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Abstract

We prove Payne’s nodal line conjecture for any bounded simply con-
nected, possibly non-convex, C∞ boundary domain Ω in plane R2; Payne
conjectured that any second Dirichlet eigenfunction of ∆e in any simply
connected bounded domain in R2 can not have a closed nodal line.

a Sketch of Proof. According to Z. Liqun [10], multiplicity of the second
eigenvalue of Ω is at most two. It is also known that the nodal line of
the second eigenfunction in Ω divides Ω precisely into two nodal domains.
Supposing the most severe case, we assume that an element φ2(0) of the
second eigenspace in Ω whose dimension is two has a closed nodal line
which meets ∂Ω at P .

According to [5], given a second eigenfunction in Ω and any smooth
deformation J : Ω× [0, 1] → R2, a linear sum of two eigenfunctions in the
deformation J(Ω, t) converges to the given second eigenfunction as t → 0.
But this linear sum is not necessarily an eigenfunction in J(Ω, t), since
two eigenfunctions may not belong to the same eigenspace.

Let {φ2(0), φ3(0)} be an orthonormal basis of the second eigenspace
in Ω, and let λi

`
J(Ω, t)

´
denote the i-th, i = 2, 3, eigenvalue of J(Ω, t)

associated with the i-th normalized eigenfunction φi(t) := φi

`
J(Ω, t)

´
of ∆e in J(Ω, t). Let us denote J(p, t) simply by Jt(p) and denote the
pulled-back function J∗t φi(t) to Ω by φ∗i,0(t).

Proposition 2.12 states that if λ2

`
J(Ω, t)

´
is double at t = 0 and

simple on a deleted neighborhood of t = 0 with the condition such that
limt0→0

d
dt t=t0

λi

`
J(Ω, t)

´
, i = 2, 3, exist and limt0→0

d
dt t=t0

λ2

`
J(Ω, t)

´
6=

limt0→0
d
dt t=t0

λ3

`
J(Ω, t)

´
, then φ∗2,0(t) turns out to converge to a second

eigenfunction in Ω as t → 0. From this fact we can infer that d
dt

λi

`
J(Ω, t)

´
and d

dt
φ∗i,0(t) exist and are continuous on a neighborhood of t = 0.

We find a condition on deformations such that if a deformation J
satisfies this condition, then φ∗i,0(t) → φi(0), i = 2, 3, as t → 0 with
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d
dt t=0

λ2

`
J(Ω, t)

´
6= d

dt t=0
λ3

`
J(Ω, t)

´
. This condition is represented by8>>><>>>:

d
dt t=0

∆J∗t eφ2(0)

= −ρ2φ2(0)−
`
∆e + λ2(0)

´
g2(0), and .....(51)

d
dt t=0

∆J∗t eφ3(0)

= −ρ3φ3(0)−
`
∆e + λ2(0)

´
g3(0), .....(52)

where ρ2 6= ρ3, ρi ∈ R, and gi(0) ∈ C∞(Ω) with gi ≡ 0 on ∂Ω, i = 2, 3.
Note that the right hand sides of (51) and (52) have no 〈φ3(0)〉-component
and no 〈φ2(0)〉-component, respectively. If (51) holds, then by Proposition
2.10 (52) also holds for a number ρ3. Provided either (51) or (52) holds
and ρ2 6= ρ3, one can conclude the followings; for i = 2, 3,8><>:

φ∗i,0(t) → φi(0) (in L2-norm),

gi(0) = component of d
dt t=0

φ∗i,0(t) orthogonal to 〈φ2(0), φ3(0)〉,
ρi = d

dt t=0
λi

`
J(Ω, t)

´
.

We find a concrete deformation J which satisfies the condition men-
tioned above (Proposition 2.25). Given φ2(0), ρ2 and ρ3, ρ2 6= ρ3, we will
show the existence of deformation J such that J not only satisfies condi-
tion (51) and (52) but also makes the following value (82) with superindex
k removed be positive, and makes φ3(0)-component of d

dt t=0
φ∗2,0(t) vanish;

−
Z

Ω

∂

∂ν (ζ,τ)=P
Kλ2(Ω)(x, y; ζ, τ)

d

dt t=0
∆Jk∗

t eφ2(0)(x, y)dxdy, .....(82)

where Kλ2(Ω) stands for Green’s function of ∆e + λ2(Ω) in Ω and ∂
∂ν

denotes the outer normal derivative. If we assume that φ2(0) is positive in
the inner nodal domain, then the above positive requirement makes nodal
line of φ∗2,0(t) be closed and separate from ∂Ω over a deleted neighborhood
of t = 0. Note that from (51) and (52) ρi is represented by an integral
−

R
Ω
{ d

dt t=0
∆J∗t eφi(0)}φi(0)dxdy.

According to Hopf’s boundary point lemma, one can show by factor-
ization into linear sums of outer normal derivatives of eigenfunctions that
the following function on ∂Ω has at most four zeros ( Proposition 2.23 );X

2≤i,j≤3

αi,j
∂φi(0)

∂ν

∂φj(0)

∂ν
, αi,j ∈ R. .....(80)

But we can not confirm in this way the existence of segments of ∂Ω on
which the following function does not vanish;

α2,4
∂φ2(0)

∂ν

∂

∂ν

„
∂

∂ν P
Kλ2(Ω)

«
+

X
2≤i,j≤3

αi,j
∂φi(0)

∂ν

∂φj(0)

∂ν
, α2,4, αi,j ∈ R. .....(81)

In Proposition 2.25 to show the validity of construction of J satisfying
the conditions mentioned above we solve a problem related to zeros of
function (81) in an elementary and complicated way.
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We will construct a piecewise smooth deformation which deforms Ω
to Ξ in order that each second eigenfunction of a piecewise differentiable
path consisting of the second eigenfunctions in this deformation may have
a closed nodal line, where through a dilation and a translation of Ω we
set

Ξ :=
˘
(x, y) : 0 < x < 2, 0 < y < 1

¯
, λ2(Ξ) = λ2(Ω), Ξ ∩ Ω 6= ∅.

The piecewise smooth deformation is composed alternately and repeatedly
of two distinct smooth deformations

Jm : Ωm × [0, 1] → R2, and Fm : Jm(Ωm, qm)× [0, 1] → R2,

where

Ωm+1 := Fm
1 ◦ Jm

qm
(Ωm), Ω1 := Ω, m = 1, 2, 3, ... .

The supports of Jm and Fm lie in the closures of Ωm \ Ξ and Ωm ∩ Ξ,
respectively. Deformation Jm satisfies (51), (52) and makes (82) with
Jk∗

t replaced by Jm∗
t be positive, and Jm is also a deformation elim-

inating φ3(Ωm)-component described in Proposition 2.17 which means
d
dt t=0

J ∗
t φ2

`
Jm

t (Ωm)
´

has no φ3(Ωm)-component. If we set 0 < ρ2 � ρ3,

then λ2

`
Jm

t (Ωm)
´

and λ3

`
Jm

t (Ωm)
´
− λ2

`
Jm

t (Ωm)
´

strictly increase as
t grows from t = 0 to t = qm ≤ 1. Fm fills up a portion of Ξ \ Ωm, and
then λ2

`
Fm

s ◦ Jm
qm

(Ωm)
´

decreases to λ2(Ωm), and λ3

`
Fm

s ◦ Jm
qm

(Ωm)
´
−

λ2

`
Fm

s ◦ Jm
qm

(Ωm)
´

may decrease toward zero as s grows to one.
Let us denote Fm := Ξ ∩Ωm. Deformations stated in the above para-

graph will be constructed in order that φ2(Ωm)|Fm, the restriction of
φ2(Ωm) to Fm, may approximate to φ2(Ξ) in L2-norm as m becomes
large. Then, a closed nodal line of φ2(Ωm) compared with the nodal
line of φ2(Ξ), the nodal line of φ2(Ωm)|Fm may be considered to be
sufficiently close to the segments {(x, y) |x = 0, 1, 0 < y < 1}, and
{(x, y) | 0 < x < 1, y = 0, 1}. Then, the outer nodal domain Ω−m of
φ2(Ωm) contains a sufficiently narrow and long simply connected band

W = Ω−m ∩
˘
(x, y) : 0 < x < 1/2, 1/4 < y < 3/4

¯
.

We will follow methods of David Jerison [7]. From exponential decay
theorem (Lemma 3.1) applied to W one can show that for a ζ ∈ ∂W∩∂Ω+

m,
Ω+

m the inner nodal domain of φ2(Ωm), the magnitude of gradient˛̨
∇φ2(Ωm)(ζ)

˛̨
also decays exponentially as ζ moves along ∂W ∩ ∂Ω+

m and as m becomes
large. According to [7], we can show

min
B(z,R/2)

|φ2(Ωm)|

is bounded to the magnitude R
˛̨
∇φ2(Ωm)(ζ)

˛̨
for a disk B(z, R) ⊂ Ω+

m such
that ζ ∈ ∂B(z, R)∩∂Ω+

m. It implies that φ2(Ωm)|Fm can not approximate
to φ2(Ξ) in Ω+

m in L2-norm, and then we attain a contradiction.

Author has written this paper under supervisor of professor Dong Pyo Chi at Seoul National
University. The author thanks him for his important advice and sincere interest in manuscript.
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1 Introduction and a History of Nodal Line Con-
jecture

Topology of nodal lines of eigenfunctions is not yet well known. In a global concept Courant
nodal domain theorem may be regarded as almost the only remarkable achievement. Courant
nodal domain theorem [3] states that the nodal set of any k-th eigenfunction of C∞ domain
divides the domain into at most k subregions. A corollary of this theorem tells us that the
second eigenfunction has precisely two nodal domains. As a simple case, study on the closed
nodal line of the second eigenfunction of ∆e has been pursued since L. E. Payne’s conjecture
[13] : In 1967 he conjectured that in any simply connected bounded domain in R2 any second
eigenfunction of ∆e with Dirichlet homogeneous boundary condition cannot have a closed
nodal line.

Throughout the paper, Ω is any simply connected bounded (possibly non-convex) domain
in R2 with C∞ boundary. An eigenfunction of the Laplace-Beltrami operator ∆g in Ω with
C∞ Riemannian metric g is meant to be a solution u 6≡ 0 satisfying the homogeneous Dirichlet
eigenvalue problem (

∆gu+ λu = 0 in Ω,

u ≡ 0 on ∂Ω,
(1)

where ∆g =
P

i,j
1√
|g|
Di

`p
|g|gijDj

´
, i, j = 1, 2, g =

`
gij

´
, |g| = det

`
gij

´
. A positive λ

for which the above Dirichlet condition (1) possesses a solution u is called an eigenvalue of
∆g in Ω. Each associated eigenspace is finite dimensional, distinct eigenspaces are orthogonal
each other in L2(Ω), and a set of all eigenfunctions orthogonal to each other is a complete
orthogonal system of L2(Ω). We will denote the volume element associated with g by dg . Let
us denote by e the standard euclidean metric. Each eigenfunction of ∆g is C∞ in Ω, and
eigenfunction of ∆e is analytic in Ω. It is known that ∆e is analytic-hypoelliptic operator.
The nodal line of an (eigen)function u is defined to be the set

{z ∈ Ω| u(z) = 0},

and a nodal domain of u is a component of Ω \ u−1(0). According to [4], the nodal sets
of eigenfunctions of C∞-Riemannian manifold in R2 (if they exist) consist of a number of
C2-immersed one-dimensional closed submanifolds.

It is known that for generically many metric g eigenfunctions of ∆g in a manifold with
boundary vanish of the second order where their nodal lines intersect boundary [15]. C.-S.
Lin [8] showed any convex smooth boundary bounded domain in R2 with symmetry under
rational rotation with respect one point has no second eigenfunction of ∆e whose nodal line
is closed. A rational rotation means a rotation with angle 2πp/q for positive integers p and q.
He also proves that if φ2(Ω) is one of the normalized second eigenfunctions of ∆e in a bounded

smooth convex domain Ω ⊂ R2 such that
∂φ2(Ω)

∂ν
≥ 0, ∂

∂ν
the outward normal derivative, on

∂Ω, then φ2(Ω) is the only normalized second eigenfunction of ∆e in Ω. David Jerison [7]
showed that for convex bounded domain Ω ⊂ R2 there exists an absolute constant C such that
if diameter(Ω)

‹
inradius(Ω) ≥ C, then the nodal line for the second eigenfunction of Ω touches

the boundary. Recently A. D. Melas [11](1992) has proved that the Payne’s conjecture is true
for bounded convex smooth (boundary) domain in R2, and G. Alessandrini [1] for bounded
convex domain. On the other hand, as to a multiply connected domain, M. H.-Ostenhof, T.
H.-Ostenhof and N. Nadirashvili [12] have given a counterexample to Payne’s conjecture in a
non-simply connected domain. Also they give an example of domain in R2 whose the second
eigenvalue is of multiplicity three.

It is well known that the first eigenvalue is simple. As for the second eigenvalue, from S.
Y. Cheng [4] it can be shown that the multiplicity of second eigenvalue of bounded smooth
boundary domain is at most three. Later Z. Liqun [10] verifies the dimension of the second
eigenspace of ∆e in bounded smooth boundary simply connected domain of R2 is at most two.
In this paper, according to the result of Z. Liqun we assume that the second eigenspace of ∆e

in any bounded smooth boundary simply connected domain of R2 is at most two dimension.
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2 Deformations whose Eigenfunctions form a C1-
Path which passes through a Given Eigenfunc-
tion

2.1 a Regularity of Paths composed of Eigenvalues and
Eigenfunctions of Deformations

Let J : Ω × [0, 1] → R2, Jt(P ) := J(p, t), be a smooth deformation of Ω. According to [5],
p.419, p.421, Theorem 10, the n-th eigenvalue of a C∞ deformation Jt(Ω) varies continuously
to the n-th eigenvalue of Ω as t → 0. Also Courant and Hilbert [5] showed that the r-th or-
dered eigenfunctions as well as eigenvalues of perturbed domains which are Ck-diffeomorphic
to Ω converge to those of Ω, if the perturbed domains converge to Ω. Their proof consisted
of reducing the problem to study of a family of differential operators on Ω obtained from
Ck-diffeomorphisms. The coefficients of operators becomes to differ arbitrarily little from the
original coefficients. The section 13 of chapter V [5] is devoted to find the first and second
approximations of perturbations of domain. [5] shows a counter example with irregular per-
turbation and Neumann boundary problem in which the continuous property of eigenvalues
failed.

A linear integral equation corresponding to elliptic equation (∆e +µ)φ = 0 is represented
by a homogeneous functional equation

φ(x, y)− µ

Z
Ω
K(x, y, ζ, τ)φ(ζ, τ)dζdτ = 0.

Let K0(x, y; ζ, τ) and Kt(x, y; ζ, τ) be symmetric kernels associated with the above eigenvalue
problem of domain Ω and Jt(Ω), respectively. According to [5] (Chapter III, §8 p.151, and
§9 p.152), one comprehends the following continuity property of eigenfunctions: Let the n-th
eigenspace of ∆e in Ω, n ≥ 2, be of m-dimensional, and let the kernel Kt converge to K0

uniformly as t → 0. Then, given any n-th eigenfunction φ of ∆e in Ω, there exists a linear
combination

a1(t)ψi+1(t) + · · ·+ am(t)ψi+m(t) (2)

which converges uniformly to φ as t→ +0, where ak(t) ∈ R, and ψi+k(t) is an eigenfunction,
k = 1, 2, ...,m, of ∆e in Jt(Ω). Note that the above linear sum is not necessarily eigenfunction,
since all eigenfunctions ψi+k(t) may not belong to the same eigenspace. But it is said from
the above fact that each ψi+k(t) converges to an n-th eigenfunction ψi+k(0) of Ω, as t → 0,
and moreover the limit of each linear combination (2) composes the n-th eigenspace of ∆e in
Ω. Thus, there may be eigenfunctions of Ω to which no eigenfunction of Jt(Ω) converges.

Throughout paper it is assumed that a second eigenfunction of Ω has a closed nodal line.
We will find a smooth deformation Jt of Ω such that C1-path

˘
φ2,Jt(Ω)

¯
which composes of

the normalized second eigenfunction of Jt(Ω) passes through a given second eigenfunction in
Ω and each φ2,Jt(Ω), t ∈ (0, 1], has a closed nodal line separated from boundary, and if λi(0)

is double, i = 2, 3, then derivatives of path
˘
λi

`
Jt(Ω)

´¯
composed of the second and third

eigenvalues of Jt(Ω) at t = 0 are equivalent with prescribed values.

Firstly we are to show regularity of these paths. Let us denote by8><>:
φi(t) := φi,Jt(Ω) := φi

`
Jt(Ω)

´
the i-th normalized eigenfunction in Jt(Ω),

φ∗i,t0 (t) :=
`
Jt ◦ J−1

t0

´∗
φi(t) the eigenfunction φi(t) pulled back to Jt0 (Ω),

λi(t) := λi

`
Jt(Ω)

´
the i-th eigenvalue of Jt(Ω) associated with φi(t),

(3)

for i ∈ N, and 0 ≤ t0, t ≤ 1. For an orthonormal complete system {φi(t0) : i ∈ N} in Jt(Ω) let
us expand φ∗i,t0 (t) as follows, and call this expansion φ∗i,t0 (t) expanded with respect to φk(t0);

φ∗i,t0 (t) = φi(t0) +
X
k∈N

βt0,i,k(t)φk(t0), βt0,i,k(t) ∈ R, i ∈ N. (4)
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From identity ∆
(Jt◦J−1

t0
)∗e
φ∗i,t0 (t) = −λi(t)φ

∗
i,t0

(t), i ∈ N, one can induce for 0 ≤ t, t0 ≤ 1“
∆`

Jt◦J−1
t0

´∗
e
−∆e

”
φ∗i,t0 (t)

=−
`
λi(t)− λi(t0)

´
φ∗i,t0 (t)−

“
∆`

Jt◦J−1
t0

´∗
e

+ λi(t0)
”`
φ∗i,t0 (t)− φi(t0)

´
. (5)

Remark 2.1. The operator ∆e + λ2(0) : Wk,2(Ω) ∩W 1,2
0 (Ω) → Wk−2,2(Ω), k ≥ 2, is a

Fredholm of index zero, that is,

dim


Wk−2,2(Ω)

.
Im

`
∆e + λ2(0)

´ff
= dimKer

`
∆e + λ2(0)

´
,

where Wk,p denotes Sovolev space. If λ2(0) is double, then
R
Ω

˘`
∆e + λ2(0)

´
f
¯
φi(0) =R

Ω

˘`
∆e + λ2(0)

´
φ2(0)

¯
f = 0, i = 2, 3, f ∈ Wk,2(Ω) ∩W 1,2

0 . Thus Wk−2,2(Ω)
.

Im
`
∆e +

λ2(0)
´ ∼= 〈φ2(0), φ2(0)〉. Thus, the operator ∆e+λ2(0) : Wk,2(Ω)∩W 1,2

0 (Ω)
.
〈φ2(0), φ2(0)〉 →

Wk−2,2(Ω)
.
〈φ2(0), φ2(0)〉 is bijective. The inverse operator

`
∆e + λ2(0)

´−1
: Im

`
∆e +

λ2(0)
´
→Wk,2(Ω) ∩W 1,2

0 (Ω)
‹
Ker

`
∆e + λ2(0)

´
given by

j∈NX
j 6∈K

βjφj(0) 7→
j∈NX
j 6∈K

1

−λj(0) + λ2(0)
βjφj(0)

is also bounded operator since

sup
βj

j∈NX
j 6∈K

‚‚‚‚ 1

−λj(0) + λ2(0)
βjφj(0)

‚‚‚‚2

2

≤
1˘

− λj0 + λ2(0)
¯2

<∞, (6)

where {φj : j ∈ K} is an orthonormal basis of the second eigenspace in Ω,
P

j 6∈K β
2
j = 1, and

| − λj0 (0) + λ2(0)| is the smallest number among
˘
| − λj(0) + λ2(0)| : j 6∈ K

¯
. //

Proposition 2.1 The value

sup
{j,l}

sup
(x,y)∈Ω

∂j+l

∂xj∂yl
φ∗i,t0 (t)(x, y), 1 ≤ j + l ≤ 2, j, l ∈ {0, 1, 2}, i ∈ N,

is bounded on t ∈ [0, ε], 0 < ε ≤ 1. The left hand of (5),
“
∆`

Jt◦J−1
t0

´∗
e
− ∆e

”
φ∗i,t0 (t),

converges in L2-norm to zero as t → t0, t0 ∈ [0, ε].
n

d
dt

∆
(Jt◦J−1

t0
)∗e

o
φ∗i,t0 (t) is bounded in

Ω on t ∈ [0, ε].

Proof. Theorem 3.7 ([6] Theorem 9.26, p.250) says that supΩ |φ∗i,t0 (t)| < C for a constant

C over all t ∈ [0, ε] for a ε, 0 < ε ≤ 1. Then, according to global estimate for solutions of
elliptic equation, Theorem 3.6 ([6] Theorem 6.6, p.98), if we set Lu = −λi(t)φ

∗
i,t0

(t), then the

solution is u = φ∗i,t0 (t), and then ∂j+l

∂xj∂yl φ
∗
i,t0

(t) is bounded over all t ∈ [0, ε]. For this note

that the constant C = Ct in Theorem 3.6 is dependent on Jt(Ω), but maxt∈[0,ε] Ct exists.
Let us set

∆`
Jt◦J−1

t0

´∗
e

=

j,l=0,1,2X
1≤j+l≤2

aj,l(t)(x, y)
∂j+l

∂xj∂yl
. (7)

Each entry aj,l(t)(x, y) − aj,l(t0)(x, y) of differential operator ∆`
Jt◦J−1

t0

´∗
e
− ∆e converges

to zero in ‖ · ‖k,2;Ω-norm in Wk,2(Ω), k ≥ 2, as t → t0, since Jt is a smooth deformation.

Thus, the second claim follows. Since each derivative d
dt
aj,l(t) exists at any t ∈ [0, 1], from

Theorem 3.6 the last claim is valid. Theorem 3.7 and Theorem 3.6 will be introduced in the
next section without proof. 2
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Remark 2.2. Let us assume that
R

Jt0 (Ω) φ
∗
2,t0

(t) ·φ2(t0)de converges to a non-zero num-

ber as t → t0. Then, since the left hand of (5) converges to zero as t → t0 from Propo-
sition 2.1, and since Im

`
∆J∗t0

e + λ2(t0)
´

is orthogonal in metric J∗t0e = e to the second

eigenspace of ∆e in Jt0 (Ω), we can conclude that λ2(t) converges to λ2(t0), and further-
more, then

`
∆J∗t0

e + λ2(t0)
´
φ∗2(t) which is naturally orthogonal in metric e to the second

eigenspace of ∆e in Jt0 (Ω) also converges to zero as t → t0. Consequently, by boundedness

of
`
∆J∗t0

e +λ2(t0)
´−1

(refer to Remark 2.1) the component of φ∗2(t) orthogonal to the second

eigenspace of ∆e in Jt0 (Ω) denoted by
`
φ∗2(t)

´◦
t0

also converges (in L2-norm) to zero as t→ t0.

But whether φ∗2(t) converges to an element in the second eigenspace of ∆e in Jt0 (Ω) or
oscillates as t → t0, the result of preceding paragraph is valid provided λ2(t)converges to
λ2(t0) as t→ t0. //

Proposition 2.2. Let λ2(t) be simple at t = t0 ∈ (0, ε). Then, λ2(t) is continuous
at t = t0, and φ∗2,t0

(t) converges in L2-norm to the unique second eigenfunction φ2(t0) as
t→ t0.

(Note.) If λ2(t0) is simple, then there is an ε > 0 such that if |t− t0| < ε, then λ2(t) is also
simple. From Theorem 3.6 and by convergence of ∆J∗t e to ∆e one can verify convergence of

φ∗2(t) in L2-norm to φ2(t0) assures convergence in ‖ · ‖2,2,Ω-norm.

Proof. Firstly, we consider energy of the pushed-forward first eigenfunction
`
Jt0 ◦J

−1
t

´∗
φ1(t0)

to Jt(Ω). We have R
Jt(Ω)∇φ1(t)∇φ1(t)de‚‚φ1(t)

‚‚2

2

≤

R
Jt(Ω)∇

`
Jt0 ◦ J

−1
t

´∗
φ1(t0)∇

`
Jt0 ◦ J

−1
t

´∗
φ1(t0)de‚‚`

Jt0 ◦ J
−1
t

´∗
φ1(t0)

‚‚2

2

. (8)

On the contrary we haveR
Jt0 (Ω)∇φ1(t0)∇φ1(t0)de‚‚φ1(t0)

‚‚2

2

≤

R
Jt0 (Ω)∇

`
Jt ◦ J−1

t0

´∗
φ1(t)∇

`
Jt ◦ J−1

t0

´∗
φ1(t)de‚‚`

Jt ◦ J−1
t0

´∗
φ1(t)

‚‚2

2

. (9)

If t → t0, the right hand of (8) converges to λ1(t0), and the right hand of (9) converges to
λ1(t). Therefore, if t→ t0, we have λ1(t) ≤ λ1(t0) + ε1(t) and λ1(t0) ≤ λ1(t) + ε2(t), where
εi(t) > 0, i = 1, 2, converges to zero as t→ t0. Consequently, λ1(t) → λ1(t0).

Then, since from Remark 2.1 the inverse operator of ∆J∗t0
e+λ1(t0) defined in Im

`
∆J∗t0

e+

λ1(t0)
´

is bounded, and since λ1(t)−λ1(t0) converges to zero, and since from Proposition 2.1
the left hand of (5) converges to zero, we can conclude that the component of φ∗1,t0

(t)−φ1(t0)

orthogonal to 〈φ1(t0)〉 with respect to metric e converges to zero function as t→ t0. Therefore,
φ∗1,t0

(t) expanded with respect to {φk(t0) : k ∈ N}, then
P

k∈N\{1} β
2
t0,1,k(t) converges to

zero. Since ‖φ∗1,t0
(t)‖2

(Jt◦J−1
t0

)∗e
= 1 = ‖φ1(t0)‖2e, and each function of entries of the smooth

metric tensor
`
Jt ◦ J−1

t0
)∗e converges (in ‖ · ‖2,2;Ω-sense) to that of e as t → t0, we may

conclude that ‖φ∗1,t0
(t)‖2e converges to one. Thus,

`
1+βt0,1,1(t)

´2
converges to one, and then

φ∗1,t0
(t) converges to φ1(t0) as t→ t0.

