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ABSTRACT

The vertex cover problem is a famous combinatorial problem, and its complexity has been heavily
studied. While a 2-approximation for it can be trivially obtained, researchers have not been able to
approximate it better than 2-o(1). In this paper, by introducing a new semidefinite programming
formulation that satisfies new properties, we introduce an approximation algorithm for the vertex
cover problem with a performance ratio of 1.999999 on arbitrary graphs, en route to answering an
open question about the correctness of the unique games conjecture.
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1 Introduction

In complexity theory, the abbreviation NP refers to "nondeterministic polynomial", where a problem is in NP if we
can quickly (in polynomial time) test whether a solution is correct. P and NP-complete problems are subsets of NP
Problems. We can solve P problems in polynomial time while determining whether or not it is possible to solve
NP-complete problems quickly (called the P vs NP problem) is one of the principal unsolved problems in Mathematics
and Computer science.

Here, we consider the vertex cover problem (VCP) which is a famous NP-complete problem. It cannot be approximated
within a factor of 1.36 [1], unless P = NP, while a 2-approximation factor for it can be trivially obtained by taking all
the vertices of a maximal matching in the graph. However, improving this simple 2-approximation algorithm is a hard
task [2, 3].

In this paper, based on a lower bound on the objective value of VCP feasible solutions, we introduce a (2-ε)-
approximation ratio, where the value of ε is not constant. Then, we introduce a new semidefinite programming
(SDP) formulation and fix the ε value equal to ε=0.000001, to produce a 1.999999-approximation ratio on arbitrary
graphs.

The rest of the paper is structured as follows. Section 2 is about the vertex cover problem and introduces new properties
about it. In section 3, using a new SDP model whose solution satisfies the properties, we propose a solution algorithm
for VCP with a performance ratio of 1.999999 on arbitrary graphs. Finally, Section 4 concludes the paper.

2 Performance ratio based on VCP feasible solutions

In the mathematical discipline of graph theory, a vertex cover of a graph is a set of vertices such that each edge of the
graph is incident to at least one vertex of the set. The problem of finding a minimum vertex cover is a typical example
of an NP-complete optimization problem. In this section, we calculate the performance ratios of VCP feasible solutions
to produce an approximation ratio of 2-ε, where the value of ε is not constant and it depends on the VCP objective
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value. Then, in the next section, we will fix the value of ε equal to ε=0.000001, to produce a 1.999999-approximation
ratio for the vertex cover problem.

Let G = (V,E) be an undirected graph on vertex set V and edge set E, where |V|= n. Throughout this paper, z∗(G)
is the optimal value for the vertex cover problem on G, and VCP feasible solutions have been introduced by a vertex
partitioning V = V1 ∪ V0 with an objective value | V1 |.
The integer linear programming (ILP) model for VCP is as follows; i.e. z1∗ = z∗(G).

(1) mins.t. z1 =
∑
i∈V

xi

xi + xj ≥ 1 ij ∈ E

xi ∈ {0,+1} i ∈ V

Lemma 1. [4] Let x∗ be an extreme optimal solution to the linear programming (LP) relaxation of the model
(1). Then x∗

j ∈ {0, 0.5, 1} for j ∈ V . If we define V 0 = {j ∈ V | x∗
j = 0}, V 0.5 = {j ∈ V | x∗

j = 0.5} and
V 1 = {j ∈ V | x∗

j = 1}, then there exists a VCP optimal solution which includes all of the vertices V 1, and it is a
subset of V 0.5 ∪ V 1.

