American Statistical Association, 77(377):129–136, March
1982. Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/01621459.1982.10477775.

[10] Dana Angluin. Local and global properties in networks of processors (Extended Abstract). In Proceedings of the
twelfth annual ACM symposium on Theory of computing, STOC ’80, pages 82–93, New York, NY, USA, April
1980. Association for Computing Machinery.

[11] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, August 1995.
[12] Michael O Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory, 12(1):128–138,

February 1980.
[13] Alex de Voogt. The role of the dice in board games history. January 2015.

8



Dice-Enhanced Random Number Generator

A Table of dice based random number generator

310 569 624 48 202 642 220 40 764 980 553 15 422 466 415 765 90 786 814 768 618

45 140 617 120 255 647 548 604 967 861 14 296 939 170 768 82 859 554 439 872 889

84 393 35 424 57 488 980 431 333 737 640 607 658 378 221 669 298 465 410 327 34

70 772 459 150 903 393 350 659 739 823 340 402 849 432 254 700 57 899 893 895 577

678 93 427 429 343 943 378 682 198 612 783 343 321 207 481 479 821 3 664 955 783

193 862 199 658 257 103 529 46 160 395 578 232 79 682 878 69 760 434 743 500 216

793 102 199 345 570 929 916 868 422 64 265 764 788 919 446 308 149 638 877 916 866

251 848 970 218 520 696 32 933 864 265 86 537 502 938 393 363 30 46 304 380 213

143 575 601 229 243 135 309 601 275 382 828 877 565 904 711 4 821 446 850 662 883

723 298 367 418 340 475 7 691 326 892 963 202 407 561 844 870 269 708 411 31 396

993 683 629 689 321 283 910 418 400 210 902 910 958 83 635 456 757 749 278 869 243

644 671 579 551 905 11 600 203 303 682 906 456 48 499 249 852 740 132 237 430 212

628 223 442 212 611 908 253 214 827 344 76 900 343 791 784 24 28 389 769 368 143

301 58 297 328 29 59 290 891 711 390 78 741 595 802 268 575 171 11 775 440 971

732 943 195 616 893 468 831 575 853 626 792 70 411 436 921 232 414 883 491 397 381

826 545 496 539 617 370 909 762 911 579 816 544 401 791 203 495 28 49 374 323 151

746 404 967 880 733 190 411 190 18 321 528 942 9 322 338 542 571 856 9 688 555

250 463 835 234 928 855 394 332 19 300 136 952 590 835 452 703 436 5 0 932 684

189 297 148 998 802 716 897 840 510 11 109 474 594 578 575 251 219 543 66 663 359

346 350 609 724 860 686 299 615 317 595 119 750 636 15 569 960 601 862 11 710 937

540 263 944 368 775 986 469 832 860 394 4 284 240 10 241 109 911 890 837 376 642

640 588 973 314 911 565 294 394 549 233 679 401 483 70 556 906 901 311 147 467 140

106 912 348 185 842 326 84 602 366 115 396 930 258 277 542 605 695 959 399 719 738

933 440 553 241 624 240 122 236 752 900 500 866 285 795 621 864 832 834 459 665 304

882 683 9 997 690 538 110 153 71 845 720 821 784 237 68 532 911 794 60 377 884

141 407 542 627 232 655 205 27 202 685 788 479 690 911 704 344 606 9 652 780 13

729 546 846 57 191 472 422 230 85 394 512 608 638 797 575 949 196 170 530 160 124

9



Dice-Enhanced Random Number Generator

243 123 904 108 458 586 279 45 828 246 416 861 80 503 739 936 141 840 368 661 751

17 253 560 936 294 996 17 253 560 936 294 996 315 356 378 748 617 371 479 412 436

768 681 989 369 947 596 957 795 122 169 141 967 994 516 955 380 227 875 2 652 943

