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Abstract

Riemann Hypothesis has been the unsolved conjecture for 164
years. This conjecture is the last one of conjectures without proof in
”Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse”(B.
Riemann). The statement is the real part of the non-trivial zero points
of the Riemann Zeta function is 1/2. Very famous and difficult this
conjecture has not been solved by many mathematicians for many
years. In this paper, I guess the independence (unprovability) of the
Riemann Hypothesis. In this, I deal with propositions equivalent to
the Riemann Hypothesis regarding the Möbius function. First, I de-
fine something called “the distorted Möbius function”. Next, I con-
sider the axiomatic system in which the Riemann Hypothesis holds
and the axiomatic system in which “the distorted Möbius function”
exists and the Riemann Hypothesis does not hold. Finally, I guess
that the Riemann Hypothesis is unprovable.

1

I define Möbius function µ(n) as

µ(n) :=


1 product of even defferent primes
−1 product of odd defferent primes
0 when divisible by the square of a prime

The Riemann Hypothesis is that the real part of the non-trivial zero of
the ζ function is 1/2. (Ivić[2]p44)

Theorem 1. (Ivić[2]p48,Titchmarsh[5] p370, Theorem 14.25)

the Riemann Hypothesis ⇔
m∑

n=1

µ(n) = O(m
1
2
+ϵ)
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The following is known as a short proof.
M(x) is defined as follows.

M(x) :=

[x]∑
n=1

µ(n)

Then
1

ζ(s)
=

∞∑
n=1

µ(n)

ns
=

∫ ∞

x=0.1

x−sd(M(x))

d(M(x)) is the Stieltjes’ integral of M(x).

= [M(x)x−s]∞0.1 + s

∫ ∞

x=0.1

M(x)x−s−1dx = s

∫ ∞

x=0.1

M(x)x−s−1dx

Here, I analytically continue 1
ζ(s)

until this value is finite. When
∑m

n=1 µ(n) =

O(m
1
2
+ϵ) holds, this integral is finite when Re(s) > 1/2. I obtain that there

are no zeros of the zeta function when Re(s) > 1/2. Furthermore, by com-
bining this with a discussion of functional equations, I obtain the Riemann
Hypothesis.

Conversely, if I assume the Riemann Hypothesis,

s

∫ ∞

x=0.1

M(x)x−s−1dx

This is not infinite at Re(s) > 1/2 + ϵ > 1/2

|M(x)| < Km
1
2
+ϵ

I obtain that ϵ can be arbitrarily small.

Proposition 1.
m∑

n=1

µ(n) = O(m
1
2
+ϵ)

I guess this proposition’s unprovability. This proposition is equivalent to
the Riemann Hypothesis (by theorem 1).

From now on, we will consider two axiomatic systems to create two mod-
els: one where the Riemann hypothesis is true and one where it is false.
First, I consider the axiomatic system that real and complex numbers sat-
isfy plus the Riemann Hypothesis true. This satisfies the completeness. On
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the other hand, I consider the axiomatic system that Non-Standard Anal-
ysis satisfies. The concepts of infinity and infinitesimal ([1]), whose ex-
istence is allowed in the Non-Standard Analysis, do not satisfy the com-
pleteness. Here, infinitesimal is positive number smaller than any positive
number,and infinity is the reciprocal of infinitesimal, a number larger than
any finite number. The axiomatic system of Non-Standard Analysis con-
tains the axiom that is existence of the infenitesimal. Clearly, Cauchy se-
quences never converge in the infinitesimal. (A example of Infintesimal is
< 1/1, 1/2, 1/3, · · · >≤ 1/n =< 1/n, 1/n, 1/n, · · · >. A example of infinity is
< 1, 2, 3, · · · >≥ n =< n, n, n, · · · >(Hard and Loeb [1]))

From now on I argue in the Non-Standard Analysis. I define the sum
of “the distorted Möbius function” as

∑
n≤P−1 µ(n) + f(P ) that is in the

summation of Möbius function (up to some large prime P ) add (or subtract)
f(P ) instead of µ(P ). (The sign of f(P ) can be chosen freely. This is due to
the multiplicative nature of the Möbius function.) Using the Non-Standard
Analysis, let P → ∞(P is a prime number). I define “the distorted Möbius
function” at P ∗M as f(P )∗µ(M). (When M is divisible by P , I set it to 0.)
This value can be determined from P to infinity with no contradiction. Since
only the value at P is needed from now on, I only consider that the sum of
“the distorted Möbius function” up to P can be determined freely. The sum
of “the distorted Möbius function” at P → ∞(P is a prime number) can be
determined arbitrarily. (By the way, the sum of “the distorted Möbius func-
tion” can be taken arbitrarily for any m that satisfies P < m < 2P .) (There

are two forms that will be used later. First, |
∑

n≤P−1 µ(n)+f(P )| = KP
1
2
+ϵ0

and P → ∞, ϵ0 > 0 is the infinitesimal. (P is a prime number). Next,

|
∑

n≤P−1 µ(n) + f(P )| = KP
2
3 and P → ∞(P is a prime number).