Secondly, we are to verify proposition for the second eigenfunction. From minimum energy
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property of eigenfunction we haveR
Jt(Ω)∇φ2(t)∇φ2(t)‚‚φ2(t)

‚‚2

2

≤
» Z

Jt(Ω)
∇

n`
Jt0 ◦ J

−1
t

´∗
φ2(t0)− δ2,1(t0, t)φ1(t)

o
· ∇

n`
Jt0 ◦ J

−1
t

´∗
φ2(t0)− δ2,1(t0, t)φ1(t)

o–
·

‚‚‚`
Jt0 ◦ J

−1
t

´∗
φ2(t0)− δ2,1(t0, t)φ1(t)

‚‚‚−2

2
, (10)

where δ2,1(t0, t) =
R

Jt(Ω)

˘`
Jt0 ◦ J

−1
t

´∗
φ2(t0)

¯
φ1(t). On the contraryR

Jt0 (Ω)∇φ2(t0)∇φ2(t0)‚‚φ2(t0)
‚‚2

2

≤
» Z

Jt0 (Ω)
∇

n`
Jt ◦ J−1

t0

´∗
φ2(t)− δ2,1(t, t0)φ1(t0)

o
· ∇

n`
Jt ◦ J−1

t0

´∗
φ2(t)− δ2,1(t, t0)φ1(t0)

o–
·

‚‚‚`
Jt ◦ J−1

t0

´∗
φ2(t)− δ2,1(t, t0)φ1(t0)

‚‚‚−2

2
, (11)

where δ2,1(t, t0) =
R

Jt0 (Ω)

˘`
Jt ◦ J−1

t0

´∗
φ2(t)

¯
φ1(t0). Since φ∗1(t) → φ∗1(t0), we have

lim
t→t0

δ2,1(t0, t) = 0 = lim
t→t0

δ2,1(t, t0). (12)

According to the argument verifying convergence of the first eigenvalues, from (10) and (11)
λ2(t) → λ2(t0) as t→ t0.

Therefore, since the inverse operator of ∆J∗t0
e + λ2(t0) defined in Im

`
∆J∗t0

e + λ2(t0)
´

is bounded operator from Proposition 2.1, formula (5) says the component of φ∗2(t) − φ∗2(t0)
orthogonal to 〈φ∗2(t0)〉 with respect to metric J∗t0e converges (in L2-norm) to zero. That is,P

k∈N\{2}
`
βt0,2,k(t)− βt0,2,k(t0)

´2
converges to zero. Since ‖φ∗2(t)‖2

J∗t e
= 1 = ‖φ∗2(t0)‖2

J∗t0
e

and since each function of entries of metric tensor J∗t e converges to that of J∗t0e as t → t0,

we may conclude that ‖φ∗2(t)‖J∗t0
e converges to one. Therefore,

`
1 + βt0,2,2(t)

´2
converges to

one, and then φ∗2(t) converges (in L2-norm) to φ∗2(t0) as t→ t0. 2

Proposition 2.3. Let us suppose that λ2(t) is simple at t = t0 ∈ (0, ε). Then, derivatives
d
dt t=t0

λ2(t), and d
dt t=t0

φ∗2,t0
(t) exist, and we have a unique representation

d

dt t=t0

∆`
Jt◦J−1

t0

´∗
e
φ2(t0) = −

d

dt t=t0

λ2(t)φ2(t0)−
`
∆e + λ2(t0)

´ d
dt t=t0

φ∗2,t0
(t). (13)

Proof. The limit

lim
t→t0


1

t− t0

“
∆`

Jt◦J−1
t0

´∗
e
−∆e

”
φ∗2,t0

(t)

ff
exists, since from Proposition 2.2 φ∗2,t0

(t) converges to φ2(t0) and d
dt t=t0

∆`
Jt◦J−1

t0

´∗
e

exists.

Then this limit equals to the left hand of equality (13). Thus, from (5) we get (13). In formula
(13) the image of ∆e+λ2(t0) is orthogonal under the metric e to the second eigenspace 〈φ2(t0)〉
of ∆e in Jt0 (Ω). Therefore, a unique existence of d

dt t=t0
λ2(t) and a unique existence of the

component of d
dt t=t0

φ∗2(t) which is orthogonal to 〈φ2(t0)〉 denoted by
“

d
dt t=t0

φ∗2,t0
(t)

”◦
are

shown.
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To show existence of φ2(t0)-component of d
dt t=t0

φ∗2,t0
(t) we expand φ∗2,t0

(t) with respect

to φ2(t0). Then, it suffices to show the existence of coefficient d
dt t=t0

βt0,2,2(t). We introduce

a notation;

Notation 2.1. Let us suppose that φ∗2,t0
(t) converge to φ2(t0) as t → t0. Expanding

φ∗2,t0
(t) with respect to φ2(t0), we define a value χt0

`
φ2(t)

´
, t0 ∈ (0, ε), by

χ2
t0

`
φ2(t)

´
:=

‚‚φ∗2,t0
(t)(x, y)

‚‚2

2,e

=

Z
Jt0 (Ω)

„
φ2(t0) +

∞X
k=1

βt0,2,k(t)φk(t0)

«„
φ2(t0) +

∞X
k=1

βt0,2,k(t)φk(t0)

«
de

=1 + 2βt0,2,2(t) +
∞X

k=1

β2
t0,2,k(t). (14)

Note that
‚‚φ∗2,t0

(t)(x, y)
‚‚2

2,
`
Jt◦J−1

t0

´∗
e

= 1 for all t ∈ [0, 1], but
‚‚φ∗2(t)(x, y)

‚‚2

2,e
may not

equal to one for t0 6= t. //
We are to show from smoothness of Jt that d

dt t=t0
χt0

`
φ2(t)

´
exists at t0 ∈ (0, ε). From

equality
‚‚φ∗2,t0

(t)(x, y)
‚‚2

2,
`
Jt◦J−1

t0

´∗
e

= 1, by differentiating a product of function and metric

tensor, we have

d

dt t=t0

Z
Jt0 (Ω)

˛̨
φ∗2,t0

(t)(x, y)
˛̨2
d`

Jt◦J−1
t0

´∗
e

=
d

dt t=t0

χ2
t0

`
φ2(t)

´
+

d

dt t=t0

Z
Jt0 (Ω)

˛̨
φ2(t0)(x, y)

˛̨2
d`

Jt◦J−1
t0

´∗
e

= 0,

and then
d

dt t=t0

χ2
t0

`
φ2(t)

´
= −

d

dt t=t0

Z
Jt0 (Ω)

˛̨
φ2(t0)(x, y)

˛̨2
d`

Jt◦J−1
t0

´∗
e
. (15)

The right side of (15) exists at t0, that is, d
dt t=t0

χ2
t0

`
φ2(t)

´
exists. Differentiating (14), we

have
d

dt t=t0

χ2
t0

`
φ2(t)

´
=2

d

dt t=t0

βt0,2,2(t)
`
1 + βt0,2,2(t0)

´
+ 2

X
k∈N\{2}

βt0,2,k(t0)
d

dt t=t0

βt0,2,k(t).

Since limt→t0 φ
∗
2,t0

(t) = φ2(t0) and then βt0,2,k(t0) = 0 for any k ∈ N, we have

d

dt t=t0

χ2
t0

`
φ2(t)

´
= 2

d

dt t=t0

βt0,2,2(t). (16)

Thus, d
dt
βt0,2,2(t) exists at t = t0. 2

Remark 2.3. If λ2(t0) is simple, then obviously d
dt t=t0

φ∗2,t0
(t) is represented byX

k∈N

d

dt t=t0

βt0,2,k(t)φk(t0),

and since λk(t0) − λ2(t0) 6= 0 for k ∈ N \ {2}, identity (13) implies that each d
dt
βt0,2,k(t),

k 6= 2, converges as t→ t0. One can represent the component of d
dt t=t0

φ∗2,t0
(t) orthogonal to

〈φ2(t0)〉 by“ d

dt t=t0

φ∗2,t0
(t)

”◦
= −

Z
Jt0 (Ω)

n d

dt t=t0

∆`
Jt◦J−1

t0

´∗
e
φ2(t0)(x, y)

o
Kλ2(t0)(x, y; ζ, τ)de, (17)

where Kλ2(t0) stands for Green’s function of ∆e + λ2(t0) in Jt0 (Ω). Green’s function will be
introduced in this section later. //
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Proposition 2.4. Let us suppose λ2(t0) be simple for t0 ∈ (0, ε). Then, paths of t-
variable functions d

dt
λ2(t) and d

dt
φ∗2,t0

(t) are continuous at t = t0.

Proof. From the formula (15) d
dt
χt0

`
φ2(t)

´
is continuous at t = t0, since J is smooth. Then,

from (16) d
dt
βt0,2,2(t) is also continuous at t = t0. By a similar way to getting (5) from (1),

we obtain the following second order identity from (13);
d

dt
∆`

Jt◦J−1
t0

´∗
e
−

d

dt t=t0

∆`
Jt◦J−1

t0

´∗
e

ff
φ∗2,t0

(t)

+
d

dt t=t0

∆`
Jt◦J−1

t0

´∗
e

˘
φ∗2,t0

(t)− φ2(t0)
¯

=−
n d

dt
λ2(t)−

d

dt t=t0

λ2(t)
o
φ∗2,t0

(t)

−
d

dt t=t0

λ2(t)
˘
φ∗2,t0

(t)− φ2(t0)
¯

−
n

∆`
Jt◦J−1

t0

´∗
e

+ λ2(t)−
`
∆e + λ2(t0)

´o d

dt
φ∗2,t0

(t)

−
`
∆e + λ2(t0)

´n d

dt
φ∗2,t0

(t)−
d

dt t=t0

φ∗2,t0
(t)

o
. (18)

Since λ2(t) → λ2(t0), and φ∗2,t0
(t) → φ2(t0), identity (18) shows that d

dt
λ2(t) − d

dt t=t0
λ2(t)

and
“

d
dt
φ∗2,t0

(t)− d
dt t=t0

φ∗2,t0
(t)

”◦
converge to zero and zero function, respectively, as t→ t0.

We obtain from (18)

d2

dt2 t=t0

∆`
Jt◦J−1

t0

´∗
e
φ2(t0)

=− 2
d

dt t=t0

∆`
Jt◦J−1

t0

´∗
e

d

dt t=t0

φ∗2,t0
(t)

− 2
d

dt t=t0

λ2(t)
d

dt t=t0

φ∗2,t0
(t)

−
d2

dt2 t=t0

λ2(t)φ2(t0)

−
`
∆e + λ2(t0)

´ d2
dt2 t=t0

φ∗2,t0
(t). (19)

Proposition 2.3 and identity (19) show a unique existences of d2

dt2 t=t0
λ2(t) and a unique

existence of the component
`

d2

dt2 t=t0
φ∗2,t0

(t)
´◦

of d2

dt2 t=t0
φ∗2,t0

(t) which is orthogonal in metric

e to 〈φ2(t0)〉. Therefore, particularly, d
dt
λ2(t) and

`
d
dt
φ∗2,t0

(t)
´◦

are continuous at t = t0.

Since d
dt
βt0,2,2(t) is continuous at t = t0, the continuity of d

dt
φ∗2,t0

(t) at t = t0 is shown.
2

Proposition 2.5. Let λ2(t) be double at t = 0.
(i) Then, regardless of the existence of limt→0 φ∗i,0(t), and regardless of multiplicity of λ2(t),

t > 0, i = 2, 3, we have limt→0 λi(t) = λ2(0), and the function
`
φ∗i,0(t)−φi(0)

´◦
which stands

for the component of φ∗i,0(t)−φi(0) orthogonal to 〈φ2(0), φ3(0)〉 also converges (in L2-norm)
to zero-function as t→ 0.
(ii) Regardless of multiplicity of λ2(t), t > 0, if limt→0 φ∗2,0(t) exists, then λ2(t) and

`
φ∗2,0(t)

´◦
,

the component of φ∗2,0(t) which is orthogonal to the second eigenspace of Ω, are continuously
differentiable at t = 0.

Proof. (i) Let us assume there is a sequence {tn ∈ (0, ε)} such that tn converges to 0,
and assume

R
Ω ψ2,n(0) · φ∗2,0(tn) converges to zero for any second eigenfunction ψ2,n(0) ∈
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〈φ2(0), φ3(0)〉 corresponding to each tn as n→∞. Since φ∗1,0(tn) converges to φ1(0),
R
Ω φ1(0)·

φ∗2,0(tn) converges to zero as tn → 0, and then we have λ2(tn) → λ2(0) + ε1 for a number
ε1 > 0. But minimal energy property of eigenfunction implies Z

Jtn (Ω)
∇

“
J−1∗

tn
φ2(0)− δ2,1(0, tn)φ1(tn)

”
· ∇

“
J−1∗

tn
φ2(0)− δ2,1(0, tn)φ1(tn)

”ff
·

 Z
Jtn (Ω)

˛̨
J−1∗

tn
φ2(0)− δ2,1(0, tn)φ1(tn)

˛̨2ff−1

≥ λ2(tn),

where δ2,1(0, tn) =
R

Jtn (Ω) J
−1∗
tn

φ2(0) · φ1(tn). Since φ∗1,0(tn) converges to φ1(0), δ2,1(0, tn)

converges to zero as tn → 0. Observe the left hand of this inequality converges to λ2(0) as tn →
0. It implies λ2(0) ≥ λ2(tn) + ε2 for sufficiently large all n and for an ε2 > 0. It is impossible
under the consequence such that λ2(tn) → λ2(0) + ε1. Consequently,

R
Ω φ̃2,m(0) · φ∗2,0(tm)

does not converge to zero for any sequence {tm ∈ (0, ε)} converging to zero, and for a second
eigenfunction φ̃2,m(0) ∈ 〈φ2(0), φ3(0)〉 corresponding to each given tm. Then, from formula
(5) limt→0 λ2(t) = λ2(0), and

`
φ∗2,0(t)− φ2(0)

´◦
converges to zero.

In the same way let us assume there is a sequence {tn ∈ (0, ε)} such that tn converges
to 0, and assume

R
Ω ψ2,n(0) · φ∗3,0(tn) converges to zero for any the second eigenfunctin

ψ2,n(0) ∈ 〈φ2(0), φ3(0)〉. Then, since
R
Ω φ

∗
3,0(tn) · φ1(0) also converges to zero as tn → 0, we

have λ3(tn) → λ2(0) + ε3 for a number ε3 > 0 as tn → 0. But Z
Jtn (Ω)

∇
“
J−1∗

tn
φ3(0)− δ3,1(0, tn)φ1(tn)− δ3,2(0, tn)φ2(tn)

”
· ∇

“
J−1∗

tn
φ3(0)− δ3,1(0, tn)φ1(tn)− δ3,2(0, tn)φ2(tn)

”ff
·

 Z
Jtn (Ω)

˛̨̨
J−1∗

tn
φ3(0)− δ3,1(0, tn)φ1(tn)− δ3,2(0, tn)φ2(tn)

˛̨̨2ff−1

≥ λ3(tn), (20)

where δ3,i(0, tn) :=
R

Jtn (Ω) J
−1∗
tn

φ3(0) · φi(tn), i = 1, 2. Since φ∗1,0(tn) → φ1(0), we have

δ3,1(0, tn) → 0, and by the assumption
R
Ω ψ2,n(0) ·φ∗3,0(tn) → 0 for any second eigenfunction

ψ2,n(0) in Ω, we have δ3,2(0, tn) → 0 as n→∞. It implies the left hand of (20) converges to
λ2(0), and therefore λ2(0) ≥ λ3(tn)+ε4 for suffciently large all n and for an ε4 > 0. It contra-
dicts to the consequence λ3(tn) → λ2(0) + ε3. Consequently, from (5) limt→0 λ3(t) = λ3(0),
and

`
φ∗3,0(t)− φ3(0)

´◦
converges to zero as t→ 0.

(ii) When we replace t0 by 0, the formula (19) as well as (13) holds in spite of double multiplic-
ity of λ2(0). For this, consider the argument in the proofs of Proposition 2.3 and Proposition
2.4. 2

Remark 2.4. Let λ2(t) be double at t = 0, and simple on t ∈ (0, ε). Let {φ2(0), φ3(0)} be
an orthonormal basis of the second eigenspace in Ω, and let φ∗2,0(t) be expanded with respect

to φ2(0). Let us assume that φ∗2,0(t) converges to φ2(0) as t→ 0. Then, from (13) we have8>><>>:
“

d
dt t=0

φ∗2,0(t)
”◦

(x, y) = −
R
Ω

d
dt t=0

∆J∗t eφ2(0)(ζ, τ) ·Kλ2(0)(x, y; ζ, τ)dζdτ,
d
dt t=0

λ2(t) = −
R
Ω

d
dt t=0

∆J∗t eφ2(0) · φ2(0),
d
dt t=0

β0,2,k(t) = −1
−λk(0)+λ2(0)

R
Ω

d
dt t=0

∆J∗t eφ2(0) · φk(0), k ∈ N \ {2, 3},
(21)

where Kλ2(0) is Green’s function of ∆e + λ2(0) in Ω, and
`

d
dt t=0

φ∗2,0(t)
´◦

denotes the com-

ponent of d
dt t=0

φ∗2,0(t) orthogonal to 〈φ2(0), φ3(0)〉. Thus, λ2(t) and
`
φ∗2,0(t)

´◦
are con-

tinuously differentiable on t ∈ [0, ε). Even though we assume that φ∗i,0(t), i = 2, 3, con-

verges to φi(0), respectively, we can not assure existence of d
dt t=0

φ∗i,0(t), since existences of

limt0→0
d
dt t=t0

β0,i,j(t), i, j = 2, 3, are not yet verified.
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Now let us suppose that we do not know whether φ∗2,0(t) converges to φ2(0) or not. From

(13) we represent at t0 ∈ (0, ε), for i = 2, 3, k ∈ N,

d

dt t=t0

βt0,i,k(t) =
−1

−λk(t0) + λi(t0)

Z
Jt0 (Ω)

n d

dt t=t0

∆`
Jt◦J−1

t0

´∗
e
φi(t0)

o
· φk(t0)dxdy.

Since −1
−λ3(t0)+λ2(t0)

diverges as t0 → 0, one can not exclude the possibility of either di-

vergence or oscillation of d
dt t=t0

βt0,2,3(t) as t0 → 0. Thus, 〈φ2(t0), φ3(t0)〉 component of
d
dt t=t0

φ∗i,t0 (t) might oscillate as t0 → 0 like the derivative of function t2 sin 1
t
. But in the case

of k ∈ N \ {2, 3}, Proposition 2.1 implies d
dt t=t0

βt0,i,k(t) is bounded on 0 < t0 < ε. //

Proposition 2.6. Let Jt be a smooth deformation of Ω such that λ2(0) = λ3(0) is
double second eigenvalue, and λ2(t) and λ3(t) are simple on t ∈ (0, ε). Then, for i = 2, 3,
d
dt t=t0

λi(t) and
`

d
dt t=t0

φ∗i,t0 (t)
´◦

which denotes the component of d
dt t=t0

φ∗i,t0 (t) orthogonal

to 〈φ2(t0), φ3(t0)〉 = 〈φ2(t0)〉 ⊕ 〈φ3(t0)〉 under the metric e are bounded on 0 � t0 < ε.

Proof. From Proposition 2.5 λi(t0) is bounded on 0 � t0 < ε. Considering Proposition 2.1,
regardless of existence of limt0→0 φ∗i,0(t0) (even though φ∗i,0(t0) oscillates as t0 → 0), one can

infer that in the identity (13)

d

dt t=t0

∆`
Jt◦J−1

t0

´∗
e
φi(t0) = −

d

dt t=t0

λ2(t)φi(t0)−
`
∆e + λi(t0)

´ d
dt t=t0

φ∗i,t0 (t),

d
dt t=t0

∆`
Jt◦J−1

t0

´∗
e
φi(t0) is bounded on 0 � t0 < ε. Then, since Im

`
∆e+λi(t0)

´
is orthogonal

to 〈φi(t0)〉 under metric e, two summands d
dt t=t0

λi(t)φi(t0) and
`
∆e + λi(t0)

´
d
dt t=t0

φ∗i,t0 (t)

which are orthogonal to each other are bounded on 0 � t0 < ε. Consequently, from Re-
mark 2.1

`
d
dt t=t0

φ∗i,t0 (t)
´◦

which denotes the component of d
dt t=t0

φ∗i,t0 (t) orthogonal to

〈φ2(t0), φ3(t0)〉 under metric e is also bounded on 0 � t0 < ε. 2

Remark 2.5. Under hypotheses of Proposition 2.6 in order to show the existence of
limt0→0

d
dt t=t0

φ∗2,0(t) we are to verify that d
dt t=t0

βt0,2,j(t), j = 2, 3, 0 � t0 < ε, converge as

t0 → 0. In this case d
dt t=t0

φ∗2,t0
(t) exists from Proposition 2.4 and is represented by

d

dt t=t0

“
φ2(t0) +

X
k∈N

βt0,2,k(t)φk(t0)
”
.

If we expand J∗t0φ
∗
2,t0

(t) = φ∗2,0(t), 0 � t0, with respect to φ2(0), then from Proposition 2.3
the following identity holds;

d

dt t=t0

∆J∗t eφ
∗
2,0(t0) = −

d

dt t=t0

λ2(t)φ∗2,0(t0)−
`
∆J∗t0

e + λ2(t0)
´ d
dt t=t0

φ∗2,0(t).

In this case since ∆J∗t0
eφk(0) 6= λk(0)φk(0), the coefficient of φk(0)-component of

`
∆J∗t0

e +

λ2(t0)
´

d
dt t=t0

φ∗2,0(t) may differ from
`
− λk(t0) + λ2(k0)

´
d
dt t=t0

β0,2,k(t)φk(0). Thus, the

coefficient d
dt t=t0

β0,i,k(t) can not be represented by the same formula as d
dt t=t0

βt0,i,k(t)

expressed in Remark 2.4.
If we just show limt0→0

d
dt t=t0

βt0,i,j(t), i, j = 2, 3, exist, then limt0→0
d
dt t=t0

β0,i,j(t)

also exists, and vice versa. For this, note that since J∗t0 ◦ (Jt ◦ J−1
t0

)∗ = J∗t , we have

J∗t0

“ d

dt t=t0

φ∗i,t0 (t)
”

=
d

dt t=t0

φ∗i,0(t).

We may define limt0→0
d
dt t=t0

β0,i,j(t) by d
dt t=0

β0,i,j(t). Then, limt0→0 φ∗i,0(t0) exists from

Proposition 2.5, and

lim
t0→0

φ∗i,0(t0) := φ̃i(0) =
`
φ∗i,0(t0)

´◦
+

3X
j=2

β0,i,j(t1)φj(0) +
3X

j=2

Z 0

t1

d

dt
β0,i,j(t)φj(0)dt.
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Consequently, according to Remark 2.4, it is confirmed that d
dt t=t0

φ∗i,t0 (t) converges as t0 → 0.

//
Before proving existences of limt0→0 φ∗i,0(t0) and limt0→0

d
dt t=t0

φ∗i,0(t) we are to describe

concretely a deformation of Ω.

Definition 2.1. Let J−1 : R2 × [0, 1] → R2 be a C∞ deformation defined by

J−1
t (ξ, η) = (x, y)

=
`
J−1

x (ξ, η, t), J−1
y (ξ, η, t)

´
=

`
ξ −Gt(ξ, η), η −Ht(ξ, η)

´
, 0 ≤ t ≤ 1, (22)

where J−1
t : R2 → R2, J−1

t (ξ, η) := J−1(ξ, η, t), is a diffeomorphism for each t ∈ [0, 1]. Thus,
G : R2 × [0, 1] → R and H : R2 × [0, 1] → R, Gt(ξ, η) := G(ξ, η, t), Ht(ξ, η) := H(ξ, η, t), are
C∞-function such that Jacobian determinant of J−1

t ,˛̨̨̨
˛1−

∂Gt
∂ξ

− ∂Ht
∂ξ

− ∂Gt
∂η

1− ∂Ht
∂η

˛̨̨̨
˛ ,

must not vanish at each t ∈ [0, 1]. Also, Then, by inverse mapping theorem the inverse map
Jt : R2 → R2 exists and is of C∞(R2) at each t ∈ [0, 1]. Since J−1

t is of C∞ for t-variable, Jt

is also of C∞([0, 1]). Thus by definition the following constraint equation holds;

Jt
`
J−1

t (ξ, η)
´

= (ξ, η), J−1
t

`
Jt(x, y)

´
= (x, y).

We call J−1 the inverse deformation of J . Let us call the restriction of Jt to Ω a simple
deformation of Ω. The smoothness of ∂Jt(Ω) is also assumed. Let us define the support of
C∞ deformation J : R2 × [0, 1] → R2 by the closure of setn

p ∈ R2 : J(p, t) 6= p, for all t, 0 � t ≤ 1
o
.

Let us call the intersection of support of J with Ω the support of a simple deformation J of
Ω, and denote the support by supp(J). Equivalently, it holds that R2 \

`
supp(J)

´◦
=

˘
p ∈

Ω : J(p, t) = p, for a t, 0 � t ≤ 1
¯
. One can show that supp(J−1) = supp(J). For this, if and

only if J(p, t1) = p for a t1, from the equality J−1
`
J(p, t1), t1

´
= p = J−1(p, t1), we can

conclude p 6∈ supp(J−1). Let us call boundary support of J|Ω the set supp(J) ∩ ∂Ω. //

Let us set J(x, y, t) = (ξ, η) =
`
Jξ(x, y, t), Jη(x, y, t)

´
. Then the following equations hold;

0 =
d

dt t=0
x =

d

dt t=0
J−1

x

`
J(x, y, t), t

´
=

»
∂J−1

x

∂ξ

∂ξ

∂t
+
∂J−1

x

∂η

∂η

∂t
+
∂J−1

x

∂t

–
t=0

=

»
∂J−1

x

∂ξ

∂Jξ

∂t
+
∂J−1

x

∂η

∂Jη

∂t
+
∂J−1

x

∂t

–
t=0

=
∂Jξ

∂t t=0
+
∂J−1

x

∂t t=0
.

