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Abstract:
This paper introduces a watertight technique to deal with the boundary representation of
surface-surface intersection in CAD.

Surfaces play an important role in today’s geometric design. The mathematical model of
non-uniform rational B-spline surfaces (NURBS) is the mainstream and ISO standard. In
the situation of surface-surface intersection, things are a little complicated, for some
parts of surfaces may be cut-off, so called trimmed surfaces occur, which is the central
topic in the past decades in CAD community of both academia and industry. The main
problem is that the parametric domain of the trimmed surface generally is not the
standard square or rectangle, and rather, typically, bounded by curves, based on point
inverse of the intersection points and interpolated. The existence of gaps or overlaps at
the intersection boundary makes hard the preprocessing of CAE and other downstream
applications. The NURBS are in this case hard to keep a closed form. In common, a
special data structure of intersection curves must be affiliated to support downstream
applications, while the data structure of the whole CAD system is not unified, and the
calculation is not efficient.

In terms of Bezier surface, a special case of NURBS, this paper designs a
reparameterization or normalization to transform the trimmed surface into a group of
Bezier surface patches in standard parametric domain [0,1]X[0,1]. And then the boundary
curve of normalized Bezier surface patch can be replaced by the intersection curve to
realize watertight along the boundary. In this way, the trimmed surface is wiped out, the
“gap” between CAD and CAE is closed.
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1. Introduction

Geometric models are widely used in CAD and other related fields to represent the shape
of products and/or objects. These geometric models provide precise descriptions of
three-dimensional shapes in a way that computers can understand. Most geometric
models are designed using parametric surfaces and stored in specific data structures,
which greatly improves the efficiency of product model design, generation, simulation,
modification and optimization. Most of the current mainstream geometric models use
spline surface models, which represent the three-dimensional shape of products or
objects with a series of regular surfaces and/or irregular surfaces. The non-uniform
rational B-splines (NURBS) method in the form of tensor product is the mainstream
technology for surface representation in CAD and is already universal and ISO standard,
which plays an important and indispensable role in the design, analysis and
manufacturing of industrial products. Bezier surface is a special expression form of
NURBS. All NURBS surfaces can be represented by Bezier surface patches. Bezier
surface patches are defined in the standard parametric domain [0,1]X[0,1], which is
convenient for calculation, storage and transformation. The de Casteljau algorithm
provides a tool for extracting partial surface patches along rectangular subregions
surrounded by arbitrary isoparametric lines for Bezier surface patches. Each of these
subregions can be transformed back into standard domains through linear parametric
transformation [Bohm et al.,1984]. For the convenience of writing, the following
explanation assumes that all spline surfaces and spline curves are converted into Bezier
form.

In actual product design, complex surface shapes are often involved, they cannot be
directly represented by a single spline surface. Instead, the trimmed surface is obtained
by manipulating the intersection curves between the surfaces and then trimming and
combining them. The processing of intersection curves between surfaces will affect the
quality and accuracy of product design. If the intersection curves are not handled well,
there will be gaps or overlaps in the surface boundaries of the product, causing the
definition of geometric entities to not be closed on the boundaries, affecting downstream
applications, like analysis and processing manufacturing. Therefore, how to deal with the
intersection curves between surfaces has always been one of the core issues in CAD.
[Farin,2002]

According to algebraic theory, the algebraic degree of a Bezier surface with parametric
degree MXN is 2MN. For the common 3X3 parametric Bezier surface, its algebraic
degree is 18. When two such surfaces intersect, the algebraic degree of the intersection
curve is as high as 324, which results in no analytical solution in algebra and cannot be
expressed accurately. Therefore, the intersection curve between two tensor product
parametric surfaces can generally only be approximately represented within a certain
accuracy by a low-order spline curve. The error or bias causes the intersection curve
between two intersection surfaces to generally not strictly fit on either of the two
intersection surfaces, except for the intersection point. That is to say, generally there is a
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gap or overlap between the intersection curve of the low-order approximation and the
two intersection surfaces, so the definition of the product geometric model is incomplete
and not closed. This problem is called "watertight" problem. This is one of the main
sources of so-called “dirty geometry” data that results in imperfect, impure geometric
designs. [Kasik et al., 2005], [Piegl,2005], [Sederberg et al., 2008], [Cottrell et al.,2009]

Therefore, various treatment methods have been derived. At present, the common
method to deal with the "watertight" problem in CAD is to perform meshing at the
boundaries and manually stitch the boundary meshes to achieve watertightness.
However, there is no unified standard for manual stitching of seams. The stitching results
vary from person to person and are approximate. For product designs with high precision
requirements, premature meshing will also introduce unnecessary errors into subsequent
simulation analysis. In addition, manually stitching the boundary mesh is tedious, brings
additional design burden to the design engineer, requires a lot of time and attention, and
affects the design efficiency of the product. Isogeometric analysis (IGA) aims at solving
the connection of CAD and CAE with high order continuity functions and is now a hot
research topic. [Hughes et al.,2005], [Cottrell et al.,2009], [Marussig and Hughes,2018]