Theorem 1. Let x∗ be an extreme optimal solution to the LP relaxation of the model (1), V 0 = {j ∈ V | x∗
j = 0},

V 0.5 = {j ∈ V | x∗
j = 0.5}, V 1 = {j ∈ V | x∗

j = 1}, and G0.5 be the induced graph on the vertices V 0.5. If we
can introduce a vertex cover feasible partitioning V 0.5 = V 0.5

1 ∪ V 0.5
0 with an approximation ratio of 1 ≤ ρ < 2, for

the VCP on G0.5, then the vertex cover feasible partitioning V = (V1 ∪ V0) = (V 0.5
1 ∪ V 1) ∪ (V 0.5

0 ∪ V 0), has an
approximation ratio of 1 ≤ ρ < 2, for the VCP on G.
Proof. Based on the approximation ratio of |V 0.5

1 |
z∗(G0.5)

≤ ρ, we have,

| V 0.5
1 | + | V 1 |≤ ρz∗(G0.5) + ρ | V 1 |

Therefore, |V1|
z∗(G) =

|V 0.5
1 |+|V 1|

z∗(G0.5)+|V 1| ≤ ρ ⋄

The Theorem (1) says that it is sufficient to produce an approximation ratio of 1 ≤ ρ < 2, on G0.5. Then, let’s assume
that for the optimal solution of the LP relaxation of the model (1), we have V 0 = V 1 = {}, V 0.5 = V ; i.e. G = G0.5.

We know that we can efficiently solve the following SDP formulation, as a relaxation of the VCP model (1).

(2) mins.t. z2 =
∑
i∈V

Xoi

Xoi +Xoj ≥ 1 ij ∈ E

0 ≤ Xoi ≤ +1 i ∈ V

X ⪰ 0

This model can be written as follows,

(3) mins.t. z3 =
∑
i∈V

Xoi

Xoi +Xoj −Xij = 1 ij ∈ E

Xii = 1, 0 ≤ Xij ≤ +1 i, j ∈ V ∪ {o}
X ⪰ 0

Moreover, by introducing the normal vectors vo, v1, ..., vn, the SDP model (3) can be written as follows, where
vivj = Xij , V1 = {i ∈ V | vi = vo} is a feasible vertex cover, and Vo = V −V1 is the set of perpendicular vectors to vo.

(4) mins.t. z4 =
∑
i∈V

vovi

vovi + vovj − vivj = 1 ij ∈ E

vivi = 1, 0 ≤ vivj ≤ +1 i, j ∈ V ∪ {o}
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Theorem 2. Let n
2 + n

k be a lower bound on VCP optimal value (z∗(G) ≥ n
2 + n

k = (k+2)n
2k ). Then, for all vertex cover

feasible partitioning V = V1 ∪ V0, we have the approximation ratio |V1|
z∗(G) ≤

2k
k+2 < 2.

Proof. If z∗(G) ≥ (k+2)n
2k , then n

z∗(G) ≤
2k
k+2 . Therefore,

| V1 |
z∗(G)

≤ n

z∗(G)
≤ 2k

k + 2
< 2

and this completes the Proof ⋄

Theorem 3. Let z∗(G) ≥ n
2 , and we have a VCP feasible partitioning V = V1 ∪ V0, where | V1 |≤ kn

k+1

and | V0 |≥ n
k+1 (or | V1 |≤ k | V0 |). Then, based on such a solution, we have an approximation ratio

|V1|
z∗(G) ≤

2k
k+1 < 2.

Proof. If | V1 |≤ kn
k+1 , then n ≥ k+1

k | V1 |. Hence, z∗(G) ≥ n
2 ≥ k+1

2k | V1 | and |V1|
z∗(G) ≤

2k
k+1 < 2 ⋄

To find a suitable lower bound (and apply Theorem 2) or a suitable feasible solution (and apply Theorem 3), we will
introduce a new SDP model, in the next section.

3 A (1.999999)-approximation algorithm on arbitrary graphs

In section 2, we introduced a (2-ε)-approximation ratio for VCP, where ε value was not constant. In this section, we fix
the value of ε equal to ε=0.000001 to produce a 1.999999-approximation ratio on arbitrary graphs. To do this, we
introduce the following property on a solution of the SDP model (4).