For this, note that
∂J−1

x
∂ξ t=0

= 1, and
∂J−1

x
∂η t=0

= 0. About variable η the same result occurs,

and then we have
∂J

∂t t=0
= −

∂J−1

∂t t=0
. (23)

Let us consider the co-ordinates change (ξ, η) 7→ (x, y). The metric J∗t e(x, y) =
`
gij

´
(x, y) is

given by 8><>:
g11 = ∂ξ

∂x
∂ξ
∂x

+ ∂η
∂x

∂η
∂x
,

g12 = g21 = 0,

g22 = ∂ξ
∂y

∂ξ
∂y

+ ∂η
∂y

∂η
∂y
.
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From the fact ∆g =
P

i,j
1√
|g|
Di(

p
|g|gijDj), i, j = 1, 2, g = (gij), |g| = det(gij) one can

calculate d
dt t=t0

˘
∆J∗t eJ

∗
t0
ψ(t0)

¯
(x, y) for any ψ(t) ∈ C2

`
Jt(Ω)

´
. One has ∆J∗t e

`
J∗t0ψ(t0)

´
=

J∗t ∆e
`
J−1∗

t J∗t0ψ(t0)
´
. From this equality one can obtain the following;

d

dt t=t0

n
∆J∗t eJ

∗
t0
ψ(t0)

o
=

d

dt t=t0

hn
∆e

`
J∗t0ψ(t0) ◦ Jt

−1
´o

◦ Jt

i
.

Calculations using the chain rule on this equality also yields the following formula;

d

dt t=t0

n
∆J∗t eJ

∗
t0
ψ(t0)

o
(x, y)

=
d

dt t=t0

»n“∂J−1
x t

∂ξ

”2
+

“∂J−1
x t

∂η

”2o
◦ Jt ·

∂2J∗t0ψ(t0)

∂x2

+
n“∂J−1

y t

∂ξ

”2
+

“∂J−1
y t

∂η

”2o
◦ Jt ·

∂2J∗t0ψ(t0)

∂y2

+ 2
n“∂J−1

x t

∂ξ

”
·

“∂J−1
y t

∂ξ

”
+

“∂J−1
x t

∂η

”
·

“∂J−1
y t

∂η

”o
◦ Jt ·

∂2J∗t0ψ(t0)

∂x∂y

+
n“∂2J−1

x t

∂ξ2

”
+

“∂2J−1
x t

∂η2

”o
◦ Jt ·

∂J∗t0ψ(t0)

∂x

+
n“∂2J−1

y t

∂ξ2

”
+

“∂2J−1
y t

∂η2

”o
◦ Jt ·

∂J∗t0ψ(t0)

∂y

–
(x, y). (24)

Let us denote Ġt1 := d
dt t=t1

Gt. From now on, particularly at t = 0, without inconsistency

we will identify

»
∂k1+k2

∂ξk1∂ηk2
Ġt

ff
◦ Jt(x, y)

–
t=0

with ∂k1+k2

∂xk1∂yk2
Ġ0(x, y). //

Proposition 2.7. Let a simple deformation Jt of Ω be given by (22), and ψ(0) be any
C2(Ω)-function. Then, we have

d

dt t=0

n
∆J∗t eψ(0)(x, y)

o
=− 2

∂Ġ0

∂x
·
∂2ψ(0)

∂x2
− 2

∂Ġ0

∂y
·
∂2ψ(0)

∂x∂y
−


∂2Ġ0

∂x2
+
∂2Ġ0

∂y2

ff
·
∂ψ(0)

∂x

− 2
∂Ḣ0

∂y
·
∂2ψ(0)

∂y2
− 2

∂Ḣ0

∂x
·
∂2ψ(0)

∂x∂y
−


∂2Ḣ0

∂x2
+
∂2Ḣ0

∂y2

ff
·
∂ψ(0)

∂y
. (25)

where Ġ0 := d
dt t=0

Gt.

Proof. Direct calculation using (24) yields the equality. Note that for the first summand in
(24)

d

dt t=0

n“∂J−1
x t

∂ξ

”2
◦ Jt

o
=

d

dt t=0

n ∂

∂ξ

“
ξ −Gt(ξ, η)

”o2

=
d

dt t=0

n
1−

∂Gt

∂ξ

`
Jξ(x, y, t), Jη(x, y, t)

´o2

= −2
d

dt t=0

n∂Gt

∂ξ

`
Jξ(x, y, t), Jη(x, y, t)

´o
+

d

dt t=0

n∂Gt

∂ξ

`
Jξ(x, y, t), Jη(x, y, t)

´o2

= −2
h“ d

dt

∂Gt

∂ξ

”`
ξ, η

´
+
∂2Gt

∂ξ2
dJξ

dt
+
∂2Gt

∂ξ∂η

dJη

dt

i
t=0

+ 2
n∂Gt

∂ξ

`
Jξ(x, y, t), Jη(x, y, t)

´o
t=0

d

dt t=0

n∂Gt

∂ξ

`
Jξ(x, y, t), Jη(x, y, t)

´o
.
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Since
ˆ ∂Gt

∂ξ

˜
t=0

=
ˆ ∂2Gt

∂ξ2

˜
t=0

=
ˆ ∂2Gt

∂ξ∂η

˜
t=0

≡ 0, we have

d

dt t=0

n“∂J−1
x t

∂ξ

”2
◦ Jt

o
= −2

h“ d

dt

∂Gt

∂ξ

”`
Jξ(x, y, t), Jη(x, y, t)

´i
t=0

= −2
∂Ġ0

∂ξ
=

“
− 2

∂Ġ0

∂x

”
.

By similar calculations, for the other summands it is also easily shown. 2

Proposition 2.8. Let a simple deformation Jt be given by (22), and {φ2, φ3} be a basis
of the second eigenspace of Ω. Then we haveZ

Ω


d

dt t=0
∆J∗t eφi(x, y)

ff
φj(x, y)dxdy

=

Z
∂Ω

Ġ0(x, y)
∂φi

∂x

∂φj

∂ν
dA

+

Z
∂Ω

Ḣ0(x, y)
∂φi

∂y

∂φj

∂ν
dA, i, j ∈ {2, 3}. (26)

Proof. Using property
`
∆e + λ2(0)

´
φi = 0 =

`
∆e + λ2(0)

´
φj as a solution of eigenvalue

problem, from Proposition 2.7 one can write the component of
R
Ω

˘
d
dt t=0

∆J∗t eφi

¯
φj induced

by y-directional deformation (ξ, η +Ht) as follows;Z
Ω
−

„
2
∂Ḣ0

∂y
·
∂2φi

∂y2
φj + 2

∂Ḣ0

∂x
·
∂2φi

∂x∂y
φj +

n∂2Ḣ0

∂x2
+
∂2Ḣ0

∂y2

o
·
∂φi

∂y
φj

«
= −

Z
Ω

∂

∂y

“
Ḣ0

∂2φi

∂y2
φj +

∂Ḣ0

∂y

∂φi

∂y
φj − Ḣ0

∂φi

∂y

∂φj

∂y

”
dxdy

−
Z
Ω

∂

∂x

“
Ḣ0

∂2φi

∂x∂y
φj +

∂Ḣ0

∂x

∂φi

∂y
φj − Ḣ0

∂φi

∂y

∂φj

∂x

”
dxdy. (27)

For each y such that Ω ∩ {y × R} 6= ∅, denote the union of components of Ω ∩ {y × R} byS
k[rk(y), rk+1(y)], k = 1, 2, ..., rk(y) ≤ rk+1(y), and for each x such that Ω ∩ {R × x} 6= ∅,

denote the union of components of Ω ∩ {R × x} by
S

l[sl(x), sl+1(x)], l = 1, 2, ..., sl(x) ≤
sl+1(x). Since φj = 0 on ∂Ω, (27) attains toZ

∂Ω

X
l

h
Ḣ0

∂φi

∂y

∂φj

∂y

isl+1(x)

sl(x)
dx+

Z
∂Ω

X
k

h
Ḣ0

∂φi

∂y

∂φj

∂x

irk+1(y)

rk(y)
dy

=

Z
∂Ω

Ḣ0
∂φi

∂y

∂φj

∂ν
dA. (28)

One exchanging the coordinate y for x, (28) for Ġ0 also holds by the same arguments.
2

Remark 2.6. Although λ2(0) is double, if φ∗0,2(t) converges to φ2(0), then from (13) one
can represent as follows;

d

dt t=0
λ2(t) = −

Z n d

dt t=0
∆J∗t eφ2(0)

o
φ2(0)de,

∂

∂ν P

“ d

dt t=0
φ∗2(t)

”◦
= −

Z
∂

∂ν (ζ,τ)=P
Kλ2(0)(x, y; ζ, τ)

n d

dt t=0
∆J∗t eφ2(0)

o
dxdy,

where Kλ2(0) stands for modified Green’s function of ∆e +λ2(0) in J0(Ω) which will be men-

tioned later. Let us review the equality (27) replacing φj by ∂
∂ν (ζ,τ)=P

Kλ2(0). Considering
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induction of equality (27), we can infer that the component of
R
Ω

n
d
dt t=0

∆J∗t eφi

o
∂

∂ν P
Kλ2(0)

induced by y-directional deformation (ξ, η) 7→ (ξ, η −Ht) is read as

−
Z
Ω

∂

∂y

“
Ḣ0

∂2φi

∂y2
φj +

∂Ḣ0

∂y

∂φi

∂y
φj − Ḣ0

∂φi

∂y

∂φj

∂y

”
dxdy

−
Z
Ω

∂

∂x

“
Ḣ0

∂2φi

∂x∂y
φj +

∂Ḣ0

∂x

∂φi

∂y
φj − Ḣ0

∂φi

∂y

∂φj

∂x

”
dxdy

−
Z
Ω

∂

∂ν (ζ,τ)=P

“
Ḣ0

∂φi

∂y

”
δ(ζ,τ)(x, y)dxdy, (29)

where
R
Ω

∂
∂ν P

“
Ḣ0

∂φi
∂y

”
δ = ∂

∂ν (ζ,τ)=P

“
Ḣ0(ζ, τ)

∂φi(ζ,τ)
∂τ

”
. The last term results from the

definition
`
∆e + λi(0)

´
Kλi(0)

= δ as follows;

−
Z
Ḣ0

∂3φi

∂y3
φj −

Z
Ḣ0

∂3φi

∂x2∂y
φj +

„ Z
Ḣ0

∂φi

∂y

∂2φj

∂y2
+

Z
Ḣ0

∂φi

∂y

∂2φj

∂x2

«
=

Z
Ḣ0λi(0)

∂φi

∂y
φj −

Z
Ḣ0λi(0)

∂φi

∂y
φj +

Z
∂

∂ν P

„
Ḣ0

∂φi

∂y
δ

«
. (30)

Since φi is O(|P − (x, y)|3) from hypothesis, one has ∂
∂ν P

“
Ḣ0

∂φi
∂τ

”
= 0. Therefore, since

∂
∂ν (ζ,τ)=P

Kλ2(0) vanishes on ∂Ω\P for the measure zero point set {P} on the boundary ∂Ω,

(26) also holds when ∂
∂ν (ζ,τ)=P

Kλ2(0) substitutes for φj . //

Proposition 2.9. For any distinct eigenfunctions φk1 and φk2 in the second eigenspace
〈φ2(0), φ3(0)〉 of ∆e in Ω, we haveZ

∂Ω

∂φk1

∂x

∂φk2

∂ν
dA = 0.

Proof. Set Gt = t, and Ht = 0. Then, Jt is a translation, and therefore J∗t e = e, and
d
dt t=0

∆J∗t eφk(x, y) ≡ 0. From (26) our claim follows. 2

Definition 2.2 Let us set

∂

∂ν (ξ,η)
= α(ξ, η)

∂

∂ξ
+ β(ξ, η)

∂

∂η
,

for C∞ functions α and β on ∂Ω, and let Gt and Ht satisfy(
dGt
dt t=0

(ξ, η) = G(ξ, η)α(ξ, η),
dHt
dt t=0

(ξ, η) = G(ξ, η)β(ξ, η),
(31)

where (ξ, η) ∈ ∂Ω, and G is a C∞ function of ∂Ω called a boundary function of Jt. //
The following equality with self adjointness of operator d

dt t=0
∆J∗t e on the second eigenspace

in Ω holds;

Proposition 2.10. Let {φ2(0), φ3(0)} be a basis of the second eigenspace in Ω, and let
Jt be a simple deformation of Ω given by (22) and (31). Then,Z

Ω

n d

dt t=0
∆J∗t eφi(0)

o
φj(0)de

=

Z
∂Ω

G
∂φi(0)

∂ν

∂φj(0)

∂ν
deA

=

Z
Ω
φi(0)

n d

dt t=0
∆J∗t eφj(0)

o
de, i, j ∈ {2, 3}. (32)
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where deA is the volume element on the boundary with respect to standard euclidean metric
e.

Proof. It is verified from Proposition 2.8 and from the preceding definition 2.2. 2

When k 6∈ {2, 3}, the following related to adjointness holds;

Proposition 2.11. Let Jt be a simple deformation of Ω given by (22) and (31), and
let φk(t0), t0 ∈ (0, ε), the k-th eigenfunction of Jt0 (Ω). Suppose that λ2(t0) and λ3(t0) are
simple. We have for k ∈ N \ {2, 3}Z

Jt0 (Ω)

n d

dt t=t0

∆`
Jt◦J−1

t0

´∗
e
φk(t0)

o
φ3(t0)de

=

Z
Jt0 (Ω)

n d

dt t=t0

∆`
Jt◦J−1

t0

´∗
e
φ3(t0)

o
φk(t0)de

−
`
λ3(t0)− λk(t0)

´ Z
Jt0 (Ω)

n
Ġt0

∂φ3(t0)

∂x
+ Ḣt0

∂φ3(t0)

∂y

o
φk(t0)de

+
`
λk(t0)− λ3(t0)

´ Z
Jt0 (Ω)

n
Ġt0

∂φk(t0)

∂x
+ Ḣt0

∂φk(t0)

∂y

o
φ3(t0)de

=

Z
Jt0 (Ω)

n d

dt t=t0

∆`
Jt◦J−1

t0

´∗
e
φ3(t0)

o
φk(t0)de

−
`
λk(t0)− λ3(t0)

´ Z
Jt0 (Ω)

n∂Ġt0

∂x
+
∂Ḣt0

∂y

o
φ3(t0)φk(t0)de. (33)

Proof. When λi(t0) 6= λj(t0), equality (27) turns into the following formula;Z
Jt0 (Ω)

−
„

2
∂Ḣt0

∂y
·
∂2φi(t0)

∂y2
φj(t0) + 2

∂Ḣt0

∂x
·
∂2φi(t0)

∂x∂y
φj(t0)de

+
n∂2Ḣt0

∂x2
+
∂2Ḣt0

∂y2

o
·
∂φi(t0)

∂y
φj(t0)

«
de

=−
Z

∂

∂y

“
Ḣt0

∂2φi(t0)

∂y2
φj(t0) +

∂Ḣt0

∂y

∂φi(t0)

∂y
φj(t0)− Ḣt0

∂φi(t0)

∂y

∂φj(t0)

∂y

”
de

−
Z

∂

∂x

“
Ḣt0

∂2φi(t0)

∂x∂y
φj(t0) +

∂Ḣt0

∂x

∂φi(t0)

∂y
φj(t0)− Ḣt0

∂φi(t0)

∂y

∂φj(t0)

∂x

”
de

−
`
λi(t0)− λj(t0)

´ Z
Jt0 (Ω)

Ḣt0

∂φi(t0)

∂y
φj(t0)de. (34)

Notice the equality below is commutative with respect to sub-indices i and j when λi(t0) 6=
λj(t0);

−
Z

∂

∂y

“
Ḣt0

∂2φi(t0)

∂y2
φj(t0) +

∂Ḣt0

∂y

∂φi(t0)

∂y
φj(t0)− Ḣt0

∂φi(t0)

∂y

∂φj(t0)

∂y

”
dxdy

−
Z

∂

∂x

“
Ḣt0

∂2φi(t0)

∂x∂y
φj(t0) +

∂Ḣt0

∂x

∂φi(t0)

∂y
φj(t0)− Ḣt0

∂φi(t0)

∂y

∂φj(t0)

∂x

”
dxdy

=

Z
∂Jt0 (Ω)

G
∂φi(t0)

∂ν

∂φj(t0)

∂ν
deA. (35)
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ThusZ n d

dt t=t0

∆J∗t eφk(t0)
o
φ3(t0)−

`
λk(t0)− λ3(t0)

´ Z n
Ġt0

∂φk(t0)

∂x
+ Ḣt0

∂φk(t0)

∂y

o
φ3(t0)

=

Z
∂Jt0 (Ω)

G
∂φk(t0)

∂ν

∂φ3(t0)

∂ν
deA

=

Z
Jt0 (Ω)

n d

dt t=t0

∆J∗t eφ3(t0)
o
φk(t0)de

−
`
λ3(t0)− λk(t0)

´ Z
Jt0 (Ω)

n
Ġt0

∂φ3(t0)

∂x
+ Ḣt0

∂φ3(t0)

∂y

o
φk(t0)de. (36)

Note Z
Ġt0

∂φk(t0)

∂x
φ3(t0) = −

Z
Ġt0

∂φ3(t0)

∂x
φk(t0)−

Z
∂Ġt0

∂x
φk(t0)φ3(t0). 2

Proposition 2.12. Let Jt be a simple deformation of Ω such that λ2(0) = λ3(0) is
double second eigenvalue, and λ2(t) and λ3(t) are simple on (0, ε). Furthermore, for t0 ∈
(0, ε) let limt0→0

d
dt t=t0

λi(t), i = 2, 3, exist and

lim
t0→0

d

dt t=t0

λ3(t) 6= lim
t0→0

d

dt t=t0

λ2(t). (37)

Then, d
dt t=t0

βt0,i,j(t), i, j = 2, 3, converge as t0 → 0. Then, φ∗i,0(t0) converges to one

element φ̃i(0) ∈ 〈φ2(0), φ3(0)〉. Therefore, formulae (13) and (19) hold provided φ2(t0) and
t0 are replaced by a second eigenfunction φ̃2(0) of Ω and 0, respectively. Consequently, λi(t)
is of C1

`
[0, ε)

´
, and defining by

lim
t0→0

d

dt t=t0

βt0,i,k(t) :=
d

dt t=0
β0,i,k(t), i, k = 2, 3, (38)

φ∗i,0(t) ∈ C1
`
[0, ε)

´
.

(Note) When φ∗i,0(t) is expanded with respect to φi(0), i = 2, 3, Proposition 2.12 implies that
one can represent(

φ̃i(0) = φi(0) + limt0→0 β0,i,2(t0)φ2(0) + limt0→0 β0,i,3(t0)φ3(0),

β0,i,k(t0) = β0,i,k(t1) +
R t=t0

t=t1
d
ds s=t

β0,i,k(s)dt.

Proof. Let us suppose that limt0→0
d
dt t=t0

βt0,2,3(t) exists. Then, according to Remark 2.5,

limt0→0 β0,2,3(t0) exists, and then from Proposition 2.5 and from the fact that ‖φ∗2,0(t0)‖2,J∗t0
e

converges to one as t0 → 0 one can infer that limt0→0 β0,2,2(t0) also exists. Thus from
Proposition 2.5 φ∗2,0(t0) converges to a second eigenfunction in Ω as t0 → 0. Therefore,

according to the argument succeeding to Notation 2.1, regardless of multiplicity of λ2(0), (16)
shows the existence of limt0→0

d
dt t=t0

β0,2,2(t) and the continuity of d
dt t=t0

β0,2,2(t) on [0, ε).

Consequently, according to the argument of Remark 2.5, limt0→0
d
dt t=t0

φ∗2,0(t) exists and

φ∗2,0(t) ∈ C1
`
[0, ε)

´
.

The proof for βt0,3,j(t), j = 2, 3, can be accomplished in the same way as βt0,2,j(t). Also
in a different way, one can infer that when existence of limt0→0 φ∗2,0(t0) is shown, the limit of

φ∗3,0(t0) which is orthogonal to φ∗2,0(t0) also exist. Then, existence of limt0→0
d
dt t=t0

φ∗3,0(t)

can be verified. Consequently, it suffices to prove only existence of limt0→0
d
dt t=t0

βt0,2,3(t).

To obtain an equation for coefficient d
dt t=t0

βt0,2,3(t) of φ3(t0)-component of d
dt t=t0

φ∗2,t0
(t)
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we take inner product of each side of (19) and φ3(t0). Then, we haveZ
Jt(Ω)

“ d2

dt2 t=t0

∆`
Jt◦J−1

t0

´∗
e
φ2(t0)

”
φ3(t0)de

=2
d

dt t=t0

λ3(t)
d

dt t=t0

βt0,2,3(t)− 2
d

dt t=t0

λ2(t)
d

dt t=t0

βt0,2,3(t)

+ 2
X

k∈Z+\{3}

`
− λ3(t0) + λk(t0)

´ d
dt t=t0

βt0,k,3(t)
d

dt t=t0

βt0,2,k(t)

−
`
− λ3(t0) + λ2(t0)

´ d2
dt2 t=t0

βt0,2,3(t). (39)

From (39) we obtain

d

dt t=t0

βt0,2,3(t)


2

“ d

dt t=t0

λ3(t)−
d

dt t=t0

λ2(t)
”

+ 2
`
− λ3(t0) + λ2(t0)

´ d
dt t=t0

βt0,2,2(t)

ff
=

Z
Ω


d2

dt2 t=t0

∆`
Jt◦J−1

t0

´∗
e
φ2(t0)

ff
φ3(t0)de

− 2
X

k∈Z+\{2,3}

`
− λ3(t0) + λk(t0)

´ d
dt t=t0

βt0,k,3(t)
d

dt t=t0

βt0,2,k(t)

+
`
− λ3(t0) + λ2(t0)

´ d2
dt2 t=t0

βt0,2,3(t). (40)

We do not know yet whether the second derivative d2

dt2 t=t0
β0,2,3(t) and the second summand

in the right hand side of equality (40) converge or not as t0 → 0. So firstly we will describe a
formula of d

dt t=t0
β0,2,3(t) by solving ordinary linear differential equation (40). One can write

(40) equivalently as follows;

lim
t→t0

d

dt
βt0,2,3(t) =:

d

dt t=t0

βt0,2,3(t)

= lim
t→t0

1

2
`

d
dt
λ3(t)− d

dt
λ2(t)

´
+ 2

`
− λ3(t) + λ2(t)

´
d
dt
βt0,2,2(t)» Z

Ω


d2

dt2
∆`

Jt◦J−1
t0

´∗
e
φ2(t0)

ff
φ3(t0)de

+
`
− λ3(t) + λ2(t)

´ d2
dt2

βt0,2,3(t)

− 2
X

k∈Z+\{2,3}

`
− λ3(t) + λk(t)

´ d
dt
βt0,k,3(t)

d

dt
βt0,2,k(t)

–
. (41)

From ordinary linear differential equation (41) we obtain a primitive function d
dt
βt0,2,3(t)

of t-variable

d

dt
βt0,2,3(t) exp

„ Z
Pt0 (t)dt

«
=

Z
Qt0 (t)

λ3(t)− λ2(t)
· exp

„ Z
Pt0 (t)dt

«
dt+ C,

where C is an integration constant,

Pt0 (t) =
2

`
d
dt
λ3(t)− d

dt
λ2(t)

´
+ 2

`
− λ3(t) + λ2(t)

´
d
dt
βt0,2,2(t)

λ3(t)− λ2(t)
,
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and

Qt0 (t) =

Z 
d2

dt2
∆`

Jt◦J−1
t0

´∗
e
φ2(t0)

ff
φ3(t0)de

− 2
X

k∈Z+\{2,3}

`
− λ3(t) + λk(t)

´ d
dt
βt0,k,3(t)

d

dt
βt0,2,k(t).

A simple calculation shows

exp

„ Z
Pt0 (t)dt

«
=exp

“ Z
d

dt
2 log

`
λ3(t)− λ2(t)

´”
exp

“
− 2

Z
d

dt
βt0,2,2(t)dt

”
=C′1

`
λ3(t)− λ2(t)

´2 · exp
“
− 2βt0,2,2(t) + C′2

”
, C′1, C

′
2 ∈ R.

Then, we have

d

dt t=t0

βt0,2,3(t)

=
1

C′3
`
λ3(t0)− λ2(t0)

´2 · exp
`
− 2βt0,2,2(t)

´ Z `
λ3(t)− λ2(t)

´
· exp

`
− 2βt0,2,2(t)

´
·

» Z 
d2

dt2
∆`

Jt◦J−1
t0

´∗
e
φ2(t0)

ff
φ3(t0)dxdy

− 2
X

k∈Z+\{2,3}

`
− λ3(t) + λk(t)

´ d
dt
βt0,k,3(t)

d

dt
βt0,2,k(t)

–
dt

˛̨̨̨
t=t0

+
C

C′3
`
λ3(t)− λ2(t)

´2 · exp
`
− 2βt0,2,2(t)

´ ˛̨̨̨
t=t0

, C′3 ∈ R. (42)

We are to show that the value

−2
X

k∈Z+\{2,3}

`
− λ3(t0) + λk(t0)

´ d
dt t=t0

βt0,k,3(t)
d

dt t=t0

βt0,2,k(t) (43)

which is a summand of integrand in (42) converges as t0 → 0.

Lemma 2.13. Let λ2(0) = λ3(0) be the double second eigenvalue, and let λ2(t) and λ3(t)
be simple eigenvalues of Jt(Ω) for t ∈ (0, ε), where Jt is a simple deformation of Ω given by
(22). Let k ∈ N \ {2, 3}. Then, for the coefficients βt0,i,j(t) defined by (4) the series (43)
converges as t0 → 0.

Proof. We will show the series is bounded on 0 � t0 < ε. Each factor
`
− λ3(t0) +

λk(t0)
´

d
dt t=t0

βt0,k,3(t) is bounded on t0 ∈ (0, ε) from Proposition 2.6. Then, d
dt t=t0

βt0,2,k(t)

will converge to zero as k →∞ at any t0. That is, each summand term converges to zero as
k →∞. Consequently, the series will converge as t0 → 0.