A new idea is to use the T-spline method. While it introduces new mathematical model
and its theory is not mature enough for convenient engneering use and is not an ISO
standard. The difficulty and complexity of software development and maintenance are
greatly increased, making it inconvenient to apply. It is not currently adopted by
mainstream CAD systems yet. [Sederberg et al., 2003, 2004]

Another method is to seek some kind of transformation on the boundary, such as [Urick
et al., 2019], which uses a linear transformation of separating multiple isoparametric lines
to simply transform the trimmed boundary curve on an interval into a straight line of
isoparametric lines. However, due to the lack of constraints defined by the surface, its
impact on the shape of the original surface cannot be controlled accurately, and this
problem has not been effectively addressed. [Urick, 2016], [Urick et al. 2019, 2020]

In terms of Bezier surface, this paper designs a reparameterization or normalization to
transform the trimmed surface into a group of Bezier surface patches in standard
parametric domain [0,1]X[0,1]. And then the boundary curve of normalized Bezier surface
patch is replaced by the intersection curve to realize watertight. In this way, the trimmed
surface is wiped out, the “gap” between CAD and CAE is closed.



2.Foundamentals, trimmed surfaces and its

parametric domain

A general MXN Bezier surface is:
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Assume that two Bezier surfaces S1(u,v), S2(s,t) intersect on a space curve, as shown in
Figure 1. Since the precise mathematical representation of the intersection curve cannot
be obtained, generally only a series of intersection points in the three-dimensional space
could be given, say P;, i=1,2,...,K. Through these intersection points, an interpolated
spline representation of the intersection curve C(w)={x(w),y(w),z(w)} can be generated.
Since the intersection points are on the two surfaces, the corresponding surface
parameters can be found in reverse, (u;,v) and (s, t), j=1,2,...,K. At the same time, the
parametric splines on the two-dimensional parametric spaces of two surfaces can be
generated respectively, C1(a) ={u(a),v(a)} and C2(B)={s(B),t(B)}, they are called domain
curves.

Figure 1 Two intersection surfaces and their intersection curve with defining points P;.

By bringing the domain curves C1 and C2 into surfaces S1 and S2 respectively, we can
obtain the curves SC1 and SC2 mapped to the two surfaces in the three-dimensional
space, which are completely fitted on their respective surfaces, they are curves on the



surfaces.

Note that there exist three curves on the boundary, C, SC1, and SC2, they are
independent with each other and do not coincide exactly with each other. The gaps or
overlaps there are the reason of “watertight problem”.

3.Domain transformation and normalization

For the trimmed surface, the domain curve goes through the parametric domain and
divides it into two parts, one is left, another will be cut-off, see Figure 2, where suppose
the upright part be cut-off, point B, D, and G be corresponding points or projective points
of intersection points in the domain.

On the left area of domain, the trimmed Bezier surface can be further segmented into a
series of small surface patches according to the intersection points parameters at the
boundary. These small patches can be classified into two categories, one is
non-boundary patch, their parametric domains are defined by isoparametric lines; the
other is boundary patch, their parametric domain contains some part of C1(a) or C2( ),
which is composed of a trapezoid with curved sides. As shown in Figure 2, ABCD and
DEFG are curved trapezoids with curved boundaries.
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Figure 2 Parametric domain segmentation of trimmed surface.

Note that the domain curves C1( « ) and C2( 8 ) may be multi-valued functions. For
example, if the intersection curve on the surface S1(u,v) is approximately a circle, then for

5



C1 in the parametric domain, for each value of u (or v), there are two corresponding v (or
u). The parametric domain may need to be appropriately decomposed further so that it
contains only single-valued functions in the sub-region. This is always possible .

The Bezier surface shown in formula (1) is defined in the standard parametric domain
[0,1]X[0,1], which is a canonical form. For the sub-domains of non-boundary patches, de
Casteljau algorithm can be used to transform them into standard domain.

For the boundary patches, a parametric transformation is designed to restore their
curved trapezoid domains into the standard one, and make the irregular domain to
regular domain, this is called reparameterization or normalization.

The analysis shows that after segmentation above, there are eight types for the curved
trapezoid domain as shown in Figure 3(a)-Figure 3(h), where there has one and only one
point of domain curve passing through one vertex of the rectangular area, they are
equivalent under a rotational symmetry transformation. The curved trapezoid ABCD and
DEFG in Figure 2 corresponds to Figure 3(a) and Figure 3(c) respectively.
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Figure 3. Eight cases of curved trapezoid domains of the boundary patch.
And the curved trapezoid domain limited by the boundary curve and the three

isoparametric lines can be mapped into a standard parametric domain, we take Figure
3(a) as example, see Figure 4.
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Figure 4. The mapping from curved trapezoid domain to the standard.