Property 1. For some vertex cover problems, after solving the SDP model (4), both of the following condi-
tions occur.

a) For less than 0.000001n of vertices j ∈ V and corresponding vectors we have v∗ov
∗
j < 0.5.

b) For less than 0.01n of vertices j ∈ V and corresponding vectors we have v∗ov
∗
j > 0.5004 .

Theorem 4. If z∗(G) ≥ n
2 and the optimal solution of the SDP model (4) does not meet the Property (1),

then we can produce a VCP solution with a performance ratio of 1.999999.
Proof. If the optimal solution of the SDP model (4) does not meet the Property (1.a), then we can introduce
V0 = {j ∈ V | v∗ov∗j < 0.5} and V1 = V − V0, to have a VCP feasible solution with | V0 |≥ 0.000001n and
| V1 |≤ 0.999999n ≤ 999999 | V0 |. Therefore, for such a solution and based on the Theorem (3), we have an
approximation ratio of |V1|

z∗(G) <
2(999999)
999999+1 = 1.999998 < 1.999999.

Otherwise, if the optimal solution of the SDP model (4) meets the Property (1.a) but it does not meet the Property (1.b),
then there exists the following lower bound on z∗(G) value.

z∗(G) ≥ z4∗ ≥ (0)(0.000001n){s.t. v∗
ov

∗
j<0.5}

+(0.5)(0.989999n){s.t. v∗
ov

∗
j≥0.5} + (0.5004)(0.01n){s.t. v∗

ov
∗
j>0.5004}

=
n

2
+ 0.0000035n

Note that, the Property (1.a) is met and we have less than 0.000001n of vertices j ∈ V with v∗ov
∗
j < 0.5. The Property

(1.b) is not met and we have more than 0.01n of vertices j ∈ V with v∗ov
∗
j > 0.5004. Therefore, in the above inequality,

the first summation is the lower bound on the vertices j ∈ V with v∗ov
∗
j < 0.5, and the third summation is the lower

bound on only 0.01n of the vertices j ∈ V with v∗ov
∗
j > 0.5004. In other words, beyond the 0.01n of such vertices are

considered in the second summation. Moreover, the second summation is the lower bound on the other vertices (the
vertices j ∈ V with 0.5 ≤ v∗ov

∗
j ≤ 0.5004 or the vertices j ∈ V with v∗ov

∗
j > 0.5004 and beyond the 0.01n of such

vertices that have been considered in the third summation).

Therefore, based on the above lower bound on z∗(G) value and based on the Theorem (2), for all VCP feasible
solutions V = V1 ∪ V0, we have the approximation ratio |V1|

z∗(G) ≤
2( 1

0.0000035 )
1

0.0000035+2
< 1.999999 ⋄
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Definition 1. Let ε=0.0004 and Vε = {j ∈ V | 0.5 ≤ v∗ov
∗
j ≤ 0.5 + ε}.

After solving the SDP model (4) on problems with z∗(G) ≥ n
2 ,

i) If the solution of the SDP model (4) does not meet the Property (1), then we have a performance ratio of 1.999999,
ii) Otherwise (The solution of the SDP model (4) meets the Property (1)), for more than 0.989999n of vertices j ∈ V ,
we have 0.5 ≤ v∗ov

∗
j ≤ 0.5 + ε; i.e. | Vε |≥ 0.989999n. Moreover, for each edge ij in Eε = {ij ∈ E | i, j ∈ Vε}, we

have v∗ov
∗
i + v∗ov

∗
j − v∗i v

∗
j = 1 (That is 0 ≤ v∗i v

∗
j ≤ 2ε = 0.0008), and the corresponding vectors of each edge in Eε

are almost perpendicular to each other.

Therefore, to produce a VCP performance ratio of 1.999999 for problems with z∗(G) ≥ n
2 , we need a solution for the

SDP model (4) that does not meet the Property (1). To do this, we introduce a new SDP model.