Let t0  0. From Proposition 2.11

d

dt t=t0

βt0,k,3(t)

=−
1

−λ3(t0) + λk(t0)

Z
d

dt t=t0

∆`
Jt◦J−1

t0

´∗
e
φk(t0)φ3(t0)

=−
1

−λ3(t0) + λk(t0)

Z
d

dt t=t0

∆`
Jt◦J−1

t0

´∗
e
φ3(t0)φk(t0) +

Z n∂Ġt0

∂x
+
∂Ḣt0

∂y

o
φ3(t0)φk(t0)

=
d

dt t=t0

βt0,3,k(t) +

Z n∂Ġt0

∂x
+
∂Ḣt0

∂y

o
φ3(t0)φk(t0). (44)
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Thus, (43) is equivalent withX
k∈N\{2,3}

`
− λ3(t0) + λk(t0)

´»
d

dt t=t0

βt0,3,k(t)

+

Z n∂Ġt0

∂x
+
∂Ḣt0

∂y

o
φ3(t0)φk(t0)

–
d

dt t=t0

βt0,2,k(t). (45)

The following equality holds;X
k∈N\{2,3}

`
− λ3(t0) + λk(t0)

´ d
dt t=t0

βt0,3,k(t)

·
`
− λ2(t0) + λk(t0)

´ d
dt t=t0

βt0,2,k(t)

=

Z »
d

dt t=t0

∆`
Jt◦J−1

t0

´∗
e
φ3(t0) ·

d

dt t=t0

∆`
Jt◦J−1

t0

´∗
e
φ2(t0)

–
−

X
k∈{2,3}

Z n d

dt t=t0

∆`
Jt◦J−1

t0

´∗
e
φ3(t0)

o
φk(t0) ·

Z n d

dt t=t0

∆`
Jt◦J−1

t0

´∗
e
φ2(t0)

o
φk(t0).

(46)

Then,˛̨̨̨ X
k∈N\{2,3}

`
− λ3(t0) + λk(t0)

´ d
dt t=t0

βt0,3,k(t)

·
`
− λ2(t0) + λk(t0)

´ d
dt t=t0

βt0,2,k(t)

˛̨̨̨
≤

n Z ˛̨̨ d
dt t=t0

∆`
Jt◦J−1

t0

´∗
e
φ3(t0)

˛̨̨2o 1
2 ·

n Z ˛̨̨ d
dt t=t0

∆`
Jt◦J−1

t0

´∗
e
φ2(t0)

˛̨̨2o 1
2

−
X

k∈{2,3}

Z n d

dt t=t0

∆`
Jt◦J−1

t0

´∗
e
φ3(t0)

o
φk(t0) ·

Z n d

dt t=t0

∆`
Jt◦J−1

t0

´∗
e
φ2(t0)

o
φk(t0).

(47)

Even though d
dt t=t0

βt0,i,j(t), i, j ∈ {2, 3}, oscillates as t0 → 0, (47) is bounded on t0 ∈ [0, ε),

because
R ˛̨˘

d
dt t=t0

∆`
Jt◦J−1

t0

´∗
e
φi(t0)

¯˛̨
, i ∈ {2, 3}, is bounded on t0 ∈ [0, ε) from Proposition

2.1. Consequently,
P

k∈N\{2,3}
`
− λ3(t0) + λk(t0)

´
d
dt t=t0

βt0,3,k(t) d
dt t=t0

βt0,2,k(t) is also

bounded on t0 ∈ [0, ε). On the other hand the seriesX
k∈N\{2,3}

`
− λ3(t0) + λk(t0)

´» Z n∂Ġt0

∂x
+
∂Ḣt0

∂y

o
φ3(t0)φk(t0)

–
d

dt t=t0

βt0,2,k(t) (48)

is bounded on t0 ∈ [0, ε). For this, note thatX
k∈N\{2,3}

`
− λ2(t0) + λk(t0)

´» Z n∂Ġt0

∂x
+
∂Ḣt0

∂y

o
φ3(t0)φk(t0)

–
d

dt t=t0

βt0,2,k(t)

=

Z »n∂Ġt0

∂x
+
∂Ḣt0

∂y

o
φ3(t0) ·

d

dt t=t0

∆J∗t eφ2(t0)

–
+

Z »n∂Ġt0

∂x
+
∂Ḣt0

∂y

o
φ3(t0)

d

dt t=t0

λ2(t)φ2(t0)

–
+

Z »n∂Ġt0

∂x
+
∂Ḣt0

∂y

o
φ3(t0)

`
− λ3(t0) + λ2(t0)

´ d
dt t=t0

βt0,2,3(t)φ3(t0)

–
(49)

21



is bounded on t0 ∈ [0, ε) from the fact that

d

dt t=t0

λ2(t) = −
Z ˘ d

dt t=t0

∆`
Jt◦J−1

t0

´∗
e
φ∗2(t0)

¯
φ∗2(t0)

is bounded on t0 ∈ [0, ε) and from Proposition 2.1. Inequality

−λ3(t0) + λk+1(t0)

−λ3(t0) + λk(t0)
≤
−λ2(t0) + λk+1(t0)

−λ2(t0) + λk(t0)

holds for sufficiently large all k. Then, by the comparison test for the serieses we can show
(48) is also bounded on t0 ∈ [0, ε). 2

To show whether the right hand of (42) at t = t0 converges as t0 → 0 one may set
approximately λ3(t)− λ2(t) up to equal to„

d

dt t=0
λ3(t)−

d

dt t=0
λ2(t)

«
t (50)

for t in a sufficiently small deleted neighborhood of zero. Let us denote a factor of integrand
of (42) by

Ft0 (t) :=

Z 
d2

dt2
∆`

Jt◦J−1
t0

´∗
e

ff
φ2(t0)φ3(t0)dxdy

− 2
X

k∈N\{2,3}

`
− λ3(t) + λk(t)

´ d
dt
βt0,k,3(t)

d

dt
βt0,2,k(t).

From Lemma 2.13 Ft0 (t0) converges as t0 → 0. The integration
R `
λ3(t) − λ2(t)

´
exp

`
−

2βt0,2,2(t)
´
Ft0 (t)dt vanishes in the second order as t → 0. Thus, if C = 0, one can affirm

that function (42) at t = t0 converges as t0 → 0. Let us assume that the constant C is not
zero. Then, the last summand of (42) at t = t0 diverges in 1

(t0)2
degree as t0 → 0. That is,

d
dt t=t0

βt0,2,3(t) diverges in 1
(t0)2

degree as t0 → 0. Then, βt0,2,3(t0) must be diverge in 1
t0

degree. It is not true, since βt0,2,3(t0) must be bounded around t0 = 0. Thus, the integration

constant C must be zero. Consequently, d
dt t=t0

βt0,2,3(t) converges as t0 → 0. 2

2.2 Another Approach to Regularity of Path φ∗2,Jt(Ω) :=

φ∗2,0(t) with respective to t-variable when λ2(Ω) is Dou-
ble

Firstly, we wish to find a criterion for a simple deformation Jt under which an orthonormal
basis {φ2(0), φ3(0)} of the second eigenspace of Ω is given, there are pulled-back eigenfunctions
φ∗2,0(t) and φ∗3,0(t) of Jt(Ω) which converge respectively to φ2(0) and φ3(0). Let us consider
the following equalities for ρ2, ρ3 ∈ R;

d

dt t=0
∆J∗t eφ2(0) = −ρ2φ2(0)−

`
∆e + λ2(0)

´
g2(0), (51)

d

dt t=0
∆J∗t eφ3(0) = −ρ3φ3(0)−

`
∆e + λ3(0)

´
g3(0), (52)

gi(0) ≡ 0, on ∂Ω, i = 2, 3.

Proposition 2.14. Let λi(0), i = 2, 3, be double eigenvalues. Let us assume that either
hypothesis (51) or (53) holds for Jt. If

ρ2 6= ρ3, (53)

then pulled-back eigenfunction φ∗i,0(t) in Jt(Ω) to Ω and the associated eigenvalue λi(t) of

Jt(Ω), i = 2, 3, have derivatives, respectively, on t ∈ [0, ε) which satisfy

lim
t→0

φ∗i,0(t) = φi(0), lim
t→0

d

dt
λi(t) = ρi, and lim

t→0

“ d

dt
φ∗i,0(t)

”◦
= gi(0), (54)
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where
`

d
dt
φ∗i,0(t)

´◦
stands for the component of d

dt
φ∗i,0(t) orthogonal to 〈φ2(0), φ3(0)〉.

Conversely, if φ∗2,0(t) converges to φ2(0) as t→ 0, then there is a pulled-back eigenfunc-

tion φ∗3,0(t) to Ω which converges to φ3(0). Thus, conditions (51) and (52) hold.

Proof. First, if λi(t) is double on t ∈ [0, ε), then obviously given any φi(0), there exist a pair`
a(t), b(t)

´
of real numbers such that a(t)φ∗2,0(t) + b(t)φ∗3,0(t) which is a pulled-back function

of the second eigenfunction a(t)φ2(t) + b(t)φ3(t) of Jt(Ω) converges to φi(0) as t→ 0. Then,
we considering (13), (51) and (52) hold with ρ2 = ρ3. That is, hypothesis (53) is not kept.
Consequently, we may verify Proposition only in the case that λi(t) is simple on (0, ε) for an
ε > 0.

Let us assume φ∗2,0(t) does not converge to φ2(0). Let us denote

φ∗2,0(t0) = φ2(0) + β0,2,2(t0)φ2(0) + β0,2,3(t0)φ3(0) +
X

k∈N\{2,3}
β0,2,k(t0)φi(0).

Since
P

k∈N\{2,3} β0,2,k(t0)φi(0) converges to zero as t → t0 from Proposition 2.5, although

ε > 0 assumes any sufficiently small value, there are a fixed constant σ > 0 and 0 < t0 < ε
such that β2

0,2,3(t0) > σ. Note that from Proposition 2.3 for t0 ∈ (0, ε)

d

dt t=t0

∆J∗t eφ
∗
2,0(t0)

=−
d

dt t=t0

λ2(t)φ∗2,0(t0)−
`
∆J∗t0

e + λ2(t0)
´ d
dt t=t0

X
k∈N\{2,3}

β0,2,k(t)φk(0). (55)

On the other hand from (51) and (52)

d

dt t=t0

∆J∗t eφ
∗
2,0(t0)

=
d

dt t=t0

∆J∗t e

“`
1 + β0,2,2(t0)

´
φ2(0) + β0,2,3(t0)φ3(0) +

`
φ∗2,0(t0)

´◦”
=−

`
1 + β0,2,2(t0)

´
ρ2φ2(0)− β0,2,3(t0)ρ3φ3(0)

−
`
∆J∗t0

e + λ2(t0)
´˘`

1 + β0,2,2(t0)
´
g2(0) + β0,2,3(t0)g3(0)

¯
+

d

dt t=t0

∆J∗t e

n X
k∈N\{2,3}

β0,2,k(t0)φk(0)
o
.

We are to show the φ2(0) and φ3(0)-component of the summand

d

dt t=t0

∆J∗t e

n X
k∈N\{2,3}

β0,2,k(t0)φk(0)
o

converge to zero as t0 → 0. Referring to (7), for i = 2, 3 the following value is bounded over
all k ∈ N \ {2, 3};Z n d

dt t=t0

∆J∗t eφk(0)
o
φi(0)dxdy

=

Z n j,l=0,1,2X
1≤j+l≤2

d

dt t=t0

bj,l(t)(x, y)
∂j+l

∂xj∂yl
φk(0)(x, y)

o
φi(0)(x, y)

=

Z
φk(0)(x, y)

n j,l=0,1,2X
1≤j+l≤2

∂j+l

∂xj∂yl

“ d

dt t=t0

bj,l(t)(x, y)(−1)j+lφi(0)(x, y)
”o
.

Since
P

k∈N\{2,3} β0,2,k(t0)φk(0) =
`
φ∗2,0(t0)

´◦
converges to zero in L2-norm as t0 → 0, the

norm
P

k∈N\{2,3} β
2
0,2,k(t0) converges to zero, and it verifies our claim. Consequently, from

(55) −
`
1 + β0,2,2(t0)

´
ρ2φ2(0)− β0,2,3(t0)ρ3φ3(0) must be equivalent to the formula

d

dt t=t0

λ2(t)
˘
−

`
1 + β0,2,2(t0)

´
φ2(0)− β0,2,3(t0)φ3(0)

¯
,
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as t0 → 0, and since |β0,2,3(t0)| >
√
σ, we must have ρ2 = ρ3. It is a contradiction. Then,

existence of d
dt t=0

λ2(t) is showed by Proposition 2.5 (ii). For φ∗3,0(t), the same argument can
be applied.

Conversely, if φ∗2,0(t) converges to φ2(0), then from Proposition 2.5 formula (51) holds,
and then the converse statement can be verified from the adjointness in Proposition 2.10. The
converse is also shown by the fact that the third eigenfunction φ∗3,0(t0) which is orthogonal

to φ∗2,0(t0) under metric J∗t0e is uniquely determined, and therefore φ∗3,0(t0) also converges,

and then (52) holds. 2

Remark 2.7. We have shown in Proposition 2.10 that
R
Ω

d
dt t=0

∆J∗t eφ2(0) · φ3(0) =R
Ω

d
dt t=0

∆J∗t eφ3(0) ·φ2(0). Therefore, if φ∗2,0(t) converges to φ2(0), then
R
Ω

d
dt t=0

∆J∗t eφ2(0) ·
φ3(0) = 0, that is, if (51) holds, and then (52) which does not have φ2(0)-component naturally
follows, since image of ∆e +λi(0) is orthogonal to 〈φ2(0), φ3(0)〉 which is kernel of ∆e +λi(0).
Then, setting ψ2 = a2,2φ2(0) + a2,3φ3(0), we can ascertain Proposition 2.10 as follows;Z

Ω

d

dt t=0
∆J∗t eφ2(0) · ψ2

=

Z
Ω

d

dt t=0
∆J∗t eφ2(0) ·

`
a2,2φ2(0) + a2,3φ3(0)

´
=−

Z
Ω
ρ2φ2(0) ·

`
a2,2φ2(0) + a2,3φ3(0)

´
=− a2,2ρ2 =

Z
Ω

d

dt t=0
∆J∗t eψ2(0) · φ2(0).

The number ρi(0) is uniquely determined, and gi(0) ∈ C2(Ω) with gi(0) ≡ 0 on ∂Ω is also
uniquely determined modulo 〈φ2(0), φ3(0)〉. //

Definition 2.3. Let us call the following deformation an inflation or deflation of Ω in
c-rate;

Ic,t :
`
x, y

´
∈ Ω 7→

`
x+ ctx, y + cty

´
, −∞ < c <∞, t ∈

˘
t ∈ [0, 1] : −1 < ct

¯
. (56)

Let {φ2(0), φ3(0)} be the orthonormal basis of the second eigenspace of Ω. Define

φi(t)(x, y)

:=
1

1 + ct
{I−1∗

c,t φi(0)}(x, y)

=
1

1 + ct
φi(0)

„
1

1 + ct
x,

1

1 + ct
y

«
, (x, y) ∈ Ic,t(Ω), i = 2, 3.

Then, φi(t) is a normalized second eigenfunction of Ic,t(Ω), and λi

`
Ic,t(Ω)

´
= 1

(1+ct)2
λi(Ω).

Then, we have 8>>>>><>>>>>:
φ∗i,0(t) = I∗c,t


1

1+ct
I−1
c,t

∗
φi(0)

ff
=

φi(0)
1+ct

,

d
dt t=0

λi(t) =: λi

`
Ic,t(Ω)

´
= −2cλi(0),

d
dt t=0

φ∗i,0(t) = −cφi(0), and
d
dt t=0

β0,i,i(t) = −c = d
dt t=0

χ0

`
φi(t)

´
, i = 2, 3.

(57)

For a more general form consider the following eigenfunction in Ic,t(Ω) for real smooth
functions α2(t) and α3(t) such that αi(0) = 0 for i = 2, 3;n

I−1∗
c,t

“
φ2(0) + α2(t)φ2(0) + α3(t)φ3(0)

”o
(x, y)

=
n
φ2(0) + α2(t)φ2(0) + α3(t)φ3(0)

o“ x

1 + ct
,

y

1 + ct

”
, (x, y) ∈ Ic,t(Ω). (58)
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Define a normalized second eigenfunction φ̃2(t) in Ic,t(Ω) by

1

1 + ct
·

1q`
1 + α2(t)

´2
+ α2

3(t)

n
φ2(0) + α2(t)φ2(0) + α3(t)φ3(0)

o“ x

1 + ct
,

y

1 + ct

”
.

Then, φ̃∗2(t) → φ2(0) as t→ 0, and

φ̃∗2(t) =
1

1 + ct
·

1q`
1 + α2(t)

´2
+ α2

3(t)

n
φ2(0) + α2(t)φ2(0) + α3(t)φ3(0)

o“
x, y

”
.

Then, 8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

d
dt t=0

λ2(t) = d
dt t=0

"
1

(1+ct)

r`
1+α2(t)

´2
+α2

3(t)

·
n`

1 + α2(t)
´
λ2(0) + α3(t)λ3(0)

o#
,

= −{c+ α′2(0) + α′3(0)}λ2(0) + {α′2(0)λ2(0) + α′3(0)λ3(0)}
= −cλ2(0)− α′3(0){λ2(0)− λ3(0)} = −cλ2(0),

d
dt t=0

β0,2,2(t) = d
dt t=0

"
1

(1+ct)

r`
1+α2(t)

´2
+α2

3(t)

·
`
1 + α2(t)

´#
= −{c+ α′2(0) + α′3(0)}+ α′2(0) = −c− α′3(0),

d
dt t=0

β0,2,3(t) = d
dt t=0

"
1

(1+ct)

r`
1+α2(t)

´2
+α2

3(t)

· α3(t)
´#

= α′3(0),

(59)

where λ2(t) and βt0,i,k(t) defined by (4) are associated with the pulled-back eigenfunction

φ̃∗2(t). Thus three derivatives can be set at random by selecting d
dt t=0

αi(t), i = 2, 3, and the

constant c at our disposal. We may define φ̃∗3(t) as follows; for real smooth functions γi(t)
such that γi(0) = 0, i = 2, 3, and

P
i=2,3 αi(t)γi(t) = 0,

φ̃∗3(t)(x, y) =
1

1 + ct
·

1q`
1 + γ2(t)

´2
+ γ2

3(t)

n
φ3(0) + γ2(t)φ2(0) + γ3(t)φ3(0)

o“
x, y

”
. //

Definition 2.4. Two C∞ deformations J1 and J2 of Ω given, we define the sum J1 ]J2

by the deformation of Ω given by

(J1 ] J2)t(x, y)

=(x, y) + {J1
t (x, y)− (x, y)}+ {J2

t (x, y)− (x, y)}

=J1
t (x, y) + J2

t (x, y)− (x, y)

=
`
J1

ξ (x, y, t) + J2
ξ (x, y, t)− x, J1

η (x, y, t) + J2
η (x, y, t)− y

´
, (x, y) ∈ Ω.

Obviously ] is commutative, associative. //

We can show a linearity for ] sum of simple deformations Jk of Ω;

Proposition 2.15. Let Jk be a simple deformation of Ω given by formula (22) for each
k = 1, 2, 3, ..., l. For any C2(Ω)-function ψ(0) in Ω and for −∞ < ζk <∞ we have

d

dt t=0

n
∆`

]l
k=1Jk

ζkt

´∗
e
ψ(0)

o
=

lX
k=1

ζk

n d

dt t=0
∆Jk∗

t eψ(0)
o
. (60)
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Proof. For ζk ∈ R, Jk
ζkt satisfies the equality

d

dt t=0
Jk

ζkt(x, y) = ζk
d

dt t=0
Jt(x, y), (x, y) ∈ Ω.

Denote Jk−1

ζkt (ξ, η) :=
`
ξ − Gk

ζkt(ξ, η), η − Hk
ζkt(ξ, η)

´
. Then, J1−1

ζ1t ] J2−1

ζ2t (ξ, η) =
`
ξ −P2

k=1G
k
ζkt(ξ, η), η −

P2
k=1H

k
ζkt(ξ, η)

´
. Proposition 2.7 (25) shows (60). 2

Thus from (60) we may state the following linearities;

Proposition 2.16. Let φ∗2
`
Jk

t (Ω)
´
, k = 1, 2, converge to the same eigenfunction φ2(Ω)

as t tends to zero. Then, we have(
d
dt t=0

φ∗2
`
J1

t ] J2
t (Ω)

´
= d

dt t=0
φ∗2

`
J1

t (Ω)
´

+ d
dt t=0

φ∗2
`
J2

t (Ω)
´
,

d
dt t=0

λ2

`
J1

t ] J2
t (Ω)

´
= d

dt t=0
λ2

`
J1

t (Ω)
´

+ d
dt t=0

λ2

`
J2

t (Ω)
´
.

(61)

Therefore, φ∗2
`
J1

t ]J2
t (Ω)

´
converges to φ2(Ω) provided d

dt t=0
λ2

`
J1

t ]J2
t (Ω)

´
6= d

dt t=0
λ3

`
J1

t ]
J2

t (Ω)
´
.

Proof. Let us denote
∆Jk∗

t e −∆e := D∆Jk∗
t e,

λ2

`
Jk

t (Ω)
´
− λ2(Ω) := Dλ2

`
Jk

t (Ω)
´
,

φ∗2
`
Jk

t (Ω)
´
− φ2(Ω) := Dφ∗2

`
Jk

t (Ω)
´
.

By the first hypothesis the limits of these differences exist as t→ 0. Thus“
∆e + D∆Jk∗

t e

”“
φ2(Ω) + Dφ∗2

`
Jk

t (Ω)
´”

=−
n
λ2(Ω) + Dλ2

`
Jk

t (Ω)
´o“

φ2(Ω) + Dφ∗2
`
Jk

t (Ω)
´”

holds for all t ∈ [0, ε]. Discarding the second degree terms D∆Jk∗
t e · Dφ∗2

`
Jk

t (Ω)
´

and

Dλ2

`
Jk

t (Ω)
´
·Dφ∗2

`
Jk

t (Ω)
´
, we have for each k = 1, 2

lim
t→0

1

t

n
∆eDφ∗2

`
Jk

t (Ω)
´

+ D∆Jk∗
t eφ2(Ω)

o
=− lim

t→0

1

t

n
Dλ2

`
Jk

t (Ω)
´
φ2(Ω) + λ2(Ω)Dφ∗2

`
Jk

t (Ω)
´o
. (62)

Thus, we have

lim
t→0

1

t

n
∆e

X
k=1,2

Dφ∗2
`
Jk

t (Ω)
´

+
X

k=1,2

D∆Jk∗
t eφ2(Ω)

o
=− lim

t→0

1

t

n X
k=1,2

Dλ2

`
Jk

t (Ω)
´
φ2(Ω) + λ2(Ω)

X
k=1,2

Dφ∗2
`
Jk

t (Ω)
´o
. (63)

Equality (62) is no other than (13). In fact from (60) equality (63) implies (61).
From the first assumption φ∗3

`
Jk

t (Ω)
´
, k = 1, 2, also converge to the same eigenfunction

φ3(Ω). Then, from the last hypothesis, Proposition 2.14, and from (60), equality (61) implies
the last statement. 2

Remark 2.8. Let {φ2(0), φ3(0)} be an orthonormal basis of the second eigenspace in Ω.

For inflation or deflation Ic,t we have ∂Ġ0
∂x

= c = ∂Ḣ0
∂y

, and ∂Ġ0
∂x

· ∂2φi(0)

∂x2 + ∂Ḣ0
∂y

· ∂2φi(0)

∂y2 =

−cλi(0)φi(0), i = 2, 3, but the other summands are all zero. Then, from Proposition 2.7
d
dt t=0

n
∆Ic,t

∗eφi(0)
o

= +cλi(0)φi(0). Thus, d
dt t=0

λi(t) = −cλi(0).
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One referring to an example of Definition 2.3, φ̃∗i (t) converge to φi(Ω), i = 2, 3, respec-

tively. For the pulled-back eigenfuncion φ̃∗2(t) in Definition 2.3, the following equalities holds;

d

dt t=0
φ̃∗2(t)

=
d

dt t=0
β0,2,2(t)φ2(0) +

d

dt t=0
β0,2,3(t)φ3(0),

where coefficients d
dt t=0

β0,2,i(t), i = 2, 3, can be determined by selecting a suitable c-rate of

inflation or deflation and by adding suitable second eigenfunctions αi(t)φi(0), i = 2, 3, in Ω to
the second eigenfunctions in Ic,t(Ω) at our disposal. For this, we may refer to (57) and (58).

A simple deformation Jt given, and let φ2(t) be the second eigenfunction of Jt(Ω) such
that φ∗2,0(t) → φ2(0), and let us denote by ψ2(t) the second eigenfunction in Jt ] Ic,t(Ω)

converging to φ2(0). Denote (Jt ] Ic,t)∗ψ2(t) = ψ∗2(t). Considering the linearity (60) in

Proposition 2.16, from (57) and (58) one can define coefficient − d
dt t=0

α3(t) to be equal to

the coefficient of φ3(0)-component of d
dt t=0

φ∗2(t) so that the coefficient of φ3(0)-component

of d
dt t=0

ψ∗2(t) may vanishes.

Let us suppose closed nodal line of φ2(0) meets ∂Ω at P , and φ2(0) is positive in the inner
nodal domain. Then, nodal line of ψ2(t) separates from boundary at sufficiently small all
t ∈ (0, 1] provided ∂

∂ν P

`
d
dt t=0

φ∗2,0(t)
´◦  0 and provided the coefficient of φ3(0)-component

of d
dt t=0

ψ∗2(t) vanishes. Since ∂
∂ν P

φ2(0) = 0, it does not matter what change of the coefficient

of φ2(0)-component of d
dt t=0

ψ∗2(t) is. //

Proposition 2.17. Suppose that λ2(0) = λ3(0) is double, and λ2(t) and λ3(t) are simple
on t ∈ (0, ε). Let {φ2(0), φ3(0)} be an orthonormal basis of the second eigenspace in Ω. Let
Jt be a simple deformation of Ω and let us suppose that φ∗2,0(t) → φ2(0), and d

dt t=0
λ2(t) 6=

d
dt t=0

λ3(t). Given any real number c � 0, one can select an inflation or deflation Ic,t

and coefficients α3(t) defined by (58) so that the pulled-back second eigenfunction ψ∗2(t) in
Jt ] Ic,t(Ω) to Ω may converge to φ2(0) as t→ 0, and8>><>>:

R
Ω

d
dt t=0

ψ∗2(t) · φ3(0) = 0,
d
dt t=0

λ2

`
Jt ] Ic,t(Ω)

´
= d

dt t=0
λ2(t)− cλ2(0),“

d
dt t=0

ψ∗2(t)
”◦

=
“

d
dt t=0

φ∗2,0(t)
”◦
,

where
`

d
dt t=0

ψ∗2(t)
´◦

stands for the component of d
dt t=0

ψ∗2(t) orthogonal to
˙
φ2(0), φ3(0)

¸
.