The validity of the sum of “the distorted Möbius functions” is shown by
the short proof of Theorem 1 above: when |f(P )| = P σ, for Re(s) > σ + ϵ′

1

ζ(s)
=

∞∑
n=1

µ(n)

ns
= lim

P→∞
(
µ(1)

1s
+

µ(2)

2s
+ · · ·+ f(P )

P s
)

is true. In other words, if I take f(P ) at P , then ζ(s) has a zero point at
Re(s) > 1/2. It is assumed that the zero point is s = 1/2 + ϵ0 + iIm(s) or
s = σ +∞i, but this argument is not accurate. Here, I will only discuss the
fact that it is possible to take “the distorted Möbius function” instead of the
Möbius function.

conjecture 1. The Riemann Hypothesis is unprovable. In other words, the
Riemann Hypothesis is an ”independent proposition”.

Consider the Riemann Hypothesis for the Möbius function as stated in
Proposition 1.
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First, consider the case where the negative proposition of the Riemann
Hypothesis can be proven in normal axiomatic system. This is one possibility.
In the following, I assume that there is no counterexample to Proposition 1
in a finite range.

Next, I show that the positive proposition of the Riemann Hypothesis is
unprovable.

As Model A, consider the case where

m∑
n=1

µ(n) = O(m
1
2
+ϵ)

is true for all m. This case is the real and complex number’s axiomatic
system plus the Riemann Hypothesis is true.
As Model B, consider in the Non-Standard Analysis.

m∑
n=1

µ(n) = O(m
1
2
+ϵ0)

holdss for some infinitesimal ϵ0 > 0 and m = ∞ case. amd the case where

m∑
n=1

µ(n) = O(m
1
2
+ϵ)

is not true for m = ∞.

Model A is the model the Riemann Hypothesis is true. Model B is the model
the Riemann Hypothesis is false.

There is no counterexample to Proposition 1 in a finite range. Model
A holds in a finite range. Model A is ”consistent” in ZFC(K.Kunen[3] In-
troduction§1). (Model A consists of equations that are not contradictory to
each other. In such a case, it is said to be ”consistent”. (K.Kunen[3] Intro-
duction§1))

Let take the sum of “distorted Möbius functions” for m = P well. Then,
Model B is true when m = ∞. Model B is ”consistent” in the Non-Standard
Analysis.

In such a case, the Riemann Hypothesis is independent of theory and can-
not be proven. These cases implies the Riemann Hypothesis is not enough
to prove in the real and complex number case. (Note that the completeness
is not used in the argument.) (K.Kunen[3] Introduction§1)

It is possible that the negative proposition of the Riemann Hypothesis is
provable, or the positive proposition of the Riemann Hypothesis is unprov-
able.

4



2 Equivalent Propositions

I will state that the three equivalent propositions of the Riemann Hypothesis
are unprovable.

Proposition 2.
π(x) = li(x) +O(x

1
2
+ϵ)

In the Non-standard Analysiis, I will consider the situation at P → ∞,
assuming that π(x) is summed g(P ) > 1 for a certain prime number P . Or

π(x) = O(m
1
2
+ϵ0)

holds some infinitesimal ϵ0 > 0 and m = ∞.
As with the Möbius function, it is also clear that two opposing models

exist and that they are consistent. Therefore, it is impossible to prove. Of
course, it is equally possible to disprove it.

Proposition 3.

σ(n) < eγn log log n(for n > 5040)

In the Non-Standard Analysiis, For a sufficiently large prime factor P of
σ(n), replace all divisors AP s related to P with AP s × h(P )s(h(P ) > 1).
Note that this proposition is an ”inequality”, so a model in which only one
number does not satisfy the inequality is sufficient. This is because, unlike
the previous two, σ(n) should not be treated as ”quantitative”. Similarly,
two consistent models can be created. Of course, this can also be disproved
by finding a case in which the inequality does not hold within a finite range.

Proposition 4. The only non-trivial zero point of the Riemann Zeta function
is on Re(s) = 1/2.

In this case, it is a ”conjecture” half. I think in the Non-Standard Anal-
ysis. For Re(s) > 1/2, there may exist a zero point of the Riemann Zeta
function that can be written in the form s = Re(s) +∞i.

I can only see in some calculations.
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Figure 1: Ｐｌｏｔ［Ａｂｓ［Ｚｅｔａ [2/3+s I]］］,(s, 1, 100)]

I have not examined all values, it may be gradually approach zero. Off
course, there may be no example that satisfy this conjecture. If I replace the
real value part 2/3 with a number smaller than 1/2, the result becomes even
worse and it is hard to imagine that it approaches zero.

If ζ(s) = 0, Re(s) = 1/2, then for infinitesimal ϵ0, we can set ζ(s+ ϵ0) =
0, Re(s + ϵ0) ̸= 1/2. This thing means Riemann Zeta function is continue
and holomorphic function at s+ ϵ0 in the Non-Standard Analysis. This con-
dition alone is sufficient to show that the Riemann hypothesis is unprovable.
This impossibility of proving includes a scenario that I do not want to think
about. It is impossible to prove, but it is possible to disprove it. This means
that I can find a counterexample to the zero point from a small number, but
the Riemann Hypothesis cannot be proven in this direction.

Note that the Riemann Hypothesis is true or false. However, in some ax-
iomatic system, the Riemann Hypothesis do not hold. So, the positive propo-
sition of the Rieman Hypothesis cannot prove, and the negative proposition
of the Riemann HYpothesis is always provable.

Special thanks: I was very grateful to my friend H. Tokitu for translating in
English. I would like to express my gratitude to him.
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