Let G2 = (Vnew, Enew) be a new graph, where we add two adjacent vertices a and b to the graph G, and connect all
vertices of G to them. Then, based on the SDP model (3), we introduce a new SDP model as follows:

(5) mins.t. z5 =
∑
i∈V

Xoi

SDP (3) constraints on G

Xoi +Xoj −Xij = 1 i ∈ V, j ∈ {a, b}
−0.5 ≤ Xij ≤ +0.5 i ∈ V, j ∈ {a, b}
Xii = 1, Xoi = +0.5 i ∈ {a, b}

Xab = 0

X ⪰ 0

Moreover, by introducing the normal vectors vo, v1, ..., vn, va, vb, the SDP model (5) can be written as follows, where
V1new = V1 = {i ∈ Vnew | vi = vo} corresponds to a feasible vertex cover on graph G, and V0new = V0 = V − V1

corresponds to perpendicular vectors to vo.

(6) mins.t. z6 =
∑
i∈V

vovi

SDP (4) constraints on G

vovi + vovj − vivj = 1 i ∈ V, j ∈ {a, b}
−0.5 ≤ vivj ≤ +0.5 i ∈ V, j ∈ {a, b}
vivi = 1, vovi = +0.5 i ∈ {a, b}

vavb = 0

Lemma 2. Due to the additional constraints, we have z6∗ ≥ z4∗. Moreover, to produce a feasible solution for
the SDP model (6) on G2, we can add suitable vectors va and vb to each VCP feasible partitioning V = V1 ∪ V0

on G, where vivj = +0.5 for i ∈ V1, j ∈ {a, b}, and vivj = −0.5 for i ∈ V0, j ∈ {a, b} (For example, for
vo = vi = [0.5, 0.5, 0.5, 0.5]t ∈ V1 and vi = [−0.5,−0.5, 0.5, 0.5]t ∈ V0, we can introduce va = e1 = [1, 0, 0, 0]t,
and vb = e2 = [0, 1, 0, 0]t). Therefore, z6∗ ≤ z∗(G).

We can now prove that by solving the SDP model (6) on problems with z∗(G) ≥ n
2 , it is impossible to produce a

solution that meets the Property (1) on G, unless the induced graph on Vε is bipartite.

Theorem 5. For four normalized vectors v1, v2, v3, v4 which are perpendicular to each other, there exists
exactly one normalized vector v with vvi = 0.5 for i = 1, 2, 3, 4. Such a vector v satisfies the equation
v = 0.5(v1 + v2 + v3 + v4).
Proof.

Due to v1v2 = 0, we have | v1 + v2 |=
√
| v1 |2 + | v2 |2 =

√
2.

Due to v3v4 = 0, we have | v3 + v4 |=
√

| v3 |2 + | v4 |2 =
√
2.

Due to (v1 + v2)(v3 + v4) = 0, we have | v1 + v2 + v3 + v4 |= 2.

4
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Moreover, we have (v1 + v2 + v3 + v4)v = 2. Hence, | v1 + v2 + v3 + v4 || v | cos(θ) = 2 and this concludes that
θ = 0 and v = 0.5(v1 + v2 + v3 + v4) ⋄

proposition 1. For four normalized vectors v1, v2, v3, v4 which are almost perpendicular to each other, a
normalized vector v with 0.5 ≤ vvi ≤ 0.5+ ε = 0.5004 for i = 1, 2, 3, 4 is almost equal to 0.5(v1 + v2 + v3 + v4). In
other words, there exists a vector ϵ with | ϵ |≤ 0.001, where 2v = ϵ+ (v1 + v2 + v3 + v4)

Theorem 6. By solving the SDP model (6) on G2, it is impossible to have an optimal solution that meets
the Property (1) on G, unless the induced graph on Vε is bipartite.
Proof. Suppose that the optimal solution of the SDP model (6) meets the Property (1) on G. Therefore, for the edge
ab and any edge ij in Eε (a complete subgraph of G2 on four vertices a, b, i, j) we have four normalized vectors
v∗a, v

∗
b , v

∗
i , v

∗
j which are almost perpendicular to each other.