Proof. Considering (57), (58), (59), and Proposition 2.16, we can select α3(t) satisfying our
proposition. 2

Definition 2.5. A deformation eliminating φ3(Ω)-component in c-rate means a defor-
mation Jt ] Ic,t described in Poposition 2.17. //

2.3 Green’s Function of ∆e + λ2(0) in Ω

Green’s function of ∆e + λi(0) in Ω is the kernel Kλi(0)
(x, y; ζ, τ) of an integral operator

represented by

u(ζ, τ) =

Z
Ω
Kλi(0)

(x, y; ζ, τ)k(x, y)dxdy,

which corresponds to the linear inhomogeneous equation
`
∆e+λi(0)

´
u = k. Recalling Remark

2.1, such integral operator may be accepted as an inverse of ∆e + λi(0) and bounded in a
sense

sup
‖k‖2=1

‚‚‚ Z
Kλi(0)

(x, y; ζ, τ)k(x, y)
‚‚‚
2
<∞. (64)
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Green’s function Kλi(0)
acting on distributions over Ω is a weak solution of`

∆e + λi(0)
´
(x,y)

Kλi(0)
(ζ, τ ;x, y) = δ(ζ,τ)(x, y), (65)

where δ is the Dirac distribution. From this we haveZ
Ω
Kλi(0)

n`
∆e + λi(0)

´
f
o
dxdy =

Z
Ω

n`
∆e + λi(0)

´
Kλi(0)

o
f dxdy = f(ζ, τ), (66)

if
R
Ω ψf = 0 for all ψ ∈ W 1,2

0 (Ω) such that
`
∆e + λi(0)

´
ψ ≡ 0, where f ∈ C2(Ω) ∩W 1,2

0 (Ω).
According to [5] p. 370, Green’s function satisfies8><>:

Kλ2(0)(x, y; ζ, τ) = Kλ2(0)(ζ, τ ;x, y),

Kλ2(0)(x, y; ζ, τ) = −b(x,y;ζ,τ)
2π

log r + γ(x, y; ζ, τ),

Kλ2(0)(x, y; ζ, τ) = 0, for (ζ, τ) ∈ ∂Ω, (x, y) ∈ Ω,

(67)

where

r =
q

(x− ζ)2 + (y − τ)2,

γ(x, y; ζ, τ) and its derivatives up to the second order are continuous in a neighborhood of the
singular point, and where b(x, y; ζ, τ) denotes a function having continuous derivatives up to
the second order such that b(ζ, τ ; ζ, τ), the value at source point, is identical to one.

To find symmetric functions b(x, y; ζ, τ) and γ for which (65) and (67) are satisfied we
consider the equalities;`

∆(ζ,τ) + λ2(0)
´
Kλ2(0)

=−
log r

2π
(∆b)− b

1

2π
∆ log r

−
2

2π

∂ log r

∂ζ

∂b

∂ζ
−

2

2π

∂ log r

∂τ

∂b

∂τ

− λ2(0)(
1

2π
log r)b +

`
∆(ζ,τ) + λ2(0)

´
γ

=−
log r

2π
(∆(ζ,τ)b)−

2

2π

∂ log r

∂ζ

∂b

∂ζ
−

2

2π

∂ log r

∂τ

∂b

∂τ
− λ2(0)(

log r

2π
)b

+ bδ(x,y)(ζ, τ) +
`
∆(ζ,τ) + λ2(0)

´
γ = δ(x,y)(ζ, τ). (68)

Let us denote by

gbi
(x, y; ζ, τ) :=

log r

2π
(∆(ζ,τ)bi) +

2

2π

∂ log r

∂ζ

∂bi

∂ζ
+

2

2π

∂ log r

∂τ

∂bi

∂τ
+ λ2(0)

“ log r

2π

”
bi,

for some symmetric functions bi(x, y; ζ, τ) which belongs to C2(Ω×Ω). Defining b =
P

i σibi,
for real constants σi, one can select σi so that b(ζ, τ ; ζ, τ) = 1, b ∈ C2(Ω × Ω) and gb :=P

i gbi
∈ C1(Ω × Ω). Such belongingness can be achieved by selecting σi so that ∆(ζ,τ)b +

λ2(0)b ∈ o(r), ∂
∂ζ

b ∈ o(r), and ∂
∂τ

b ∈ o(r). Let us consider equations( `
∆e + λ2(0)

´
(ζ,τ)

γ(x, y; ζ, τ) = gb(x, y; ζ, τ), in Ω,

γ(x, y; ζ, τ) =
b(x,y;ζ,τ)

2π
log

p
(x− ζ)2 + (y − τ)2 := ϕ(x, y; ζ, τ), on (ζ, τ) ∈ ∂Ω

(69)

for ϕ ∈ C2(Ω). Such a symmetric solution γ will satisfy (67). Let us set

γ(x, y; ζ, τ) = u+ h(x, y; ζ, τ),

where u ∈ Wk,2(Ω) ∩W 1,2
0 (Ω), k ≥ 2, and h is a harmonic function, that is, ∆eh = 0 in Ω,

and h ≡ ϕ on ∂Ω. Thus,`
∆e + λ2(0)

´
u = gb(x, y; ζ, τ)−

`
∆e + λ2(0)

´
h. (70)

Therefore, from Remark 2.1 u exists, and then γ also exists. The uniqueness of Green’s
function is stated later with some assumption.
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Let P ∈ ∂Ω. By symmetric property we may regard (x, y) = P as a unique singular point
of Kλ2(0)(x, y;P ) in Ω. From (65) we have

`
∆ + λ2(0)

´
(x,y)

„
∂

∂ν (ζ,τ)=P
Kλ2(0)(x, y; ζ, τ)

«
= 0, for all (x, y) ∈ Ω. (71)

Since Kλ2(0)(x, y; ζ, τ) = 0 for (x, y) ∈ ∂Ω \ P and for any (ζ, τ) ∈ Ω \ P , we also have

∂

∂ν (ζ,τ)=P
Kλ2(0)(x, y; ζ, τ) ≡ 0 at any (x, y) ∈ ∂Ω \ P. (72)

Let us denote by N the closure of the set
(x, y) ∈ Ω :

∂

∂ν (ζ,τ)=P
Kλ2(0)(x, y; ζ, τ) = 0

ff
. (73)

No matter how path points (x, y) moves to P , and no matter what the following value is;

lim
(x,y)∈P→P

∂

∂ν (ζ,τ)=P
Kλ2(0)(x, y; ζ, τ) ∈ R ∪ {∞} \ {0},

the line N divides Ω at most into two domains. To verify this assertion we refer to [3]. Let
us assume Ω \ N consists of domains G1, G2, and G3. For each j = 1, 2, define

ψj =

(
∂

∂ν P
Kλ2(0) in Gj ,

0 in Ω \Gj .

Also let P ∈ ∂G3. One can find a nontrivial function

f =
2X

j=1

αjψj , αj ∈ R

satisfying

0 =
`
f, ϕ1(Ω)

´
:=

Z
Ω

˙
f, ϕ1(Ω)

¸
dV,

where ϕ1(Ω) is the first eigenfunction of Ω for the eigenvalue problem subject to the same
boundary values as ∂

∂ν P
Kλ2(0) having a singular point P ∈ ∂Ω. Each ψj , j = 1, 2, belongs

to the space of admissible functions for the eigenvalue problem subject to the same bound-
ary values as ∂

∂ν P
Kλ2(0). Space of admissible functions is the completion of C∞ functions

compactly supported on Ω under the metric induced by ‖f‖2
(1)

:= ‖f‖22 + ‖Grad f‖22, where

‖Grad f‖22 =
R
〈Grad f,Grad f 〉dV , and Grad is defined by using a concept of weak derivative

for functions in L2(Ω) under a given metric on the domain, that is, Grad f is a weak derivative
of f satisfying (Grad f, X) = −(f,divX) for all C1 vector fields X with compact support on
Ω. Since ∂

∂ν (ζ,τ)=P
Kλ2(0)(x, y; ζ, τ) ≡ 0 at all (x, y) ∈ ∂Ω except the unique singularity

(x, y) = P ∈ ∂G3, the following equality holds;`
Gradφ,Grad f

´
= −

`
∆φ, f

´
. (74)

Then,
`
Grad f,Grad f

´
/‖f‖22 =

P2
j=1 α

2
jλ2(0)/‖f‖22 = λ2(0). Therefore, Rayleigh’s theorem

implies f is an eigenfunction in Ω with g = e and λ = λ2(0). Thus, f is analytic in Ω. So,
since f ≡ 0 in G3, from maximum principle [3] p.329, chapter XII, section 11, (or from the
unique analytic continuation theorem,) f ≡ 0 in Ω. It is impossible. Thus, we can infer that
∂

∂ν (ζ,τ)=P
Kλ2(0)(x, y; ζ, τ) is the second eigenfunction for the eigenvalue problem with the

boundary values of ∂
∂ν P

Kλ2(0).

For the first eigenvalue λ1(0) one can show ∂
∂ν (ζ,τ)=P

Kλ1(0) has no line N which is

defined in the same way as (73). We state a generalized Courant’s nodal domain theorem;
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Proposition 2.18. For each k ∈ Z+, ∂
∂ν (ζ,τ)=P

Kλk(0) is an eigenfuction of ∆e in Ω

associated with eigenvalue λk(0) satisfying boundary condition(
0 ∂Ω \ P,
∞ P.

The line N of ∂
∂ν (ζ,τ)=P

Kλ2(0) defined by (73) divides Ω at most into two sub-domains.

Proof. This assertion has been shown in the previous paragraph. 2

Definition 2.6. Let us call the line N defined by (73) a nodal line, and call a component
of Ω \ N a nodal domain of ∂

∂ν (ζ,τ)=P
Kλ2(0). //

Remark 2.9. Let us consider the function y
x
. This function assumes to be zero on {(x, 0) :

x ∈ R \ {0}}, converges to zero as (x, y) tends to (0, 0) along path {(x, y) = (x, cx2) : x ∈ R},
and converges to a constant c as (x, y) tends to (0, 0) along the path {(x, y) = (x, cx) : x ∈ R}
for any constant c ∈ R. But this function diverges as (x, y) converges to (0, 0) along the path
{(x, y) = (x,±

√
x) : x > 0}. //

Proposition 2.19. Let {φ2(0), φ3(0)} be an orthonormal basis of the second eigenspace
in Ω. There are at most two points on ∂Ω at which the nodal line of

a2φ2(x, y) + a3φ3(x, y) + a4
∂

∂ν (ζ,τ)=P
Kλ2(0)(x, y; ζ, τ)

meets ∂Ω, where ai ∈ R are not all zero.

Proof. It can be proven according to the proof of Courant’s nodal domain theorem. The
argument was shown in the paragraph preceding to Propsoition 2.18. 2

Green’s function may be required to satisfy

(∆e + λ2)Kλi(0)
= δ(x,y)(ζ, τ)−

X
i=2,3

φi(0)(ζ, τ)φi(0)(x, y), i = 2, 3, (75)

where {φ2(0), φ3(0)} is an orthonormal basis of the second eigenspace in Ω. From (75) Green’s
function satisfies the following consistency of a distribution;Z

Ω
Kλi(0)

`
∆e + λi(0)

´
φi(0)

ff
= 0 =

Z
Ω

`
∆e + λ2(0)

´
Kλi(0)

ff
φi(0), i = 2, 3. (76)

In contrast to this, for Green’s function which is not defined by (75) we haveZ
Ω
Kλi(0)

`
∆e + λi(0)

´
u

ff
=

Z
Ω

`
∆e + λ2(0)

´
Kλi(0)

ff
u◦, (77)

where u◦ denotes the component of u which is orthogonal to 〈φ2(0), φ3(0)〉. According to [15],
Green’s function is uniquely determined if we assume thatZ

Ω
Kλi(0)

(x, y; ζ, τ)φi(0)(x, y)dxdy = 0, i = 2, 3.

We call this uniquely determined Green’s function a modified Green’s function. It is obtained
by subtracting the eigenspace associated with λi(0). We are to represent modified Green
function Kλ2 by bilinear eigenfunction expansion. Let φk(0), k = 1, 2, 3, ..., be the k-th ortho-
normal eigenfunctions of ∆e in Ω associated with eigenvalue λk(0), λ2(0) = λ3(0). Then, we
have

(∆e + λ2)φk(0) = −
`
λk(0)− λ2(0)

´
φk(0),

that is, φk(0) is an eigenfunction of ∆e + λ2(0) in Ω associated with eigenvalue λk(0) −
λ2(0). Thus, {φ2(0), φ3(0)} is the ortho-normal basis of the eigenspace of operator ∆e +λ2(0)
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in Ω associated with eigenvalue equal to zero. Modified Green’s function is constructed in
the manner of bilinear series converging in L2-norm; considering the equality

R
Kλ2 (∆e +

λ2)φk(0)(x, y) =
R
Kλ2 (−λk + λ2)φk(0) = φk(0)(ζ, τ) for k ∈ Z + \{2, 3},

Kλ2 (x, y; ζ, τ) =
∞X

k 6=2,3

φk(0)(ζ, τ) · φk(0)(x, y)

−λk(0) + λ2(0)
.

From this representation we have

‚‚‚ ∂

∂ν (ζ,τ)=P
Kλ2 (ζ, τ ;x, y)

‚‚‚2

2
=

∞X
k 6=2,3

˛̨
∂

∂ν (ζ,τ)=P
φk(0)(ζ, τ)

˛̨2 · ‚‚φk(0)(x, y)
‚‚2

2˛̨
− λk(0) + λ2(0)

˛̨2 . (78)

2.4 Deformations such that nodal line of φ∗2
(
Jt(Ω)

)
is split

from boundary, and λ2

(
Jt(Ω)

)
which is multiple at t = 0

changes into simple eigenvalue as t grows from zero

The following lemma implies that if φ satisfies the Dirichlet eigenvalue problem (1), and

if nodal line of φ does not intersect a boundary point q, then ∂φ
∂ν

(q) 6= 0, that is, on a
neighborhood of boundary around q φ vanishes in the first order.

Lemma 2.20. ([6] p.34, Hopf’s boundary point lemma in a limited
sense ) Suppose

∆eφ+ c(x, y)φ ≥ 0,

in an open set D ⊂ Ω such that ∂D is smooth and ∂D ∩ ∂Ω is non-empty. Let q0 be a point
on ∂D ∩ ∂Ω such that
1) φ is continuous at q0;
2) φ(x, y) < φ(q0) for all (x, y) ∈ D and φ(q0) = 0.
Then the outer normal derivative of φ at q0 satisfies the strict inequality

∂φ

∂ν
(q0) > 0.

Definition 2.7. Let Ω be a bounded smooth domain in R2 and f be an eigenfunction
on Ω and p ∈ ∂Ω. We say that f has equi-angular K-system at p if and only if the nodal
line of f divides Ω∩B(p, r) into K sectors of equal amplitude by theirs tangent lines at p for
sufficiently small all r > 0,K = 1, 2, 3, · · · . //

If f has equi-angular K-system at p, then f vanishes of the K-th order. The equi-
angularity of K-system of an eigenfunction at boundary of a convex Euclidean domain in R2

with no smoothness assumption was verified by Alessandrini [1]. A. D. Melas [11] also showed
that nodal line of the second eigenfunction of convex smooth domains approaches to boundary
point nontangentially with respect to the boundary. Previously Cheng [4] showed that the
eigenfunction of a Riemannian manifold has equi-angular K-system at interior points where
the nodal line meets.

The following Proposition is regarded as a concrete version of Hopf’s boundary point
lemma. From this proposition one can perceive eigenfunction φ vanishes as homogeneous
spherical harmonic polynomial in the lowest degree near each p ∈ ∂Ω;

Proposition 2.21. Any eigenfunction φ of ∆e in Ω has an equi-angular system at every
p ∈ ∂Ω.

Proof. To show that φ vanishes only up to finite order around p, we follow the arguments of
A. D. Melas [11]. Let H = {(x, y) : y > 0} be the upper half plane and let h be a conformal
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mapping of H onto Ω ∩B(p, r) with h((0, 0)) = p, where r is small enough for Ω ∩B(p, r) to
be a simple domain. From the boundary regularity of elliptic differential equations it follows
that φ is C∞ up to the boundary near p. By a theorem of D. Kellogg [8] h extends C∞ to
the boundary of H. Let

φ̂ = φ ◦ h
in H. Thus there is a sufficiently small r̂ < r such that φ̂ is C∞ up to the boundary in
B((0, 0), r̂) ∩H and φ̂ = 0 on B((0, 0), r̂) ∩ ∂H. By direct calculation, we have

|∆eφ̂| = |(∆eφ) ◦ h||h′|2 ≤ C|φ̂|

in B((0, 0), r̂) ∩H for some constant C. Define φ̃ in B((0, 0), r̂) by

φ̃(x, y) =

(
φ̂(x, y) if y ≥ 0,

−φ̂(x,−y) if y ≤ 0.
(79)

Then it is easy to check that ∂
∂x
φ̃, ∂

∂y
φ̃, ∂2

∂x∂y
φ̃, and ∂2

∂x2 φ̃ are continuous in B((0, 0), r̂),

and ∂2

∂x2 φ̃ = 0 in B((0, 0), r̂) ∩ ∂H. From the inequality |∆eφ̂| ≤ C|φ̂| in B((0, 0), r̂) ∩ H,

it follows that ∂2

∂y2 φ̃ is also continuous in B((0, 0), r̂). Since φ̂ is C∞ up to the boundary in

B((0, 0), r̂) ∩H, we conclude that φ̃ is in the Hölder space C2,1 in B((0, 0), r̂), and moreover

|∆eφ̃| ≤ C|φ̃|

in B((0, 0), r̂). Thus by Aronszajn’s unique continuation theorem [2], φ̃ does not vanish of
infinite order in L1-sense at (0, 0). Let ∂

∂ν p
= − ∂

∂y p
, for outer normal derivative ∂

∂ν p
to Ω at

p. Since φ̂ is C∞ function in a neighborhood in H around (0, 0) and vanishes of finite order

at (0, 0), φ = φ̂ ◦ h−1 also vanishes of finite order at p := (0, 0). Then, since φ extends to be
C∞ up to the boundary of Ω, one has Taylor expansion such that for an integer N ≥ 1

φ = PN + aPN+1 + 0
`
|(x, y)|N+1

´
holds in Π := Ω ∩ B(O, r̃, π), where B(O, r̃, π) = {z : 0 < arg(z) < π, |z| < r̃}, Π is convex
for a sufficiently small number r̃, PN is a non-zero polynomial of (minimal) degree N , and
PN+1 is a polynomial of degree N + 1 with a ∈ R. In fact according to Taylor expansion
aPN+1(x, y) + 0

`
|(x, y)|N+1

´
is written by

+
1

(N + 1)!

dN

dtN
˛̨
t=t0

n
x
∂

∂x
φ(tx, ty) + y

∂

∂y
φ(tx, ty)

o
for all (x, y) ∈ Π, and for some t0 ∈ [0, 1]. We have

∆ePN = 0, in Π,

since φ has no homogeneous polynomial whose degree is less than N . Thus the polynomial
part PN is homogeneous spherical harmonic. Therefore, φ has equi-angular N -system at
p = (0, 0). 2

Proposition 2.22. Let (0, 0) ∈ ∂Ω, and ∂
∂ν (0,0)

= − ∂
∂y (0,0)

. Suppose the nodal line of

the second eigenfunction φ2(0) of Ω has equi-angular three-system at (0, 0), that is, it vanishes
of the third order at (0, 0), and φ2(0) > 0 in the middle open sector of the system. Let Jt

be a simple deformation of Ω. Suppose ∂
∂ν (0,0)

d
dt t=0

J∗t φ2(t)  0, where φ2(t) is the second

eigenfunction of Jt(Ω) converging to φ2(0). Then, there are ε1 > 0 and ε2 > 0 such that for
every t ∈ (0, ε1) the nodal line of J∗t φ2(t) is separated from a fixed neighborhood of boundary
B

`
(0, 0), ε2

´
∩ ∂Ω.

Proof. Let us map Ω by a conformal map h to the upper-half plane R2+ with (0, 0) 7→
(0, 0). Let us remind ourselves that the equi-angular three-system at (0, 0) is representes by
−3x2y + y3 as minimal degree, and the spherical harmonic two-system is represented by xy.
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Assume that h−1∗J∗t φ2(t) has equi-angular three-system at (x, 0) =
`
c1(t), 0

´
, for a dif-

ferentiable real function c1(t) such that c1(0) = 0. The function c1(t) is differentiable with
respective to t-variable, since φ2(t) is differentiable with respective to t-variable. Then, the

system is represented by −3
`
x − c1(t)

´2
y + y3 = −c21(t)y + 2c1(t)xy − x2y + y3 near (0, 0).

Then, ∂
∂y (x,y)=(0,0)

d
dt t=0

J∗t φ2(t) = 0.

Let us assume that J∗t φ2(t) has two equi-angular two-systems near (0, 0). We may consider
the following expansion near (0, 0);

−3
`
x− c2(t)

´`
x− c3(t)

´
y + y3,

where c2(t) and c3(t) are differentiable real functions such that c2(0) = 0 = c3(0). Then,
∂

∂y (0,0)

d
dt t=0

˘
− 3

`
x− c2(t)

´`
x− c3(t)

´
y + y3

¯
= 0.

Consequently if d
dt t=0

∂
∂ν (0,0)

J∗t φ2(t)  0, then J∗t φ2(t) has neither equi-angular three-

system nor equi-angular two systems for every t ∈ (0, ε1] on B
`
(0, 0), ε2

´
∩ ∂Ω. 2

We describe a preliminary proposition which shows a general case of Hopf’s boundary
point lemma. Let {φ2, φ3} be a basis of the second eigenspace of Ω.

Proposition 2.23. The functionX
2≤i,j≤3

αi,j
∂φi

∂ν

∂φj

∂ν
(80)

on the boundary ∂Ω has at most four zeros on ∂Ω, where real coefficients αi,j are not all
zero.

Proof. Let α3,3 6= 0. Let us put (80) into the simple form ∂φ3
∂ν

∂φ3
∂ν

+
α2,3+α3,2

α3,3

∂φ2
∂ν

∂φ3
∂ν

+
α2,2
α3,3

∂φ2
∂ν

∂φ2
∂ν

. Firstly, let us assume“α2,3 + α3,2

α3,3

∂φ2

∂ν

”2
− 4

“α2,2

α3,3

∂φ2

∂ν

∂φ2

∂ν

”
=

“∂φ2

∂ν

”2n“α2,3 + α3,2

α3,3

”2
− 4

α2,2

α3,3

o
≥0.

on a subset of ∂Ω. Then from quadratic formula (79) is factorized into“∂φ3

∂ν
− e1

∂φ2

∂ν

”“∂φ3

∂ν
− e2

∂φ2

∂ν

”
on ∂Ω, e1, e2 ∈ R.

Each function of boundary ∂φ3
∂ν

− e1
∂φ2
∂ν

and ∂φ3
∂ν

− e2
∂φ2
∂ν

has at most two number of zeros
on the subset of ∂Ω. Secondly, on the complement of the above subset of ∂Ω we have“∂φ2

∂ν

”2n“α2,3 + α3,2

α3,3

”2
− 4

α2,2

α3,3

o
� 0.

Then (79) has no zeros on this subset. Thus our proposition is valid. If α3,3 = 0, then it is
easily shown that (79) also factorized. Thus our proposition follows. 2

Remark 2.10. Unlike the function (79), we have no knowledge for the number of zeros
on ∂Ω of the following function

α2,4
∂φ2

∂ν

∂

∂ν

„
∂

∂ν P
Kλ2(0)

«
+

X
2≤i,j≤3

αi,j
∂φi

∂ν

∂φj

∂ν
. (81)

Remind yourself that ∂
∂ν

∂
∂ν P

Kλ2(0) has also at most two zeros on boundary (Proposition

2.19). This formula can not be always factorized in linear factors like (80). For simplicity let
us put (81) into the formula

∂φ3

∂ν

∂φ3

∂ν
+
α2,3 + α3,2

α3,3

∂φ2

∂ν

∂φ3

∂ν
+

nα2,2

α3,3

∂φ2

∂ν
+
α2,4

α3,3

∂

∂ν

“ ∂

∂ν P
Kλ2(0)

”o∂φ2

∂ν
.
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When the following function“α2,3 + α3,2

α3,3

∂φ2

∂ν

”2
− 4

nα2,2

α3,3

∂φ2

∂ν
+
α2,4

α3,3

∂

∂ν

“ ∂

∂ν P
Kλ2(0)

”o∂φ2

∂ν

is not negative on an oen subset of ∂Ω, considering the quadratic formula, we can not expect

the factorization of (80) in linear factor consisting of ∂φ2
∂ν

, ∂φ3
∂ν

, and ∂
∂ν

“
∂

∂ν P
Kλ2(0)

”
unlike

(79). //

Corollary 2.24. Let Si, i = 1, 2, 3, 4, 5, be closed segments on ∂Ω which are disjoint one
another. Let simple boundary functions Gi, i = 1, 2, 3, 4, 5, whose boundary supports are Si,
respectively, be given and each Gi do not vanish on S◦i . Then, there is at least one simple
boundary function Gk, 1 ≤ k ≤ 5, for which the valueZ

∂Ω
Gk

n X
2≤i,j≤3

αi,j
∂φi

∂ν

∂φj

∂ν

o
dA

does not vanish, where constant coefficients αi,j are not all zero.