The reparameterization or normalization begins with a mapping, by which the irregular
curved trapezoid domain shown in Figure 4(a) is mapped into the standard parametric
domain shown in Figure 4(b), thus the surface on it can have a standard Bezier surface

form with parametric domain [0,1]X[0,1] and therefore has a unified data structure.

Let the curve equation u= f(v) in Figure 4(a), the domain is u€[0,f(v)], v€[0,1], the following

transformation maps [u,v]€[0,f(v)]X[0,1] to [s,t]€[0,1]1X[0,1],

M u=s*xf(t),v=t

where
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is a polynomial of degree p.

Replace Eq. (2) into (1), we have
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In terms of parameter (s,t), the degree of the Bezier surface is from

mXn

up to



mX(mXp+n). Depending on the accuracy requirements of different applications, the
degree of polynomial f(v) may be degree 1, 2, or higher.

Sf2

Figure 5. The reparameterized Bezier surface from 3X3 up to 3X9 with a quadric
transformation, where the asterisk points are control points.

In Figure 5, shows a reparameterized or normalized surface, where sf1 is the part to be
retained, sf2 is that to be cut-off, curve cul is the intersection or trimmed boundary, and
the asterisk points are regenerated control points of new Bezier surface, which is defined
on the standard parametric domain. Note that the shape of retained surface part and the
boundary remain unchanged.

4. Relacement of boundary curves of trimmed surfaces

by intersection curve

At this point, the two surfaces S1 and S2 have been transformed on the boundary and
are expressed as a group of small Bezier surface patches, their shapes remain
unchanged. Since the intersection curve C is not completely on the two trimmed
surfaces. In general, the intersection curve C and the two on-surface curves SC1 and
SC2 do not coincide with each other. There is either a gap or an overlap between two
intersection surfaces, which is known as the "watertight" problem in academia and
industry. [Sederberg et al., 2008], [Urick et al., 2019]

To solve this problem, we suggest to modify the boundary curves of reparameterized
Bezier surface patches along the intersection border. The algorithm is simple, for the
border control points of Bezier surface are the control points of border curves of the
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surface.

After the control points of the surface boundary curves at the intersections are replaced
with control points of the intersection curve C, the two intersection surfaces have the
curve C as the common boundary, and there are no gaps or overlaps anymore. As can
be seen from Figure 6, the two intersection surfaces achieve a seamless connection,
solving the watertight problem, thus making the product design closed and complete.

Figure 6. A watertighted example of two intersection Bezier surfaces, where the
multi-parallel curves show the segmentation according to the intersection points.

It should be noted that the degree of the reparameterized surface will increase, the
degree of the surface boundary curve on the intersection surface may be higher than the
degree of the intersection curve C. The degree of the intersection curve C may be
upgraded to the same degree as the reparameterized surface.

In practical applications, in order to improve the efficiency of design and calculation and
to keep the same data structure, the degree of reparameterized surface patch may be
appropriately reduced within the allowable range of error and accuracy.

5.Results, discussions, and conclusions

To sum up, there are two stages to realize the watertight:

1. reparameterizing, to transform the trapezoid domain to the standard one;

2. substituting, to replace the boundary curves of reparameterized surfaces by
intersection curve.

In stage 1, the shape of trimmed surfaces keeps unchanged. In stage 2, the replacement
will result in errors or bias at the boundary. To limit them in a range, higher order
interpolation of intersection curve will need, so that more intersection points will be
utilized to reach higher accuracy.



The technique is more suitable for the definition, representation and application of
geometric models in fields such as CAD, CAE, CAM etc. Since the boundaries of surface
of a product or object are standardized with a unified mathematical model and the same
data structure, which facilitates parallel processing and quick visualization. The
geometric models will be more easily converted and interpreted in different systems,
supporting data sharing among suppliers, customers or collaborators, and reducing the
risk of misunderstandings and errors. Furthermore, the method automatically processes
intersection surface boundaries, generates a complete and closed model without gaps,
reduces errors at the model surface boundaries, improves the accuracy at the model
surface boundaries, and makes the product design generated based on the model more
accurate. It is exquisite and speeds up the progress of design engineers in completing
tasks. It not only facilitates subsequent analysis and processing and manufacturing
processes, reduces risks in the product development process, but also shortens the
development cycle and improves productivity.

Therefore, the solution can improve the quality and reliability of the product geometric

model and is conducive to the smooth progress and efficient output of design, analysis
and manufacturing processes, and has broad application prospects in CAD.
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