Moreover, we have a normalized vector v∗o for which 0.5 ≤ v∗ov
∗
c ≤ 0.5004 for c = a, b, i, j. Hence, based on the

proposition (1), the vector v∗o is almost equal to 0.5(v∗a + v∗b + v∗i + v∗j ) for ij ∈ Eε, and there exists a vector ϵij , where
v∗a + v∗b + v∗i + v∗j + ϵij = 2v∗o , and | ϵij |≤ 0.001 for ij ∈ Eε.

By introducing U = 2v∗o − v∗a − v∗b = v∗i + v∗j + ϵij for ij ∈ Eε, we have

| U |=
√
UU =

√
4− 1− 1− 1 + 1 + 0− 1 + 0 + 1 =

√
2

Moreover, for each vertex k in Vε, we have

v∗ov
∗
c + v∗ov

∗
k − v∗cv

∗
k = 1 c ∈ {a, b}, k ∈ Vε

Therefore, we obtain
v∗cv

∗
k = −0.5 + v∗ov

∗
k c ∈ {a, b}, k ∈ Vε

and
Uv∗k = 2v∗ov

∗
k − v∗av

∗
k − v∗bv

∗
k = 1 k ∈ Vε (1)

Moreover, we have
U(v∗i + v∗j + ϵij) = UU = 2 ij ∈ Eε

and based on (1), we have
U(v∗i + v∗j ) = 2 ij ∈ Eε

which conclude
Uϵij = 0 ij ∈ Eε (2)

We can now prove that there does not exist any odd cycle in the subgraph Gε = (Vε, Eε) and it is bipartite. Then,
suppose that we have an odd cycle on 5 vertices, in Gε (We prove it on 2t+ 1 vertices, later).

By addition of the vectors in this cycle, we have

(v1 + v2 + ϵ12) + (v2 + v3 + ϵ23) + (v3 + v4 + ϵ34) + (v4 + v5 + ϵ45) + (v5 + v1 + ϵ51) = 5U

The above summation can be written as follows,

v1 + 0.5ϵ12 + v2 + 0.5ϵ23 + v3 + 0.5ϵ34 + v4 + 0.5ϵ45 + v5 + 0.5ϵ51 = 2.5U (3)

Then, by addition of 0.5ϵ2l,2l+1 − 0.5ϵ2l,2l+1 for l = 1, 2, to the equation (3), we obtain

v1 + 0.5ϵ12 + v2 + ϵ23 + v3 − 0.5ϵ23 + 0.5ϵ34 + v4 + ϵ45 + v5 − 0.5ϵ45 + 0.5ϵ51 = 2.5U

or
v1 + 0.5ϵ12 + U − 0.5ϵ23 + 0.5ϵ34 + U − 0.5ϵ45 + 0.5ϵ51 = 2.5U

Therefore, we have

v1 +W1 = v1 + 0.5ϵ12 − 0.5ϵ23 + 0.5ϵ34 − 0.5ϵ45 + 0.5ϵ51 = 0.5U

Moreover, by addition of 0.5ϵ2l−1,2l − 0.5ϵ2l−1,2l for l = 1, 2, to the equation (3), we obtain

v5 + 0.5ϵ51 + v1 + ϵ12 + v2 − 0.5ϵ12 + 0.5ϵ23 + v3 + ϵ34 + v4 − 0.5ϵ34 + 0.5ϵ45 = 2.5U

5
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or
v5 + 0.5ϵ51 + U − 0.5ϵ12 + 0.5ϵ23 + U − 0.5ϵ34 + 0.5ϵ45 = 2.5U

Therefore, we have

v5 +W5 = v5 + 0.5ϵ51 − 0.5ϵ12 + 0.5ϵ23 − 0.5ϵ34 + 0.5ϵ45 = 0.5U

where,
−W1 + ϵ51 = W5

and due to (2), we have
UW1 = UW5 = 0

Therefore, v1, W1 and 0.5U produce a right triangle, where | W1 |= 0.5
√
2. Moreover, v5, W5 and 0.5U produce a

right triangle, where | W5 |= 0.5
√
2, and this is a contradiction, unless ϵ5,1 be a zero vector.