Remark 2.11. Note that according to formulae (5) and (13) approximately we have

φ2,Jm
t1

(Ωm) ≈(Jm
t1

)−1∗
n
t1 ·

d

dt t=0
φ∗2,Jm

t (Ωm) + φ2,Ωm

o
=t1(Jm

t1
)−1∗

“ d

dt t=0
φ∗2(t)

”◦
+ t1

d

dt t=0
β0,2,3(t)(Jm

t1
)−1∗φ3,Ωm

+ t1
“
1 +

d

dt t=0
β0,2,2(t)

”
(Jm

t1
)−1∗φ2,Ωm .

for sufficiently small variables t1. Similarly, we have approximately

φ2,Fm
s1
◦Jm

qm
(Ωm) ≈s1(Fm

s1
)−1∗

“ d

ds s=0
φ∗2,Fm

s (ImJm
qm

)

”◦
+

“
1 + s1

Z
d

ds s=0
φ∗2,Fm

s (ImJm
qm

) · φ2,ImJm
qm

”
(Fm

s1
)−1∗φ2,Jm

qm
(Ωm),

where
`
·

´◦
means a component orthogonal to the linear vector space 〈φ2,Jm

qm
(Ωm)〉 for

sufficiently small variables s1. Note that closedness of nodal lines of φ2,Ωm and φ2,Jm
qm

(Ωm)

is maintained even if they are pushed ahead by (Jm
t1

)−1∗ and (Fm
s1

)−1∗, respectively. //

We are to show our main proposition of section 2. Regardless of convergence of φi,Jk
t (Ω)

to φj(0), i, j = 2, 3, let us denote(
ckij = −

R
Ω

˘
d
dt t=0

∆Jk
t
∗

eφi(0)
¯
φj(0)dxdy, i, j ∈ {2, 3},

ck24 = −
R
Ω

˘
d
dt t=0

∆Jk
t
∗

eφ2(0)
¯˘

∂
∂ν (ζ,τ)=P

Kλ2(0)

¯
dxdy.

(82)

Then, from Proposition 2.15 we have

d

dt t=0

n
∆]l

k=1Jk
ζkt

∗
eφi(0)

o
φj(0) =

lX
k=1

ζkc
k
ij , i, j ∈ {2, 3}, or ckij = ck24,

where φ4(0) := ∂
∂ν (ζ,τ)=P

Kλ2(0).

To verify the proposition we apply significantly Hopf’s boundary point lemma. It seems
to be naturally true, but its proof is elementary and complicated. In the following Proposition
2.25 if a simple deformation Jt of Ω is given, the deformation denoted by Jζt, ζ < 0, can be
defined from (22) in Definition 2.1.
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Proposition 2.25. Let ρ2, ρ3 and ρ4 > 0 be real numbers such that ρ2 6= ρ3, and let
{φ2, φ3} be an orthonormal basis of the second eigenspace of ∆e in Ω associated with λ2(0),
and assume that the nodal line of φ2 be closed and meets ∂Ω at exactly one point P and
φ2 is positive in the nodal domain enclosed by the closed nodal line. Let eleven boundary
functions Gk of simple deformations Jk

t , k = 1, 2, 3, ..., 11, whose boundary supports Sk are
disjointed each other be given, and let each Gk does not vanish on the interior of its boundary
support. Then, one can select four simple boundary functions Gkj

, and real numbers ζkj
,

j = 1, 2, 3, 4, 1 ≤ kj ≤ 11, for which the followings are satisfied: Let us define a deformation

J : Ω × [0, q] → R2, |q| ≤ min
˘
1, | 1

ζk1
|, | 1

ζk2
|, | 1

ζk3
|, | 1

ζk4
|
¯
, eliminating φ3(Ω)-component

which is represented by

]4
j=1J

kj

ζkj
t ] Ic,t(x, y), 0 ≤ t ≤ q,

where each J
kj
t is a simple deformation on 0 ≤ t ≤ 1 with boundary function Gkj

, Ic,t is an

inflation or deflation in c-rate, and J−t := J−1
t for sufficiently small t ≥ 0. Then,

1) φ∗2,0(t) and φ∗3,0(t), 0 < t ≤ 1, converge to φ2 and φ3 as t→ 0, respectively,

2) d
dt t=0

λ2(t) = ρ2,
d
dt t=0

λ3(t) = ρ3, and

3) ∂
∂ν P

d
dt t=0

φ∗2,0(t) = ρ4 is satisfied.

Proof. From Proposition 2.14, Proposition 2.17, Definition 2.5 and notation (82), it suffices
to find Jkj , j = 1, 2, 3, 4, for which the following system of linear equations has a solution
(ζk1 , · · ·, ζk4 );0BB@

c122 · · · c422
c133 · · · c433
c123 · · · c423
c124 · · · c424

1CCA
0BBB@
ζk1
·
·
·
ζk4

1CCCA

=

0BBBBBBBBBBB@

−
R
Ω

d
dt t=0

“
∆`

]4
j=1J

kj
ζkj

t

´∗
e
φ2

”
φ2

−
R
Ω

d
dt t=0

“
∆`

]4
j=1J

kj
ζkj

t

´∗
e
φ3

”
φ3

−
R
Ω

d
dt t=0

“
∆`

]4
j=1J

kj
ζkj

t

´∗
e
φ2

”
φ3

−
R
Ω

d
dt t=0

“
∆`

]4
j=1J

kj
ζkj

t

´∗
e
φ2

”
∂

∂ν P
Kλ2(0)

1CCCCCCCCCCCA
=

0BB@
ρ2 + cλ2(0)
ρ3 + cλ3(0)

0
ρ4 − ρ̃

1CCA , (83)

where ρ̃ denotes the coefficient of φ3 component of ∂
∂ν P

d
dt t=0

φ∗2,0(t) induced by the deforma-

tion ]4
j=1J

kj

ζkj
t. To find each Jkj 4× 4-matrix in (83) has to be transformed without change

of rank into a regular matrix 0BB@
d1 · · ·
0 d2 ·
0 0 d3 ·
0 0 0 d4

1CCA (84)

with dk 6= 0 for k = 1, 2, 3, 4. Each di is calculated in

d1 = c122,

d2 = c233 −
c133
c122

c222,

d3 = c323 −
c123
c122

c322 −
c223 −

c123
c122

c222

d2
·

“
c333 −

c133
c122

c322

”
,
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d4 =
“
c424 −

c124
c122

c422

”
−

n c224 − c124
c122

c222

d2

o
·

“
c433 −

c133
c122

c422

”

−

“
c324 −

c124
c122

c322

”
−

n c224−
c124
c122

c222

d2

o
·

“
c333 −

c133
c122

c322

”
d3

·
(“

c423 −
c123
c122

c422

”
−
c223 −

c123
c122

c222

d2
·

“
c433 −

c133
c122

c422

”)
. (85)

From Corollary 2.24 one can select by turn G11 ,G21 ,G31 ∈ {G1, · · ·,G11} for which d1, d2,
and d3 do not vanish. For an example we obtain

d2 :=

Z
Ω

G21

`∂φ3

∂ν

∂φ3

∂ν
−
c133
c122

∂φ2

∂ν

∂φ2

∂ν

´
6= 0.

One can show that all G11 , G21 , and G31 have to be distinct each other. Otherwise, for an
example, while 11 = 21, the entry d2 = 0, since c122 = c222 and c233 = c133. When G11 , G21 ,
and G31 are selected, the number of candidates for G41 is eight. But, since function (81) can
not be factorized in linear factors like (80), one can not select a simple boundary function G4j

for which d4 does not vanish in the same way as we select G11 , G21 and G31 . Accordingly,
let us set

d4 =c424 −
c124
c122

c422 −B1

`
c433 −

c133
c122

c422
´

−K1

n“
c423 −

c123
c122

c422

”
−B2 ·

“
c433 −

c133
c122

c422

”o
, (86)

where

B1 =
c224 −

c124
c122

c222

d2
,

B2 =
c223 −

c123
c122

c222

d2
,

K1 = −

`
c324 −

c124
c122

c322
´
−

n c224−
c124
c122

c222

d2

o
·

`
c333 −

c133
c122

c322
´

d3
.

Let us denote by 〈G1l
,G2l

,G3l
〉 triplet of boundary functions, l = 1, 2, 3, ..., such that each

Gkl
, k = 1, 2, 3, is contained in {G1, · · ·,G11}, and makes dk not vanish in order in a sense of

Corollary 2.24. Let us define a function A〈G1l
,G2l

,G3l
〉 on ∂Ω related to (86) by

A〈G1l
,G2l

,G3l
〉

=
∂φ2

∂ν

∂φ4

∂ν
−
c124
c122

∂φ2

∂ν

∂φ2

∂ν
−B1

`∂φ3

∂ν

∂φ3

∂ν
−
c133
c122

∂φ2

∂ν

∂φ2

∂ν

´
−K1

n“∂φ2

∂ν

∂φ3

∂ν
−
c123
c122

∂φ2

∂ν

∂φ2

∂ν

”
−B2 ·

“∂φ3

∂ν

∂φ3

∂ν
−
c133
c122

∂φ2

∂ν

∂φ2

∂ν

”o
, (87)

where φ4 := ∂
∂ν P

Kλ2(Ω), and ckij , k = 1, 2, 3, is determined by Gkl
in a sense of Corollary

2.24, (82), and Proposition 2.10.
Let us assume that (assumption I. although any triplet 〈G1l

,G2l
,G3l

〉, l = 1, 2, 3, ..., is
given, we have Z

Ω
GmA〈G1l

,G2l
,G3l

〉 = 0,

for any Gm ∈ {G1, · · ·,G11} \ {G1l
,G2l

,G3l
}.) Let us assume that (assumption II. if we

replace 〈G11 ,G21 ,G31 〉 with another triplet 〈G12 ,G22 ,G32 〉, then the coefficient K1 defined
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by 〈G11 ,G21 ,G31 〉 turns into K1 + γ2,3, 0 6= γ2,3 ∈ R.) From now on when we select a triplet
〈G1l

,G2l
,G3l

〉 from {G1, · · ·,G11}, we will assume that if l1 6= l2,

G1l1
6= G1l2

.

Note that since the coefficient of function ∂φ2
∂ν

∂φ4
∂ν

in (87) is one, ∂φ2
∂ν

∂φ4
∂ν

is invariant under the

choice 〈G1l
,G2l

,G3l
〉. Coefficient of component ∂φ2

∂ν
∂φ3
∂ν

in (87) varies from K1 to K1 + γ2,3

as 〈G11 ,G21 ,G31 〉 is replaced with 〈G11 ,G21 ,G31 〉, and therefore

A〈G12 ,G22 ,G32 〉

=A〈G11 ,G21 ,G31 〉+ γ2,3
∂φ2

∂ν

∂φ3

∂ν
+ γ2,2

∂φ2

∂ν

∂φ2

∂ν
+ γ3,3

∂φ3

∂ν

∂φ3

∂ν
, γi,j ∈ R. (88)

From Proposition 2.23 function γ2,3
∂φ2
∂ν

∂φ3
∂ν

+γ2,2
∂φ2
∂ν

∂φ2
∂ν

+γ3,3
∂φ3
∂ν

∂φ3
∂ν

has at most four zeros

at boundary. Consequently, by Corollary 2.24 and by assumption I
R
Ω Gl1A〈G12 ,G22 ,G32 〉 6=

0 for a boundary function Gl1 ∈ {G1, · · ·,G11} \ ∪l=1,2{1l
,G2l

,G3l
}. From assumption I it

is impossible. Therefore, either assumption I or assumption II does not hold. If assumption I
does not hold, our proof is done.

Then, we may assume that (assumption III. 〈G11 ,G21 ,G31 〉 replaced with another
triplet 〈G12 ,G22 ,G32 〉, the coefficient K1 is invariant.) Then, suppose that (assumption
IV. the number B1 −K1B2 is variant when the triplet changes into 〈G12 ,G22 ,G32 〉.) Then,

the coefficient of ∂φ3
∂ν

∂φ3
∂ν

in (87) equals to B1 − K1B2 and therefore it varies according to
the changed triplet. By the same argument as preceding paragraph formula (88) holds with
γ3,3 6= 0. Then, Corollary 2.23 also implies that one can find a simple boundary function Gl2
which makes d4 6= 0 among {G1, · · ·,G11} \ ∪2

j=1{G1l
,G2l

,G3l
}. It is contradictory to either

assumption I or assumption IV.
Thus we may assume that (assumption V. 〈G11 ,G21 ,G31 〉 changed into 〈G12 ,G22 ,G32 〉,

B1 −K1B2 does not alter.) Then, under this assumption let us suppose that (assumption

VI. 〈G11 ,G21 ,G31 〉 changed into 〈G12 ,G22 ,G32 〉, the coefficient
c124
c122

−K1
c123
c122

in (87) alters.)

Then, by assumption V the coefficient of ∂φ2
∂ν

∂φ2
∂ν

in (87) varies. By the same argument as
the above Corollary 2.23 implies again that one can select a simple boundary function Gl3
among {G1, · · ·,G11} \ ∪2

l=1{G1l
,G2l

,G3l
} for which d4 6= 0.

Therefore, let us suppose that (assumption VII. triplet 〈G11 ,G21 ,G31 〉 changed into

〈G12,,G22 ,G32 〉,
c124
c122

− K1
c123
c122

= K2 for a constant K2.) Note that K1 has been assumed

to be invariant under this change of triplets. Thus, for two triplets 〈G11 ,G21 ,G31 〉 and
〈G12,,G22 ,G32 〉 we have

c124 −K1c
1
23 −K2c

1
22 = 0. (89)

The procedure in the preceding paragraphs can be considered to progress in the same way
for each pair of triplets {G11 ,G21 ,G31}, {G1l

,G2l
,G3l

}, l = 2, 3, 4, 5, where G1l1
6= G1l2

, if

l1 6= l2. Such pairs of triplets satisfy (89) for constants K1 and K2. Then, from Corollary
2.23 (89) does not hold, since the function

∂φ2

∂ν

∂φ4

∂ν
−K1

∂φ2

∂ν

∂φ3

∂ν
−K2

∂φ2

∂ν

∂φ2

∂ν

=
∂φ2

∂ν

“∂φ4

∂ν
−K1

∂φ3(Ω)

∂ν
−K2

∂φ2

∂ν

”
(90)

does not vanish calculated with a boundary function Gl4 which belongs to {G1l
: l =

1, 2, 3, 4, 5}. For this, referring to Proposition 2.19, we observe that the right-hand side of
(90) has at most three zeros on ∂Ω. (If the nodal line of φ2 is not closed, then (90) could have
at most four zeros.) Thus, (89) fails for some triplet.

After all our assumption I is not true, that is, there is a quadruple {G1l
,G2l

,G3l
,G4l

}
which makes d4 not vanish. 2
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3 a Proof of Payne’s Nodal Line Conjecture

In this section we assume the strict situation that the second eigenvalue of Ω is double and
nodal line of a second eigenfunction in Ω is closed and touches the boundary. Then, Courant’s
nodal domain theorem [3] says that this nodal line meets boundary at exactly one point under
the third order vanishing-system. Then, from Proposition 2.25, one can find a deformation J
such that Jt(Ω) has C∞-boundary and has a unique normalized second eigenfunction whose
nodal line is closed and separated from boundary for all t, 0 < t ≤ q ≤ 1. If we assume that
a segment of the closed nodal line of φ2,Jt(Ω) converges to and meets ∂Ω uniformly at the
same time, then for some t0 φ2,Jt0 (Ω) have a sufficienty narrow sub-region of a nodal domain

which consists of a boundary of the nodal domain and two short segments traversing the nodal
domain. According to the argument of the last paragraph of this section containing (139),
exponential decay theorem in the narrow region leads us a contradiction.

Let φj,D and λj(D) denote the j-th normalized eigenfunction of a domain D ⊂ R2 and
the j-th eigenvalue of D, respectively. The restiction of φj,D to D0 is denoted by φ

j,D
˛̨
D0

.

Let us denote by
Ξ ⊂ R2

the rectangle
˘
(x, y) : 0 < x < 2, 0 < y < 1

¯
whose corners are cut symmetrically and

sufficiently slightly to be smoothen. According to [5] p.395, nodal line of φ2,Ξ is {(x, y) : x =
1, 0 ≤ y ≤ 1}. Through inflation or deflation of Ω1 := Ω, we set

λ2(Ξ) = λ2(Ω1). (91)

By translation of Ω1 we set

F1 := Ω1 ∩ Ξ 6= ∅, R1 := Ω1 \ Ξ 6= ∅.

We deform Ω1 by a simple deformation J 1
t whose support lies in the closure of remainder R1

so that J 1
q1

(R1) may have thin and long i2 bands Sk
2 , k = 1, 2, ..., i2 called branch, or have no

more than i2 discs Bk
2 with various radius called blossom attached to top of Sk

2 . Otherwise,
J 1

t tunnels into R1. We denote this tunneled set by R1 \ Tk
2 . Thus we may write

J 1(Ω1, q1) := J 1
q1

(Ω1) = F1 ∪
n

R1 \
[
k

Tk
2

o
∪

[
k

Sk
2 ∪

[
k

Bk
2 ,

In fact this domain is regarded as the interior of the closed connected set F1∪
˘
R1 \

S
k Tk

2

¯
∪S

k Sk
2 ∪

S
k Bk

2 .

Definition 3.1. According to proposition 2.25, a deformation J 1 eliminating φ3(Ωm)-
component can be selected to satisfy the followings;

1) the nodal line of φ2,ImJ 1
t

is closed and separated from boundary at all t ∈ (0, q1],

2) 0 < d
dt t=0

λ2(ImJ 1
t ) � d

dt t=0
λ3(ImJ 1

t ), and the second inequality implies λ2

`
Im(J 1

t )
´

is simple at all t ∈ (0, q1],

3) λ2(Ω1) = λ2(Ξ) � λ2

`
Im(J 1

t )
´

at all t ∈ (0, q1].
Let us call a deformation J 1

t which satisfies 1), 2) and 3) a splitting deformation. Then,
we fill up the set Ξ \ F1 by a smooth deformation F1 : ImJ 1

q1
× [0, 1] → R2 called a filling

deformation so that the support of F1 may lie in F1, F1
s (F1) ⊂ Ξ for all s ∈ [0, 1],

F1
s1

`
ImJ 1

q1

´
( F1

s2

`
ImJ 1

q1

´
, if 0 ≤ s1 � s2 ≤ 1, (92)

λ2

`
F1

1 (ImJ 1
q1

)
´

= λ2(Ξ) � λ2

`
ImJ 1

q1

´
, (93)
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F1
s

`
ImJ 1

q1

´
may have the simple second eigenvalue at all s ∈ [0, 1), and nodal line of the second

eigenfunction of F1
s

`
ImJ 1

q1

´
may not touch boundary at all s ∈ [0, 1). These conditions can be

satisfied simultaneously by selecting a suitable number ρ2 = d
dt t=0

λ2(ImJ 1
t ). Let us denote

Ω2 := F1
1

`
(J 1

q1
(Ω1)

´
,

and denote F2 := Ω2 ∩ Ξ, R2 := Ω2 \
`
F2 ∪

S
k Sk

2 ∪
S

k Bk
2

´
. We define Ωm inductively by

repeating above procedure;

Ωm := Fm−1
1 ◦ Jm−1

qm−1
(Ωm−1), m ≥ 2. //

Definition 3.2. Let us select four simple deformations Jm,k
t with boundary supports

Sk
m, k = 1, ..., 4, and let they be ]-summands of a splitting deformation Jm

t := ]4
k=1J

m,k
ζkt .

We will call a simple deformation Jm,j expansive, if Im
`
Jm,j

t1

´
( Im

`
Jm,j

t2

´
, and contractive,

if Im
`
Jm,j

t1

´
) Im

`
Jm,j

t2

´
for 0 ≤ t1 � t2 ≤ qm. //

Firstly, let us define an expansive deformation Jm,j
t , 0 ≤ t ≤ qm, on its boundary support

Sj
m as follows; denote the outer normal vector to Jm,j

t (Ωm) at each (x, y) ∈ Sj
m, 0 ≤ t ≤ qm,

by ∂
∂ν Jm,j

t (x,y)
. Then, the following has to be satisfied;

lim
δ→0

Jm,j
0+δ (x, y)− Jm,j

0 (x, y)

δ
= G(x, y)

∂

∂ν Jm,j
0 (x,y)

,

where G is a non-negative smooth boundary function.
Let Jm,j

t be defined by a positive boundary function Gj
m on Sj

m, and let it turn out to
correspond to an expansive simple deformation as the j-th ]-summand of a splitting defor-

mation ]4
k=1J

m,k
ζkt . Then ζj is positive, and Jm,j

ζjt deforms Sj
m to fill up a tunnel in Rm

from bottom, to form a protrusion, to grow branches, or to increase radii of blossoms. On
the contrary, let Jm,j

t turn to be a contractive deformation. Then ζj is negative, and Jm,j
t

tunnels into Rm, or diminishes branches and radii of blossoms. If it is assumed that ζj turns
to be negative for the first time among the ordered set {ζ1, ζ2, ζ3, ζ4}, the boundary function

of Jm,j
ζjt does not need to be ζjGj

m, but we considering the linear system (83) and (84), Gj
m

can be redefined newly by an arbitrary smooth function on Sj
m being negative on Sj◦

m so that
the coefficient ζj may alter only in positive sign. In this case for i, i = j+1, di may alter, and
then Gi

m may selected newly among given eleven boundary functions, and the column vector`
ρ2 + cλ2(0), ρ3 + cλ3(0), 0, ρ4− ρ̃

´T
in the system (83) and ζi may alter again. Provided ζi is

also turned out to be negative, one may proceed in the same way as ζj . Consequently, when
we designed to fill up the bottom of tunnel according to the given shape, if the deformation
turns out to be contractive, then we can dig the tunnel from bottom by designing at our
disposal.

If expansive deformations is repeated, the branch reaches an appropriate length, and then
we will inflate the portion around the top of branch. If expansiveness continues, the inflated
portion becomes a blossom which forms a disc except for the negligible small portion of top
of branch which is necessary to smooth the boundary.

If there are eleven blossoms Bk
m in Ωm, then we may deform only ∪kBk

m by a splitting
deformation Jm

t which inflates or deflates blossoms. Also we can deform Ωm not to allow
more than eleven blossoms.

Definition 3.3. For f ∈ C1(D) let us denote

E[f ] =

Z
D
|∇f |2 , E∗[f ] =

R
D |∇f |2R

D f2
.

After translating Sk
m, we can set for each k without loss of generality

Sk
m =

n
(x, y) ∈ R2 : −

lkm
2
< x <

lkm
2
, 0 < y < ωk

m

o
. (94)
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Although Sk
m is bent, the validity of setting (94) in the succeeding arguments of proof is kept.

(Refer to Corollary 3.11.) We denote for − lkm
2
≤ ϑ, x0 <

lkm
2
,

Sk
m,ϑ := Sk

m ∩ {(x, y) : −ϑ ≤ x ≤ ϑ}, sk
m(x0) := Sk

m ∩ {x = x0}.

In what follows one side of the segment sk
m(0) connected with the blossom Bk

m will be denoted
by

Bk+
m := Sk

m ∩
n

(x, y) : 0 ≤ x ≤ lkm/2
o
∪Bk

m, (95)

and denote
Bk−

m := Ωm \Bk+
m .

We denote by Sm the set of all indices k for which a blossom Bk
m of Ωm exists. We set for

k ∈ Sm, j ∈ N

%k+
j,m :=

‚‚φ
j,Ωm

˛̨
Bk+

m

‚‚
2
, %k−

j,m :=
‚‚φ

j,Ωm

˛̨
Bk−

m

‚‚
2

=
q

1−
`
%k+

j,m

´2
.

According to local estimation at boundary [6], Theorem 9.26 (It is stated in Theorem
3.7 later), one can notice

˘
maxΩm |φ2,Ωm | : λ2(Ωm) = λ2(Ξ), m = 1, 2, 3, ...

¯
has an upper

bound. Then, by exponential decay theorem presented below in Lemma 3.1, there are positive
constants C1 and C2 which depend only on the value λ2(Ωm) such that

max
sk

m(ϑ)
|φ2,Ωm | < C1 exp

“
− C2

min
˘
| 1
2
lkm − ϑ|, | − 1

2
lkm − ϑ|

¯
ωk

m

”
,

where ωm denotes the width of Sk
m. We may assume ωk

m are the same for all branches Sk
m

of Ωm. Also lkm may be assumed to be constant for all k ∈ Sm. Let us denote

Θωm,ϑ := C1 exp
“
− C2

min
˘
| 1
2
lkm − ϑ|, | − 1

2
lkm − ϑ|

¯
ωm

”
.

Fom now on the symbols C1, C2, C3, etc. will denote positive absolute constants. //

Lemma 3.1. (Exponential Decay Theorem, extracted from [7]) Let

V =
˘
x+ iy : 0 < y < 1/N, 0 < x < xm

¯
,

1

N
<< xm,

and V1 and V2 be its vertical sides. Let W be a simply connected domain in R2 such that

W ∩ Vi 6= ∅, W ⊂ V, and ∂W \ {V1 ∪ V2} ⊂ V.

Let
`
∆e + λ

´
u = 0 in W , supVi

|u| = ei, and u = 0 on ∂W \ (V1 ∪ V2). Let us denote
e = max{e1, e2}. Then,

|u(z)| ≤ C3e exp
`
− C4N · distance(Vi, z)

´
, z ∈W, (96)

for constants C3, C4 which are independent of N and distance(Vi, z).

Proof. Let v be the solution of
`
∆e + λ

´
v = 0 in V with v = e = max{e1, e2} on the vertical

sides Vi, i = 1, 2, of V , and zero on the horizontal sides of V . Firstly, let u ≥ 0 in an open
subset U1 ⊂W . Since ∆e(v− u) + λ(v− u) = 0 in W , from the weak maximum principle ([6]
p 179, Theorem 8.1.) we have

inf
W

(v − u) ≥ inf
∂W

(v − u)− = 0,

where (v−u)− = min{v−u, 0}. It implies that u ≤ v in U1. Secondly, if u < 0 in a sub-domain
U2 ⊂W , then

inf
W

(v + u) ≥ inf
∂W

(v + u)− = 0,

and it implies that −u ≤ v in U2. These two inequalities imply v ≥ |u| in W . Straightforward
exponential decay estimation for v implies (96). 2
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Proposition 3.2. There are Ci, i = 5, 6, 7, 8, 9, which are determined independently of
Ωm, and for which the followings are satisfied:
(i) For each k ∈ Sm˛̨̨̨

E
h
φ

1,Ωm

˛̨
Bk−

m

i
− E

h`
%k−
1,m

´
φ

1,Bk−
m

i˛̨̨̨
< C5

1

ωm
Θ2

ωm,ϑ.