48 231 212 805 394 87 40 409 894 883 449 980 426 204 392 201 236 169 181 934 170

381 777 630 232 226 914 302 75 86 624 364 726 25 96 365 889 775 222 400 858 474

90 150 397 839 167 275 681 685 99 899 456 492 83 668 776 475 790 28 100 449 423

29 94 595 379 275 411 844 979 591 526 567 942 869 252 708 571 465 322 440 554 153

346 309 979 916 600 504 469 728 403 846 454 369 530 167 66 512 449 429 606 59 372

189 15 446 854 102 760 314 905 683 960 589 843 697 427 538 825 279 527 623 424 445

391 457 412 399 104 351 97 989 673 311 531 650 653 111 21 375 27 103 261 384 416

159 669 620 92 401 998 999 255 419 631 623 225 327 45 349 238 102 446 361 837 285

802 674 334 882 625 5 557 910 510 834 425 40 726 139 410 0 4 780 447 875 129

749 108 201 545 334 274 559 519 763 922 948 928 671 303 517 903 253 680 328 257 90

284 122 995 323 66 64 505 51 0 193 460 933 318 571 40 731 973 106 655 935 619

365 916 180 582 271 420 774 37 298 593 547 535 299 451 642 672 604 216 579 735 631

102 378 698 88 266 10 404 661 828 68 497 665 595 855 473 455 622 708 173 974 325

104 521 563 7 65 306 322 415 164 919 711 225 409 799 684 630 321 706 447 570 995

111 118 751 287 944 765 438 413 823 223 164 174 24 213 828 198 509 117 468 472 500

357 130 890 45 936 586 546 780 513 564 458 556 750 313 949 424 291 383 323 201 731

774 937 966 820 640 165 852 833 868 660 452 208 777 802 925 539 186 106 711 138 249

703 162 937 215 190 459 939 44 828 334 346 357 52

B Easter (l)egg of lamb

As today (the 1st of April 2024) is also Easter, here is the Chat-GPT recipe for the Easter leg of Lamb:

Ingredients:

• 1 leg of lamb (about 5-7 pounds)

• 4 cloves of garlic, minced

• 2 tablespoons of fresh rosemary, chopped

• 2 tablespoons of fresh thyme, chopped

• 1 tablespoon of fresh parsley, chopped

• 1/4 cup of olive oil

10



Dice-Enhanced Random Number Generator

• Juice of 1 lemon
• Salt and pepper to taste

Instructions:

Preheat your oven to 350°F (175°C).

In a small bowl, mix together the minced garlic, chopped rosemary, thyme, parsley, olive oil, lemon juice, salt, and
pepper to form a marinade.

Place the leg of lamb in a roasting pan and use a sharp knife to make several small incisions all over the surface of the
lamb.

Rub the marinade all over the lamb, making sure to work it into the incisions you made.

Cover the roasting pan with foil and let the lamb marinate in the refrigerator for at least 2 hours, or overnight for best
results.

Once the lamb has finished marinating, remove it from the refrigerator and let it come to room temperature for about 30
minutes.

Remove the foil from the roasting pan and place the lamb in the preheated oven.

Roast the lamb for about 20 minutes per pound, or until it reaches your desired level of doneness. For medium-rare, aim
for an internal temperature of 135-140°F (57-60°C) when measured with a meat thermometer inserted into the thickest
part of the meat.

Once the lamb is cooked to your liking, remove it from the oven and let it rest for at least 15 minutes before carving.

Carve the lamb into slices and serve with your favorite side dishes, such as roasted vegetables, mashed potatoes, or a
fresh salad.

11


	Introduction
	The role of Random Number Generation in Computing, and focus on Machine Learning
	Pseudo-RNG
	Fundamental Limits of PRNG and Derandomization.
	Limitations of PRNG use in Machine Learning.
	Dice: An Underrated source of Randomness
	Our Proposal: Bringing Back True Randomization using Dice Throws

	Methods
	Experimental setting
	Results
	Statistical analysis
	Table

	Discussion and future direction
	Conclusion
	Table of dice based random number generator
	Easter (l)egg of lamb