Due to similar approaches, all ϵij vectors, on this cycle, are zero. Therefore, the equation (3) is as follows,

(v1 + v2) + (v3 + v4) + v5 = 2.5U

Hence, v5 = 0.5U and | v5 | = 0.5
√
2, which is a contradiction.

Now, suppose that we have an odd cycle on 2t+ 1 vertices in Gε = (Vε, Eε).

Then, by addition of the vectors in this cycle, we have

(v1 + v2 + ϵ12) + (v2 + v3 + ϵ23) + ...+

(v2t + v2t+1 + ϵ2t,2t+1) + (v2t+1 + v1 + ϵ2t+1,1) = (2t+ 1)U

The above summation can be written as follows,
t∑

l=1

(v2l−1 + 0.5ϵ2l−1,2l + v2l + 0.5ϵ2l,2l+1) + (v2t+1 + 0.5ϵ2t+1,1) = tU + 0.5U (4)

Then, by addition of 0.5ϵ2l,2l+1 − 0.5ϵ2l,2l+1 for l = 1, ..., t, to the equation (4), and using the substitutions,

(v2l + ϵ2l,2l+1 + v2l+1) = U l = 1, ..., t

we obtain

v1 +

t∑
l=1

(0.5ϵ2l−1,2l + U − 0.5ϵ2l,2l+1) + (0.5ϵ2t+1,1) = tU + 0.5U

or

v1 +W1 = v1 +

t∑
l=1

(0.5ϵ2l−1,2l − 0.5ϵ2l,2l+1) + (0.5ϵ2t+1,1) = 0.5U

Similarly, by addition of 0.5ϵ2l−1,2l − 0.5ϵ2l−1,2l for l = 1, ..., t, to the equation (4), and using the substitutions,

v2l−1 + ϵ2l−1,2l + v2l = U l = 1, ..., t

we obtain

v2t+1 +

t∑
l=1

(−0.5ϵ2l−1,2l + U + 0.5ϵ2l,2l+1) + 0.5ϵ2t+1,1 = tU + 0.5U

or

v2t+1 +W2t+1 = v2t+1 +

t∑
l=1

(−0.5ϵ2l−1,2l + 0.5ϵ2l,2l+1) + 0.5ϵ2t+1,1 = 0.5U

where,
−W1 + ϵ2t+1,1 = W2t+1

and due to (2), we have
UW1 = UW2t+1 = 0

6
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Therefore, v1, W1 and 0.5U produce a right triangle, where | W1 |= 0.5
√
2. Moreover, v2t+1, W2t+1 and 0.5U

produce a right triangle, where | W2t+1 |= 0.5
√
2, and this is a contradiction, unless ϵ2t+1,1 be a zero vector.

Due to similar approaches, all ϵij vectors, on this cycle, are zero. Therefore, the equation (4) is as follows,

t∑
l=1

(v2l−1 + v2l) + (v2t+1) = tU + 0.5U

or
t∑

l=1

(U) + (v2t+1) = tU + 0.5U

Hence, v2t+1 = 0.5U and | v2t+1 | = 0.5
√
2, which is a contradiction.

Therefore, there is not any odd cycle in Gε, and, if the optimal solution of the SDP model (6) on G2 meets the Property
(1) on G, then the subgraph Gε is bipartite ⋄

proposition 2. To produce a performance ratio of 1.999999 for problems with z∗V CP ≥ n
2 , we should solve the SDP

model (6) on G2. Then, if the solution does not meet the Property (1), we have a performance ratio of 1.999999.
Otherwise, we can solve the VCP problem on the bipartite graph Gε, where | Vε |≥ 0.989999n, to produce a
performance ratio of 1.999999.

Moreover, based on the Theorem (1) and the proposition (2), to produce a performance ratio of 1.999999 for problems
with z∗V CP < n

2 , it is sufficient to produce an extreme optimal solution for the LP relaxation of the model (1), to
introduce G2 based on G0.5.