(ii) Let us suppose that λ2(Bk−
m )− λ1(Bk−

m ) is bigger than a constant C6 > 0 for all m ∈ N.
Then, ‚‚‚φ

1,Ωm

˛̨
Bk−

m
− %k−

1,mφ1,Bk−
m

‚‚‚2

2
< C7

1

ωm
Θ2

ωm,ϑ.

(iii) ˛̨̨̨
E

h
φ

1,Ωm

˛̨
∩k∈Sm Bk−

m

i
− E

hn
1−

X
k∈Sm

`
%k+
1,m

´2
o 1

2
φ

1,∩k∈Sm Bk−
m

i˛̨̨̨
< C8

1

ωm
Θ2

ωm,ϑ.

(iv) Let us assume that λ2(∩k∈SmBk−
m )− λ1(∩k∈SmBk−

m ) is bigger than a constant C6 > 0
for all m ∈ N. Then,‚‚‚φ

1,Ωm

˛̨
∩k∈Sm Bk−

m
−

n
1−

X
k∈Sm

`
%k+
1,m

´2
o 1

2
φ

1,∩k∈Sm Bk−
m

‚‚‚2

2
< C9

1

ωm
Θ2

ωm,ϑ.

(v) Inequalities (i) and (ii) are also valid Bk−
m replaced by Bk+

m .

Proof. (i) Let us define a piecewise C2(Bk−
m )-function h− by

h−(x, y) =

(
+

φ1,Ωm (0,y)

ϑ
x+ φ1,Ωm (0, y), (x, y) ∈ Sk

m,ϑ ∩Bk−
m ,

0, (x, y) ∈ Bk−
m \Sk

m,ϑ.
(97)

Then, since φ
1,Bk−

m
has minimum energy among normalized functions in C2(Bk−

m ) which

vanish on the boundary,‚‚φ
1,Ωm

˛̨
Bk−

m
− h−

‚‚2

2
E

ˆ
φ

1,Bk−
m

˜
≤ E

ˆ
φ

1,Ωm

˛̨
Bk−

m
− h−

˜
. (98)

Also since φ
1,Ωm

˛̨
Bk−

m
has minimum energy among C2(Bk−

m )-functions which have the same

boundary value and the same L2-norm as φ
1,Ωm

˛̨
Bk−

m
,‚‚φ

1,Ωm

˛̨
Bk−

m

‚‚2

2
E

ˆ
φ

1,Bk−
m

+ h−
˜
≥

‚‚φ
1,Bk−

m
+ h−

‚‚2

2
E

ˆ
φ

1,Ωm

˛̨
Bk−

m

˜
. (99)

Let us note the inequalityZ
Bk−

m

hn ∂

∂x

`
φ

1,Ωm

˛̨
Bk−

m
− h−)

o2
+

n ∂

∂y

`
φ

1,Ωm

˛̨
Bk−

m
− h−)

o2i
=E

ˆ
φ

1,Ωm

˛̨
Bk−

m

˜
−

Z
Bk−

m

2
∂

∂x
φ

1,Ωm

˛̨
Bk−

m

∂

∂x
h− −

Z
Bk−

m

2
∂

∂y
φ

1,Ωm

˛̨
Bk−

m

∂

∂y
h−

+

Z
Bk−

m

n“ ∂

∂x
h−

”2
+

“ ∂

∂y
h−

”2o
.

From [6] Theorem 4.6 and Theorem 4.11 (Refer to Theorem 3.4 and Theorem 3.5 which will
be stated later.) one can induce for i, j = 0, 1, 2, 0 ≤ i+ j ≤ 2,

∂i+j

∂xi∂yj
φ

1,Ωm

˛̨
Sk

m,ϑ

≤C10
1

ω
|i+j|
m

sup
Sk

m,ϑ

|φ1,Ωm |

≤C11
1

ω
|i+j|
m

Θωm,ϑ, (100)

41



where ωm is the given width of branches of Ωm. Note that Poisson’s equation ∆u = w in [6]
is satisfied by u = φ

1,Ωm

˛̨
Sk

m,ϑ

for w = −λ1(Ωm)φ
1,Ωm

˛̨
Sk

m,ϑ

. We have by (100)˛̨̨̨ Z
Bk−

m

2
∂

∂x
φ

1,Ωm

˛̨
Bk−

m

∂

∂x
h−

˛̨̨̨

≤2

 Z
Bk−

m ∩Sk
m,ϑ

˛̨̨ ∂
∂x
φ

1,Ωm

˛̨
Bk−

m

˛̨̨2
·

Z
Bk−

m

˛̨̨ ∂
∂x
h−

˛̨̨2ff 1
2

≤2
n
C2

11

1

ω2
m

Θ2
ωm,ϑωmϑ ·Θ2

ωm,ϑ

1

ϑ2
ωmϑ

o 1
2

= 2C11
1

ωm
Θ2

ωm,ϑ. (101)

Similarly, from (100)˛̨̨̨ Z
Bk−

m

2
∂

∂y
φ

1,Ωm

˛̨
Bk−

m

∂

∂y
h−

˛̨̨̨
≤ 2

n
C2

11

1

ω2
m

Θ2
ωm,ϑωmϑ · C2

11

1

ω2
m

Θ2
ωm,ϑωmϑ

o 1
2

= 2C2
11

1

ωm
Θ2

ωm,ϑϑ.

From (100) E
ˆ
h−

˜
is also bounded above to a constant times 1

ωm
Θ2

ωm,ϑ. Thus, we can

conclude

E
ˆ
φ

1,Ωm

˛̨
Bk−

m
− h−

˜
≤ E

ˆ
φ

1,Ωm

˛̨
Bk−

m

˜
+ C12

1

ωm
Θ2

ωm,ϑ. (102)

Similarly, one can show

E
ˆ
φ

1,Bk−
m

+ h−
˜
≤ E

ˆ
φ

1,Bk−
m

˜
+ C13

1

ωm
Θ2

ωm,ϑ. (103)

Thus, from (98) n‚‚φ
1,Ωm

˛̨
Bk−

m

‚‚2

2
−

‚‚φ
1,Ωm

˛̨
Sk

m,ϑ
∩Bk−

m
‖22

o
E

ˆ
φ

1,Bk−
m

˜
≤

‚‚φ
1,Ωm

˛̨
Bk−

m
− h−

‚‚2

2
E

ˆ
φ

1,Bk−
m

˜
≤E

ˆ
φ

1,Ωm

˛̨
Bk−

m
− h−

˜
≤E

ˆ
φ

1,Ωm

˛̨
Bk−

m

˜
+ C12

1

ωm
Θ2

ωm,ϑ. (104)

Since
‚‚φ

1,Bk−
m

+ h−
‚‚2

2
≥

‚‚φ
1,Bk−

m

‚‚2

2
−

‚‚φ
1,Bk−

m

˛̨
Sk

m,ϑ
∩Bk−

m

‚‚2

2
, from (99)

‚‚φ
1,Ωm

˛̨
Bk−

m

‚‚2

2

n
E

ˆ
φ

1,Bk−
m

˜
+ C13

1

ωm
Θ2

ωm,ϑ

o
≥

‚‚φ
1,Ωm

˛̨
Bk−

m

‚‚2

2
E

ˆ
φ

1,Bk−
m

+ h−
˜

≥
‚‚φ

1,Bk−
m

+ h−
‚‚2

2
E

ˆ
φ

1,Ωm

˛̨
Bk−

m

˜
≥

n‚‚φ
1,Bk−

m

‚‚2

2
−

‚‚φ
1,Bk−

m

˛̨
Sk

m,ϑ
∩Bk−

m

‚‚2

2

o
E

ˆ
φ

1,Ωm

˛̨
Bk−

m

˜
. (105)

From (104) and (105) (i) is verified.
(ii) We follow an argument in proof of Rayleigh’s Theorem [3] p.16. For proof it suffices to
show ‚‚φ

1,Ωm

˛̨
Bk−

m
− h− − %k−

1,mφ1,Bk−
m

‚‚2

2
< C14Θ2

ωm,ϑ.

Let us set

αj =

Z
Bk−

m

“
φ

1,Ωm

˛̨
Bk−

m
− h−

”
· φ

j,Bk−
m
, j ∈ N.

Note the formula Z
Bk−

m

∇f · ∇g = −
Z

Bk−
m

(∆f)g,
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for piecewise C2(Bk−
m ) functions f, g which are equivalent to 0 on ∂Bk−

m . Since φ
1,Ωm

˛̨
Bk−

m
−

h− vanishes on ∂Bk−
m , from (i) and (102) we have

C15
1

ωm
Θ2

ωm,ϑ ≥
˛̨̨̨
E

h
φ

1,Ωm

˛̨
Bk−

m
− h−

i
−

`
%k−
1,m

´2E
h
φ

1,Bk−
m

i˛̨̨̨
=

˛̨̨̨ ∞X
j=1

α2
jλj(B

k−
m )−

`
%k−
1,m

´2
λ1(Bk−

m )

˛̨̨̨
. (106)

Since
`
%k−
1,m

´2 − C16Θ2
ωm,ϑ <

‚‚φ
1,Ωm

˛̨
Bk−

m
− h−

‚‚2

2
<

`
%k−
1,m

´2
+ C16Θ2

ωm,ϑ, we have

˛̨̨`
%k−
1,m

´2 −
∞X

j=1

α2
j

˛̨̨
< C16Θ2

ωm,ϑ. (107)

Then, from (106) and (107) we have

C17
1

ωm
Θ2

ωm,ϑ ≥
˛̨̨̨ X

j∈N
α2

jλj(B
k−
m )−

X
j∈N

α2
jλ1(Bk−

m )

˛̨̨̨
=

X
j∈N\{1}

α2
j

n
λj(B

k−
m )− λ1(Bk−

m )
o

>
X

j∈N\{1}
α2

j

n
λ2(Bk−

m )− λ1(Bk−
m )

o
.

Thus,
P

j∈N\{1} α
2
j <

C17
1

ωm
Θ2

ωm,ϑ

λ2(Bk−
m )−λ1(Bk−

m )
. Then, from (107) α2

1 approximates to
`
%k−
1,m

´2
as

Θωm,ϑ decreases, and then (ii) follows.
(iii) We define h− for each k ∈ Sm by

h−(x, y) =

(
+

φ1,Ωm (0,y)

ϑ
x+ φ1,Ωm (0, y), (x, y) ∈ Sk

m,ϑ ∩Bk−
m ,

0, (x, y) ∈
T

k∈Sm

`
Bk−

m \Sk
m,ϑ

´
.

The argument of proof of (iii) is similar to (i).
(iv) The way of proof of (iv) is the same as (ii).
(v) Proof of (v) follows those of (i) and (ii). 2

Proposition 3.3. Assume that for a k ∈ Sm

E∗[φ
1,Ωm

˛̨
Bk+

m
] = E∗[φ

1,Ωm

˛̨
Bk−

m
] + λk∗

1,m, λk∗
1,m > 0. (108)

Then, we have `
%k+
1,m

´2 · λk∗
1,m < C18

1

ωm
Θ2

ωm,ϑ. (109)

Proof. Let us define φε
1,Ωm

by

φε
1,Ωm

(x, y) =

( `
1− ε

´
φ1,Ωm (x, y), (x, y) ∈ Bk+

m ,

f(ε)φ1,Ωm (x, y), (x, y) ∈ Bk−
m ,

(110)

for 0 < ε < 1
2
, where f is a differentiable real function, and

f(ε)2
`
%k−
1,m

´2
+ (1− ε)2

`
%k+
1,m

´2
= 1. (111)

Then, ‖φε
1,Ωm

‖2 = 1. Let us define φ̃ε
1,Ωm

by

φ̃ε
1,Ωm

(x, y) =

(
φε

1,Ωm
(x, y), (x, y) ∈ Ωm \Sk

m,ϑ,

hk,ε
m (x, y)φ1,Ωm , (x, y) ∈ Sk

m,ϑ,
(112)
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where hk,ε
m : Sk

m,ϑ → R is a smooth function defined by

hk,ε
m (x, y) =

1− ε− f(ε)

2ϑ
x+

1− ε+ f(ε)

2
. (113)

We are to calculate an upper bound of

E
ˆ
φ̃ε

1,Ωm

˜
− E

ˆ
φ1,Ωm

˜
=E

ˆ
φε

1,Ωm

˛̨
Bk−

m

˜
+ E

ˆ
φε

1,Ωm

˛̨
Bk+

m

˜
− E

ˆ
φ1,Ωm

˜
+

“
E[φ̃ε

1,Ωm

˛̨
Sk

m,ϑ

]− E[φε

1,Ωm

˛̨
Sk

m,ϑ

]
”
. (114)

Direct calculation yields

E
ˆ
φε

1,Ωm

˛̨
Bk−

m

˜
+ E

ˆ
φε

1,Ωm

˛̨
Bk+

m

˜
=f(ε)2

`
%k−
1,m

´2
n
E∗[φ

1,Ωm

˛̨
Bk+

m
]− λk∗

1

o
+ (1− ε)2

`
%k+
1,m

´2E∗[φ
1,Ωm

˛̨
Bk+

m
], (115)

From (115), (111), and from the equality 1−
`
%k+
1,m

´2
=

`
%k−
1,m

´2
, we have

E
ˆ
φε

1,Ωm

˛̨
Bk−

m

˜
+ E

ˆ
φε

1,Ωm

˛̨
Bk+

m

˜
− E

ˆ
φ1,Ωm

˜
=

˘
1−

`
%k+
1,m

´2¯˘
E∗

ˆ
φ

1,Ωm

˛̨
Bk+

m

˜
− λk∗

1,m

¯
− (−2ε+ ε2)

`
%k+
1,m

´2˘
E∗

ˆ
φ

1,Ωm

˛̨
Bk+

m

˜
− λk∗

1,m

¯
+

`
%k+
1,m

´2E∗
ˆ
φ

1,Ωm

˛̨
Bk+

m

˜
+ (−2ε+ ε2)

`
%k+
1,m

´2E∗
ˆ
φ

1,Ωm

˛̨
Bk+

m

˜
−

˘
1−

`
%k+
1,m

´2¯˘
E∗

ˆ
φ

1,Ωm

˛̨
Bk+

m

˜
− λk∗

1,m

¯
−

`
%k+
1,m

´2E∗
ˆ
φ

1,Ωm

˛̨
Bk+

m

˜
=(−2ε+ ε2)

`
%k+
1,m

´2
λk∗
1,m. (116)

The other part in the right hand of (114) is calculated as follows;

E
ˆ
φ̃ε

1,Ωm

˛̨
Sk

m,ϑ

˜
− E

ˆ
φε

1,Ωm

˛̨
Sk

m,ϑ

˜
=

Z
Sk

m,ϑ

»
1− ε− f(ε)

2ϑ
φ1,Ωm +

„
1− ε− f(ε)

2ϑ
x+

1− ε+ f(ε)

2

«
∂φ1,Ωm

∂x

ff2

+

„
1− ε− f(ε)

2ϑ
x+

1− ε+ f(ε)

2

«2„
∂φ1,Ωm

∂y

«2–
dxdy

−
Z

Sk
m,ϑ

∩Bk−
m

f(ε)2
˛̨
∇φ1,Ωm

˛̨2 − Z
Sk

m,ϑ
∩Bk+

m

(1− ε)2
˛̨
∇φ1,Ωm

˛̨2
. (117)

Note that f(ε)2 = 1+(2ε−ε2)
“

%k+
1,m

%k−
1,m

”2
= 1+a1ε+o(ε) = 1+O(ε),

`
1−ε−f(ε)

´2
= a2ε+o(ε),

and
`
1 − ε + f(ε)

´2
= 2 + a3ε + o(ε) for real constants ai, i = 1, 2, 3. Then, from (100) and

from (117) eliminating the second degree term ε2 for a sufficiently small ε > 0, we can induce˛̨̨
E[φ̃ε

1,Ωm

˛̨
Sk

m,ϑ

]− E[φε

1,Ωm

˛̨
Sk

m,ϑ

]
˛̨̨
< O(ε)

1

ωm
Θ2

ωm,ϑ ≤ εC19
1

ωm
Θ2

ωm,ϑ. (118)

Consequently,

E
ˆ
φ̃ε

1,Ωm

˜
− E

ˆ
φ1,Ωm

˜
≤− (2ε− ε2)

`
%k+
1,m

´2
λk∗
1,m + εC19

1

ωm
Θ2

ωm,ϑ. (119)
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If a constant κε makes
‚‚κεφ̃ε

1,Ωm

‚‚
2

= 1, then we have
˛̨
κε − 1

˛̨
<

q
C20εΘ2

ωm,ϑ, since˛̨̨
‖φ̃ε

1,Ωm
‖22−‖φε

1,Ωm
‖22

˛̨̨
< C20εΘ2

ωm,ϑ for a constant C20, and since ‖φε
1,Ωm

‖22 = 1. Therefore

inequality (119) still holds when one replaces φ̃ε
1,Ωm

and C19 by normalized function κεφ̃ε
1,Ωm

and another constant C21, respectively. Since eigenfunction φ1,Ωm has minimal energy,

0 ≤ E
ˆ
κεφ̃

ε
1,Ωm

˜
− E

ˆ
φ1,Ωm

˜
< −(2ε− ε2)

`
%k+
1,m

´2
λk∗
1,m + εC21

1

ωm
Θ2

ωm,ϑ.

and then setting ε small enough, we have (109). 2

Remark 3.1. Let us denote the differentiable function Nε
1,m of ε-variable by˛̨̨

E[φ̃ε

1,Ωm

˛̨
Sk

m,ϑ

]− E[φε

1,Ωm

˛̨
Sk

m,ϑ

]
˛̨̨
:= Nε

1,m < O(ε)
1

ωm
Θ2

ωm,ϑ ≤ εC19
1

ωm
Θ2

ωm,ϑ.

0 ≤ E
ˆ
κεφ̃

ε
1,Ωm

˜
− E

ˆ
φ1,Ωm

˜
= −(2ε− ε2)

`
%k+
1,m

´2
λk∗
1,m +Nε

1,m.

Since ε = 0 is a minimum point of E
ˆ
κεφ̃ε

1,Ωm

˜
− E

ˆ
φ1,Ωm

˜
,

0 =
d

dε ε→0

n
E

ˆ
κεφ̃

ε
1,Ωm

˜
− E

ˆ
φ1,Ωm

˜o
= −2

`
%k+
1,m

´2
λk∗
1,m +

d

dε ε→0
Nε

1,m.

Therefore, (109) is described as

`
%k+
1,m

´2
=

d
dε ε→0

Nε
1,m

λk∗
1,m

<
C18

1
ωm

Θ2
ωm,ϑ

λk∗
1,m

. //

We call f uniformly Hölder continuous with exponent α in Ω, iff the quantity

[f ]α;Ω = sup
x, y ∈ Ω
x 6= y

|f(x)− f(y)|
|x− y|α

, 0 < α ≤ 1,

is finite. The Hölder spaces Ck,α(Ω) are defined as the subspaces of Ck(Ω) consisting of
functions whose k-th order partial derivatives are uniformly Hölder continuous with exponent
α in Ω. For simplicity we write C0,α(Ω) = Cα(Ω). By setting Ck,0(Ω) = Ck(Ω), we may
include Ck(Ω) spaces among the Ck,α(Ω) spaces for 0 ≤ α ≤ 1.

Let us set

[u]k,0;Ω = |Dku|0;Ω = sup
|β|=k

sup
Ω
|Dβu|, β; a multi-index,

[u]k,α;Ω = [Dku]α;Ω = sup
|β|=k

[Dβu]α;Ω.

With these semi-norms, we can define the related norm

‖u‖Ck(Ω) = |u|k;Ω = |u|k,0;Ω =
kX

j=0

[u]j,0;Ω =
kX

j=0

|Dju|0;Ω, (120)

‖u‖Ck,α(Ω) = |u|k,α;Ω = |u|k,0;Ω + [u]k,α;Ω = |u|k;Ω + [u]k,α;Ω

=
kX

j=0

[u]j,0;Ω + [Dku]α;Ω =
kX

j=0

|Dju|0;Ω + sup
|β|=k

[Dβu]α;Ω.
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We set with d = diameter(Ω)

‖u‖′
Ck(Ω)

= |u|′k;Ω =
kX

j=0

dj [u]j,0;Ω =
kX

j=0

dj |Dju|0;Ω =
kX

j=0

dj sup
|β|=j

sup
Ω
|Dβu|,

‖u‖′
Ck,α(Ω)

= |u|′k,α;Ω = |u|′k;Ω + dk+α[u]k,α;Ω = |u|′k;Ω + dk+α[Dku]α;Ω

=
kX

j=0

dj |Dju|0;Ω + dk+α[Dku]α;Ω

=
kX

j=0

dj |Dju|0;Ω + dk+α sup
|β|=k

[Dβ ]α;Ω. (121)

Theorem 3.4. ([6] Theorem 4.6.) Let u ∈ C2(Ω), and f ∈ Cα(Ω) satisfy Poisson’s
equation ∆u = f in Ω. Then u ∈ C2,α(Ω) and for any two concentric balls B1 = BR(x0),
B2 = B2R(x0) ⊂⊂ Ω we have

|u|′2,α;B1
≤ C

`
|u|0;B2 +R2|f |′0,α;B2

´
,

where C = C(α).

Let us denote by R2
+ the half-plane y > 0, and by T the hyperline, y = 0; B2 = B2R(x0),

B1 = BR(x0) will be balls with center x0 ∈ R2
+ and we let B+

2 = B2 ∩ R2
+, B

+
1 = B1 ∩ R2

+.

Theorem 3.5. ([6] Theorem 4.11.) Let u ∈ C2(B+
2 )∩C0(B

+
2 ), and f ∈ Cα(B

+
2 )

satisfy ∆u = f in B+
2 , u = 0 on T . Then u ∈ C2,α(B

+
1 ) and we have

|u|′
2,α;B+

1
≤ C

`
|u|

0;B+
2

+R2|f |′
0,α;B+

2

´
,

where C = C(α).

Theorem 3.6. ([6] Theorem 6.6.) Let Ω be a C2,α domain in Rn and let u ∈
C2,α(Ω) be a solution of the second order linear differential equation Lu = aij(x)Diju +

bi(x)Diu+ c(x)u = f in Ω, where aij = aji, f ∈ Cα(Ω), and the coefficients of L satisfy, for
positive constants λ,Λ, X

i+j=2

aijξiξj ≥ λ|ξ|2 for all x ∈ Ω, ξ ∈ Rn,

and
|aij |0,α;Ω, |bi|0,α;Ω, |c|0,α;Ω ≤ Λ.

Let ϕ(x) ∈ C2,α(Ω) and suppose u = ϕ on ∂Ω. Then

|u|2,α;Ω ≤ C(|u|0;Ω + |ϕ|2,α;Ω + |f |0,α;Ω).

where C = C(n, α, λ,Λ,Ω).

Theorem 3.7. ([6] Theorem 9.26.) Let an operator L represented by

Lu = aij(x)Diju+ bi(x)Diu+ c(x)u

be strictly elliptic in Ω with fixed constants γ and ν such that

Λ

λ
≤ γ,

“ |b|
λ

”2
,
|c|
λ
≤ ν,

where λ, Λ denote, respectively, the minimum and maximum eigenvalues of the coefficient
matrix

ˆ
aij

˜
. Let u ∈ W 2,n(Ω) ∩ C0(Ω) satisfy Lu ≥ f in Ω, u ≤ 0 on B ∩ ∂Ω where

f ∈ Ln(Ω) and B = B2R(y) is a ball in Rn. Then, for any p > 0, we have

sup
Ω∩BR(y)

u ≤ C
n“ 1

|B|

Z
B∩Ω

(u+)p
” 1

p
+
R

λ
‖f‖Ln(B∩Ω)

o
,

where C = C(n, γ, νR2, p).
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Proposition 3.8. There are positive constants C22, C23, C24, and C25 which are in-
dependent of Ωm under the boundedness assumption λ2(Ωm) = λ2(Ξ), and for which the
followings are satisfied: There exist z1, z2 ∈ R and φ

2,∩k∈Sm Bk−
m

such that

(i) ˛̨̨̨
E

ˆ
φ

2,Ωm

˛̨
∩k∈Sm Bk−

m

˜
− E

h X
i=1,2

ziφi,∩k∈Sm Bk−
m

i˛̨̨̨
< C22

1

ωm
Θ2

ωm,ϑ,

(ii) ‚‚‚φ
2,Ωm

˛̨
∩k∈Sm Bk−

m
−

X
i=1,2

ziφi,∩k∈Sm Bk−
m

‚‚‚2

2
< C23

1

ωm
Θ2

ωm,ϑ,

where 8>><>>:
R
∩k∈Sm Bk−

m

n P
i=1,2 ziφi,∩k∈Sm Bk−

m

o
· φ1,Ωm

= −
P

k∈Sm

R
Bk+

m
φ2,Ωm · φ1,Ωm ,

z21 + z22 = 1−
P

k∈Sm

`
%k+
2,m

´2
.

(122)

(iii) To any k ∈ Sm there correspond z3, z4 ∈ R such that`
%k+
2,m

´−2
˛̨̨̨
E

ˆ
φ

2,Ωm

˛̨
Bk+

m

˜
− E

h
z3φ1,Bk+

m
+ z4φ2,Bk+

m

i˛̨̨̨
< C24

1

ωm
Θ2

ωm,ϑ

`
%k+
2,m

´−2
, and

(iv)`
%k+
2,m

´−2
‚‚‚φ

2,Ωm

˛̨
Bk+

m
−

“
z3φ1,Bk+

m
+ z4φ2,Bk+

m

”‚‚‚2

2
< C25

1

ωm
Θ2

ωm,ϑ

`
%k+
2,m

´−2
, (123)

where ( R
Bk+

m

n
z3φ1,Bk+

m
+ z4φ2,Bk+

m

o
· φ1,Ωm = −

R
Bk−

m
φ2,Ωm · φ1,Ωm ,

z23 + z24 =
`
%k+
2,m

´2
.

(Note.) (ii) is valid ∩k∈SmBk−
m replaced by Bk−

m with z1 and z2 limited by equationsZ
Bk−

m

n X
i=1,2

ziφi,Bk−
m

o
· φ1,Ωm = −

Z
Bk+

m

φ2,Ωm · φ1,Ωm ,

z21 + z22 = 1−
`
%k+
2,m

´2
.

Proof. (i) Considering the requirement of orthogonality of φ2,Ωm to φ1,Ωm which is the only
difference between proof of Proposition 3.2 (i) and (iii), we define h− by a function such that
for each k ∈ Sm

h−(x, y) =

(
+

φ2,Ωm (0,y)

ϑ
x+ φ2,Ωm (0, y), (x, y) ∈ Sk

m,ϑ ∩Bk−
m ,

0, (x, y) ∈ ∩k∈Sm

`
Bk−

m \Sk
m,ϑ

´
.

(124)

Note that since
P

i=1,2 ziφi,∩kBk−
m

is defined in order that it may have the minimal energy

among functions in C2(∩k∈SmBk−
m ) which vanish on the boundary and satisfy conditions

(122), we have‚‚φ
2,Ωm

˛̨
∩kBk−

m
− h−

‚‚2

2
E

h X
i=1,2

ziφi,∩kBk−
m

i
≤ E

ˆ
φ

2,Ωm

˛̨
∩kBk−

m
− h−

˜
.

The rest of proof follows the way of proof of Proposition 3.2 (i).
(ii) The way of proof of (ii) is similar to that of Proposition 3.2 (ii) using the result Proposition
3.2 (i). One of the differences between them is the following; let us denote

αj =

Z
∩k∈Sm Bk−

m

n
φ

2,Ωm

˛̨
∩k∈Sm Bk−

m
− h−

o
· φ

j,∩k∈Sm Bk−
m
.
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From (i) we have

C26
1

ωm
Θ2

ωm,ϑ ≥
˛̨̨̨
E

h
φ

2,Ωm

˛̨
∩k∈Sm Bk−

m
− h−

i
− E

h X
i=1,2

ziφi,∩k∈Sm Bk−
m

i˛̨̨̨

=

˛̨̨̨ ∞X
j=1

α2
jλj(∩k∈SmBk−

m )−
X

j=1,2

z2jλj(∩k∈SmBk−
m )

˛̨̨̨

=

˛̨̨̨ X
j∈N\{1,2}

α2
jλj(∩k∈SmBk−

m )−
X

j=1,2

˘
z2j − α2

j

¯
λj(∩k∈SmBk−

m )

˛̨̨̨
. (125)

The rest of proof follows method of Proposition 3.2 (ii).
(iii) The way of proof is similar to that of Proposition 3.2 (i).
(iv) The way of proof is similar to that of Proposition 3.2 (ii). 2

Proposition 3.9. For each k ∈ Sm let us assume that

E∗
h
φ

2,Ωm

˛̨
Bk+

m

i
= E∗

h
φ

2,Ωm

˛̨
Bk−

m

i
+ λk∗

2,m, λk∗
2,m > 0. (126)

Then, there is a constant C27 which is independent of Ωm, such that for any k ∈ Sm`
%k+
2,m

´2 · λk∗
2,m < C27

1

ωm
Θ2

ωm,ϑ. (127)

Thus, we have X
k∈Sm

`
%k+
2,m

´2 · λk∗
2,m < C27

1

ωm
|Sm|Θ2

ωm,ϑ.

(Note.) If Bk+
m and Bk−

m are reversed in (126), then (127) also holds %k−
2,m and %k+

2,m reversed.

Proof. The proof is similar to proof of Proposition 3.3 except for the requirement of orthogo-
nality of φ2,Ωm to φ1,Ωm .

Let us define φε
2,Ωm

as follows; let Ω+
m and Ω−m the inner-nodal domain and the outer-nodal

domain of φ2,Ωm , respectively. For C1-real function fj , 0 < fj(ε) for ε ≥ 0, j = 2, 3, 4, 5,

φε
2,Ωm

(x, y) =

8>>><>>>:
f2(ε)φ2,Ωm (x, y), (x, y) ∈ Bk+

m ∩ Ω+
m,

f3(ε)φ2,Ωm (x, y), (x, y) ∈ Bk+
m ∩ Ω+

m,

f4(ε)φ2,Ωm (x, y), (x, y) ∈ Bk−
m ∩ Ω+

m,

f5(ε)φ2,Ωm (x, y), (x, y) ∈ Bk−
m ∩ Ω−m.

Let us define φε
2,Ωm

in the same sense as (110) in order that‚‚‚φε

2,Ωm

˛̨
Bk−

m

‚‚‚2

2
·

‚‚‚φ
2,Ωm

˛̨
Bk−

m

‚‚‚−2

2
= 1 + bε+ o(ε)

for a positive constant b. Provided we define φ̃ε
2,Ωm

in the same sense as definition (112),

there exist fj , fj(0) = 1, j = 2, 3, 4, 5, for which the following conditions are satisfied;

‖φ̃ε
2,Ωm

‖2 = 1,

Z
Ωm

φ̃ε
2,Ωm

· φ1,Ωm = 0, and for sufficiently small all ε

0 ≤ E
ˆ
φ̃ε

2,Ωm

˜
− E

ˆ
φ2,Ωm

˜
≤ −C28ε

`
%k+
2,m

´2
λk∗
2,m + εC29

1

ωm
Θ2

ωm,ϑ.

The last inequality implies (127). 2
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Remark 3.2. Considering Remark 3.1, we are to define two functions Nε
2,m and Nε

2,m,t

of ε-variable and (ε, t)-variables, respectively. Let us denote˛̨̨
E[φ̃ε

2,Ωm

˛̨
Sk

m,ϑ

]− E[φε

2,Ωm

˛̨
Sk

m,ϑ

]
˛̨̨
:= Nε

2,m < O(ε)
1

ωm
Θ2

ωm,ϑ.

Then, by the same argument as Nε
1,m

0 =
d

dε ε→0

n
E

ˆ
φ̃ε

2,Ωm

˜
− E

ˆ
φ2,Ωm

˜o
= −2

`
%k+
2,m

´2
λk∗
2,m +

d

dε ε→0
Nε

2,m. //

Remark 3.3. If ωm is fixed, the larger λk∗
2,m is, the smaller %k+

2,m becomes. As the

contraposition the larger %k+
2,m is, the smaller λk∗

2,m becomes. According to (127), no matter

how small
`
%k+
2,m

´2
is, if we define Θωm,ϑ to be sufficiently small value, λk∗

2,m must be close to

zero, that is, E∗
ˆ
φ

2,Ωm

˛̨
Bk+

m

˜
approximates to E∗

ˆ
φ

2,Ωm

˛̨
Bk−

m

˜
. In the same concept, for any

fixed λk∗
2,m, the smaller Θωm,ϑ is, the smaller %k+

2,m becomes. //

Remark 3.4. When
`
%k+
2,m

´2
assumed to be sufficiently small, a suitably large λk∗

2,m cor-

responds. Then, from Proposition 3.3
`
%k−
1,m

´2
turns to be a large value, and then we can

conclude that |z1| in Proposition 3.8 is determined to be sufficiently small and |z2| approxi-

mates to one. Even though the diameter of Bk+
m becomes large by dilation, if the closed nodal

line of φ2,Ωm does not lie in Bk+
m , then z4 approximates to zero as Θωm1 ,ϑ becomes smaller.

//

Repeating splitting deformations and filling deformations, one must attains to a situation
such that remainder Rm is simply connected and has arbitrarily small width. The width of
R ⊂ Rm is defined by the maximum among diameters of disks which are contained in R.
Let us assume that the width of Rm can not be arbitrarily small for any sufficiently large m.
Then, we deform Ωm repeatedly by splitting deformations whose supports lie in the remainder
and blossoms and by filling deformations. Until there are eleven blossoms, we tunnel Rm,
attach branches, or vary diameter of blossoms. When the number of blossoms reaches eleven,
we deform only blossoms in order to vary their diameter by splitting deformation. But if
splitting deformations which only attach branches and blossoms and deform blossoms can
continue permanently, then we reach a situation such that Ξ ( Ω` for a large ` > m. It is
impossible from the requirement 3) of Definition 3.1 of splitting deformation and requirement
(93). Thus, Jm must tunnel the remainder for an large m. That is, we can make the Rm be
thinner as m becomes larger.

We illustrate a typical example of tunnelling. Let us set Rm := {(x, y)| 0 < x < 4, 0 <
y < 1}. Consider the following unions of segments in Rm;˘

(x, y)| x = 1/3, 0 < y < 2/3}
[
{(x, y)| 1/3 < x < 11/3, y = 2/3}[

{(x, y)| 1/3 < x < 5/3, y = 1/3
¯ [ ˘

(x, y)| x = 2, 0 < y < 1/3
¯

[ ˘
(x, y)| 2 < x < 11/3, y = 1/3

¯
. (128)

Then, we define tunnels in Rm by some thin neighborhoods of above unions of segments which
are disjoint each other. A simply connected band Rm is divided into three ways around the
positions (5/3, 1/3) and (11/3, 1/2) .

From [6] Theorem 8.1 (the weak maximum principle) we obtain a corollary of Lemma 3.1.
Under the hypotheses and notations of Lemma 3.1 we can obtain R ⊂ Rm described by the
following manner; let N in Lemma 3.1 be a sufficiently large integer, and let B : V → B(V ) ⊂
R2 be a bending diffeomorphism such that

B−1(R) = W, (129)

g := B∗φ
2,Ωm

˛̨
R
,

49



˛̨
B−1∗ ∂

∂y

˛̨
= 1,

˙
B∗

∂

∂ξ
, B∗

∂

∂η

¸
= 0.

Thus B preserves | ∂
∂y
|, and therefore preserves 1

N
, the width of V . An elementary calculation

shows “
B∗

∂

∂ξ

”
g =

∂

∂ξ
g

`
B−1(ξ, η)

´
=

∂

∂x
g
∂B−1

x

∂ξ
+

∂

∂y
g
∂B−1

y

∂ξ
,

B∗
∂

∂ξ
=
∂B−1

x

∂ξ

∂

∂x
+
∂B−1

y

∂ξ

∂

∂y
, B∗

∂

∂η
=
∂B−1

x

∂η

∂

∂x
+
∂B−1

y

∂η

∂

∂y
, (130)

where B−1 :=
`
B−1

x , B−1
y

´
.

Let p ∈ B
`
∂V \ {V 1 ∪ V2}

´
, and let us denote the closed disk with maximal diameter

contained in B(V ) which touches p by D(p), and denote the set of points B(∂V )∩∂D(p)\{p}
by l(p). Let us denote by r(p) the radius of closed disk having maximum of the set of bounded
radii of disks which meet p, but do not intersect with B(V ). Then, let us assume that two
points p1, p2 ∈ ∂B(V ) lie at each side of p, and the distances from p1 and p2 to p are sufficiently
small. Then, the distance from l(p1) to l(p2) is very large compared to the distance from p1
to p2. Set ∂

∂ξ
to be tangent to ∂B(V ) at q ∈ l(p), and − ∂

∂η
to be outer-normal derivative at

q. Then, if we set
˛̨
B∗ ∂

∂ξ p

˛̨
= 1, then

˛̨
B∗ ∂

∂ξ q

˛̨
is very small compared to one. The magnitude

of
˛̨
B∗ ∂

∂ξ l(p)

˛̨
is proportional to

r(p)
r(p)+diameter of D(p)

. One can tunnel the remainder in order

that the width of the remainder may be much smaller than minimal value among all r(p).

Corollary 3.10. (Corollary of Lemma 3.1.) Let R ⊂ Rm be a simply connected
open band with a sufficiently small width and a sufficiently large length, and let ∂R consist
of only a subset of ∂Rm ∩ ∂Ωm and more than or equal to two segments traversing Rm. Let
us assume that
(i) either R satisfies (129)
(ii) or R contains a subset $ where R is divided into several ways like the illustration (128),
and boundary of $ consists of ∂Rm and segments each of whom traverses a way of Rm with
an inequality diameter($) << diameter(R).
Then, the restriction φ

2,Ωm

˛̨
R

decays exponentially in the sense of (96).

Proof. (i) Consider the identities for differential operator G8><>:
∆B∗eg = −λ2(Ωm)g = (∆e + G)g,

∆eg = −λ2(Ωm)g− Gg,

∆ev = −λ2(Ωm)v,

(131)

where v is a function given in the proof of Lemma 3.1. From (130), (131), and from the
sentences following (130) there exists a constant C30 which is bounded below to

C31 ·
„

r(p)

r(p) + diameter of D(p)

«2

,

for a constant C31, and satisfies

C30λ2(Ωm)v > |λ2(Ωm)g + Gg|, and C30v − |g| ≥ 0 on V1 ∪ V2. (132)

Then, considering the function C30v − g, we have from (132)

∆e(C30v − g) = −λ2(Ωm)(C30v − g) + Gg < 0,

and then from weak maximum principle ([6] Theorem 8.1.)

inf
B−1(R)

(C30v − |g|) ≥ inf
V1∪V2

(C30v − |g|)− = 0,

where (C30v − |g|)− = min{C30v − |g|, 0}. Thus, C30v ≥ |g|, and from Lemma 3.1 g decays
exponentially for a sufficiently small width of R.
(ii) If φ

2,Ωm

˛̨
R

does not decay exponentially in $ in which R is divided into several ways,
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then one can redefine φ2,Ωm as follows in order that this redefined function which has unit
norm and is orthogonal to φ1,Ωm may have energy less than that of φ2,Ωm ; consider the
existence of constant C3 in inequality (96). Let us suppose that no matter how much Θωm,ϑ

decreases, (96) fails in $, that is, C3 satisfying (96) does not exist. Then, we redefine φ
2,Ω

˛̨
$

by multiplying a positive constant which is slightly smaller than one. Then, we can redefine
φ

2,Ωm

˛̨
Ωm\$

so that it may have a larger L2-norm and a less energy than the original. We

attain to a contradiction. 2

Remark 3.5. One can tunnel Rm ⊂ Ωm or fill up tunnels in Rm so that Rm+j may be
sufficiently thin, and curvatures of the boundary ∂Rm+j ∩ ∂Ωm+j may have an upper bound
for sufficiently large all j ∈ N. Let p ∈ ∂Rm+j ∩∂Ωm+j , and ∂B(p, 2R)∩Rm+j be connected.
Let p be far sufficiently from Fm and Bk

m along Rm. Let

H : B(p,R) ∩Rm+j → B(O,R) ∩ R2+,

B(O,R) ∩ R2+ =: B(O,R, π), be an analytic function such that H maps B(p,R) ∩ ∂Rm+j

onto {(x, y) : −R < x < R, y = 0}, H(p) = (0, 0). Referring to proof of Corollary 3.10,
by a weak maximum principle H−1∗φ

2,Ωm+j

˛̨
B(p,R)∩Rm+j

decays exponentially in a rate

Θω′m+j ,ϑ, where ω′m+j denotes width of Rm+j . From Theorem 3.4 and Theorem 3.5 one can

infer energy of φ2,Ωm+j
restricted to the component of Rm+j ∩ {(x, y) : −R < x < R} which

contains B(p,R)∩Rm+j also decays exponentially in a rate 1
R

Θ2
ω′m+j ,ϑ

as p moves along the

boundary of Rm+j . //

Now let us assume thatX
k∈Sm

`
%k+
2,m

´2
=

‚‚‚φ
2,Ωm

˛̨ S
k∈Sm

Bk+
m

‚‚‚2

2
> c, (133)

for a sufficiently small fixed constant c > 0, and for all m which are sufficiently large. Re-
mainder Rm may have arbitrarily small width as m becomes large. Corollary 3.10 says φ2,Ωm

decays exponentially in Rm. We may assume that ωm, the width of Sk
m, is sufficiently small

so that ‖φ
2,Ωm

˛̨
Sk

m
‖22 may be sufficiently smaller than c. Now we assume Ωm has a blos-

som. From Proposition 3.8 (iv) the normalized function
`
%k+
2,m

´−1
φ

2,Ωm

˛̨
Bk+

m
approximates

to
`
%k+
2,m

´−1`
z3φ1,Bk+

m
+ z4φ2,Bk+

m

´
shape of which is known. That is, we have‚‚‚`

%k+
2,m

´−1
φ

2,Ωm

˛̨
Bk+

m
−

`
%k+
2,m

´−1`
z3φ1,Bk+

m
+ z4φ2,Bk+

m

´‚‚‚2

2

<C25
1

ωm
Θ2

ωm,ϑ ·
`
%k+
2,m

´−2
,

and the above L2-norm becomes sufficiently close to zero, since Θωm,ϑ decays exponentially
as ωm tends to small. Therefore, from condition (133) the maximum of norms of outer normal

derivatives of φ2,Ωm on the boundary of Bk+
m has a positive lower bound over all sufficiently

large m.
Let us denote by Cm a deformation of Ωm which collapses a subset of the remainder. We

will show that Cm ] T m which belongs to a family of splitting deformations can collapse the
thin remainder keeping closed nature of nodal line of the second eigenfunction of Ωm, where
T m

t := ]j=1,2,3,4T m,j
ζjt is also a splitting deformation of Ωm, and each T m,j , j = 1, 2, 3, 4,

is a simple deformation whose support lies in ∪kB
k
m. Now we are to collapse most of Rm

whose width is small enough compared with radius of a blossom Bk
m. To verify existence

of such a collapsing deformation let us consider that matrix (84) can be easily transformed
into diagonal matrix with diagonal entries d1, d2, d3, d4. Then, the last column vector in (83)
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changes naturally, and (83) could be represented by following equation;0BB@
d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4

1CCA
0BB@
ζ1
ζ2
ζ3
ζ4

1CCA =

0BB@
σ1

σ2

σ3

σ4

1CCA .

Adjusting ρj , j = 2, 3, 4, we can make σ1 not vanish. Let us set Cm
ζ1t ] T

m,1
ζ1t := Jm,1

ζ1t , and

T m,j
t := Jm,j

t for j = 2, 3, 4. We set Fm
1 ◦ Cm

ζ1qm
]

“
]j=1,2,3,4 T m,j

ζjqm

”
Ωm := Ωm+1. If

ζ1 = σ1
d1

6= 0 turns out to be negative, then we have to take the inverse deformation Cm−1
ζ1t of

Cm
ζ1t, and define Ωm+1 := Fm

1 ◦ Cm−1
ζ1qm

]
“
]j T m,j

ζjqm

”
Ωm. Regardless of T m,j

t , j = 2, 3, 4,

splitting deformation Cm
ζ1qm

]
“
]j=1,2,3,4 T m,j

ζjqm

”
collapses remainder of Ωm maintaining

closed nature of nodal line of the second eigenfunction of Ωm.
We perform again a splitting deformation whose support lies in Rm+1 := Ωm+1 \Ξ. Con-

sequently, although we repeat preceding procedures of collapsing remainder, from hypothesis

(133)
‚‚φ

2,Ωm+1

˛̨ S
k∈Sm

Bk
m+1

‚‚2

2
is still bigger than c. Then, we attain to the case such that

vol(Ξ) � vol(F`) for a large `, and attain to an inequality λ2(F`) � λ2(Ξ). It is absurd, since
λ2(Ω`) = λ2(Ξ).

Therefore, one can set for a sufficiently small c > 0‚‚‚φ
2,Ωm1

˛̨ S
k∈Sm1

Bk+
m1

‚‚‚2

2
≤ c, (134)

and let us consider the identity

λ2(Ξ) =λ2(Ωm1 )

=
˘
1−

X
k

`
%k+
2,m1

´2¯
E∗[φ

2,Ωm1

˛̨
∩kBk−

m1
] +

X
k

`
%k+
2,m1

´2E∗[φ
2,Ωm1

˛̨
Bk+

mq

].

Proposition 3.9 impliesX
k∈Sm1

`
%k+
2,m1

´2 · E∗[φ
2,Ωm1

˛̨
Bk+

m1
] =

X
k∈Sm1

`
%k+
2,m1

´2 ·
“
E∗[φ

2,Ωm1

˛̨
Bk−

m1
] + λk∗

2,m1

”
is bounded above to cλ2(Ξ) + C27|Sm1 |Θ2

ωm1 ,ϑ. Thus, we have

0 < λ2(Ξ)−
˘
1−

X
k

`
%k+
2,m1

´2¯
E∗[φ

2,Ωm1

˛̨
∩kBk−

m1
] < cλ2(Ξ) + C27|Sm1 ||Θ

2
ωm1 ,ϑ. (135)

Considering Proposition 3.8 (i) and (ii), we define φ2,Fm1
by a function such that for each k

φ2,Fm1
=

8<:
P

j=1,2 zjφj,
T

k∈Sm1
Bk−

m1
in Fm1 \ V,

0 in Bk−
m1 \ Fm1 , and

φ2,Fm1
is defined in V in order that φ

2,Fm1

˛̨
Fm1

may be of C2(Fm1 ), where V is a small

neighborhood of Fm1 ∩Rm1 . Furthermore, we may define φ2,Fm1
in V so that

E[φ
2,Ωm1

˛̨
∩kBk−

m1
] ≈ E[φ2,Fm1

].

Then, from (135) for sufficiently small values c and ωm1

E[φ2,Fm1
] ≈ E[φ2,Ξ].

Then, by using the method of proof of Proposition 3.8 (ii) one can infer in L2-norm

φ2,Fm1
≈ φ2,Ξ,
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where φ2,Fm1
:= 0 in Ξ \ Fm1 . Therefore, we have in L2-norm

φ2,Ξ ≈
X

j=1,2

zjφj,
T

k∈Sm1
Bk−

m1

˛̨
Fm1

.

Then, according to Remark 3.4,

φ2,Ξ ≈ z2φ2,
T

k∈Sm1
Bk−

m1

˛̨
Fm1

. (136)

From Proposition 3.8 (ii) when |z2| approximates to one, the nodal line of φ2,Ωm1
lies in

Fm1 . Then, (135) implies a contradiction. To show this contradiction firstly note that if
(136) is true, since φ2,Ωm1

has a closed nodal line, we may say without loss of generality the

nodal line of Ωm1 is sufficiently close to the segments {(x, y) : x = 0, 1, 0 < y < 1} and

{(x, y) : x = 0, 1, 0 < y < 1}. Let us denote by Ω−m1 and Ω+
m1 the outer and inner nodal

domain of φ2,Ωm1
, respectively. Thus Ω−m1 must contain a sufficiently narrow and long simply

connected band
W = Ω−m1

∩
˘
(x, y) : 0 < x < 1/2, 1/4 < y < 3/4

¯
.

Then, by Lemma 3.1
˛̨
φ

2,Ωm1

˛̨
Fm1

˛̨
decays exponentially in W . Let W have length 2ϑ′ and

width smaller than ω′m1
which denotes width of the smallest rectangle containing W. We are

to follow the arguments in [7] of David Jerison. Lemma 2 [7] with the roles of Ω1 := Ω+
m1 and

Ω2 := Ω−m1 reversed says that there is ζ ∈ ∂W ∩ ∂Ω+
m1 such that˛̨

∇φ2,Ωm1
(ζ)

˛̨
≤
C32

r
max

∂B(z,s)∩Ω
−
m1

˛̨
φ2,Ωm1

˛̨
≤
C32

r
Θω′m1

,ϑ′ , (137)

where B(z, r) ⊂ Ω+
m1 , ζ ∈ ∂W ∩ ∂B(z, r), 2r < s < 2ω′m1

, and Θω′m1
,ϑ′ stands for the

absolute constant defined in Definition 3.3. Regardless of shape of ∂W ∩ ∂Ω+
m1 , the radius r

and ζ could be selected in order that C32
r

Θω′m1
,ϑ′ may decay exponentially as ω′m1

decreases.

Since |φ2,Ωm1
| is superharmonic in Ω+

m1 , comparison with a harmonic function (Hopf lemma)
implies

min
B(z,R/2)

˛̨
φ2,Ωm1

˛̨
≤ R

˛̨
∇φ2,Ωm1

(ζ)
˛̨
, (138)

where B(z,R) ⊂ Ω+
m1 with ζ ∈ ∂B(z,R) ∩ ∂Ω+

m1 . For this refer to the paragraph succeeding
Lemma 3 in [7]. Thus,

min
B(z,R/2)

˛̨
φ2,Ωm1

˛̨
≤ R

˛̨
∇φ2,Ωm1

(ζ)
˛̨
≤
C32R

r
Θω′m1

,ϑ′ . (139)

Consequently, (139) implies that φ2,Ωmq
can not approximate to φ2,Ξ in L2-norm in Ω+

mq ,

and then we attain a contradiction. 2

a Conjecture on Another Proof of Payne’s Nodal line conjecture

In contrast with condition 2) and 3) of Definition 3.1 we define a splitting deformation Jm

differently as follows;

1) the nodal line of φ2,ImJm
t

is closed and separated from boundary at all t ∈ (0, qm],

2) 0  d
dt t=0

λ2(ImJm
t ), λ2(ImJm

t ) � d
dt t=0

λ3(ImJ 1
t ), and the second inequality implies

λ2

`
Im(Jm

t )
´

is simple at all t ∈ (0, qm],
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3) λ2(Ω1) = λ2(Ξ)  λ2

`
Im(Jm

t )
´

at all t ∈ (0, qm].

The filling deformation Fm is defined differently by a deformation of Jm
qm

(Ωm) whose support

lies in the closure of Ξ∩Jm
qm

(Ωm) and which shrinks its support so that λ2

`
Fm

s ◦Jm
qm

(Ωm)
´

may increase as s increases. For some large m1 a part of closed nodal line of the second
eigenfunction φ2,Ωm1

must start to pass through a narrow branch Sk
m1

and lie in the blossom

Bk
m1

. Then, one can construct a function in Ωm1 which is obtained from φ2,Ωm1
by shrinking

the part of nodal line of φ2,Ωm1
lying in Bk

m1
into the branch Sm1 in order that it may be

orthogonal to φ1,Ωm1
, and it may have smaller energy than that of φ2,Ωm1

. From this fact
we can attain a contradiction.
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