Theorem 7. The Optimal solution of the following LP model corresponds to an extreme optimal solution of
the LP relaxation of the model (1).

(7) mins.t.z7 =

n∑
i=1

(0.1)ixi

xi + xj ≥ 1 ij ∈ E∑
i∈V

xi = z∗LP relaxation of the model (1)

0 ≤ xi ≤ +1 i ∈ V

Proof. The feasible region of the model (7) is an optimal face of the feasible region of the LP relaxation of the model
(1), and based on the priority weights of the decision variables, its optimal solution corresponds to the solution of the
following algorithm.
Step 0. Let k=1 and z∗ be the optimal value of the LP relaxation of the model (1).
Step k. Solve the following LP model.

(8) mins.t.z(k) = xk

xi + xj ≥ 1 ij ∈ E∑
i∈V

xi = z∗

xi = x∗
i = z(k)∗ i = 1, · · · , k − 1

0 ≤ xi ≤ +1 i ∈ V

Let k=k+1. If k < n repeat this step, otherwise, the solution x∗ is an extreme optimal solution of the LP relaxation of
the model (1) ⋄

Therefore, our algorithm to produce an approximation ratio of 1.999999, for arbitrary vertex cover problems, is as
follows:

Mahdis Algorithm (To produce a vertex cover solution on graph G with a ratio factor ρ = 1.999999)
Step 1. Let V 1 = V 0 = {} and solve the LP relaxation of the model (1) on G.

7
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Step 2. If z∗LP relaxation of the model (1) <
n
2 , then solve the model (7) to produce an extreme optimal solution of the

LP relaxation of the model (1), and based on the solution (x∗
j ∈ {0, 0.5, 1} j ∈ V ), introduce V 0 = {j ∈ V | x∗

j = 0},
V 0.5 = {j ∈ V | x∗

j = 0.5}, V 1 = {j ∈ V | x∗
j = 1}, and let G = G0.5 as the induced graph on the vertex set V 0.5.

Step 3. Produce G2 based on G and solve the SDP (6) model.
Step 4. If | {j ∈ V | v∗ov∗j < 0.5} |> 0.000001n, then produce a suitable solution V1 ∪ V0, correspondingly, where
V0 = {j ∈ V | v∗ov∗j < 0.5} and V1 = V − V0 and go to Step 7. Hence, the solution does not meet the Property (1.a)

and we have |V1|
z∗(G) ≤ 1.999999. Otherwise, go to Step 5.

Step 5. If | {j ∈ V | v∗ov∗j > 0.5004} |> 0.01n, then it is sufficient to produce an arbitrary VCP feasible solution

V = V1 ∪ V0 to have |V1|
z∗(G) ≤ 1.999999 and go to Step 7. Otherwise, go to Step 6.

Step 6. The solution meets the Property (1) and based on the Theorem (6), graph Gε is bipartite, and | Vε |≥ 0.989999n.
Therefore, solve the VCP problem on bipartite subgraph Gε and add all vertices of V − Vε to the solution (That is
V1 = V1 ∪ (V − Vε)), to produce a feasible solution V1 ∪ V0 for which we have |V1|

z∗(G) ≤ 1.999999. Then, go to Step 7.
Step 7. The partitioning (V1 ∪ V 1) ∪ (V0 ∪ V 0) produces a VCP feasible solution on the original graph G with an
approximation ratio factor ρ = 1.999999.

proposition 3. Based on the proposed 1.999999-approximation algorithm for the vertex cover problem, the
unique games conjecture is not true.

4 Conclusions

One of the open problems about the vertex cover problem is the possibility of introducing an approximation algorithm
within any constant factor better than 2. Here, we proposed a new algorithm to produce a 1.999999-approximation ratio
for the vertex cover problem on arbitrary graphs, and this led to the conclusion that the unique games conjecture is not
true.
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