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Abstract

Riemann Hypothesis has been the unsolved conjecture for 164
years. This conjecture is the last one of conjectures without proof in
”Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse”(B.
Riemann). The statement is the real part of the non-trivial zero points
of the Riemann Zeta function is 1/2. Very famous and difficult this
conjecture has not been solved by many mathematicians for many
years. In this paper, I guess the independence (unprovability) of the
Riemann Hypothesis. In this, I deal with propositions equivalent to
the Riemann Hypothesis regarding the Möbius function. First, I de-
fine something called “the distorted Möbius function”. Finally, since
“the distorted Möbius function” can be used to make two models in
two consistent ways in two different axiom systems, I guess that the
Riemann Hypothesis is unprovable.

1

I define Möbius function µ(n) as

µ(n) :=


1 product of even primes
−1 product of odd primes
0 when divisible by the square of a prime

The Riemann Hypothesis is that the real part of the non-trivial zero of
the ζ function is 1/2. (Ivić[?]p44)

Theorem 1. (Ivić[?]p48,Titchmarsh[?] p370, Theorem 14.25)

the Riemann Hypothesis ⇔
m∑

n=1

µ(n) = O(m
1
2
+ϵ)
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The following is known as a short proof.
M(x) is defined as follows.

M(x) :=

[x]∑
n=1

µ(n)

Then
1

ζ(s)
=

∞∑
n=1

µ(n)

ns
=

∫ ∞

x=0.1

x−sd(M(x))

d(M(x)) is the Stieltjes’ integral of M(x).

= [M(x)x−s]∞0.1 + s

∫ ∞

x=0.1

M(x)x−s−1dx = s

∫ ∞

x=0.1

M(x)x−s−1dx

Here, I analytically continue 1
ζ(s)

until this value is finite. When
∑m

n=1 µ(n) =

O(m
1
2
+ϵ) holds, this integral is finite when Re(s) > 1/2. I obtain that there

are no zeros of the zeta function when Re(s) > 1/2. Furthermore, by com-
bining this with a discussion of functional equations, I obtain the Riemann
Hypothesis.

Conversely, if I assume the Riemann Hypothesis,

s

∫ ∞

x=0.1

M(x)x−s−1dx

This is not infinite at Re(s) > 1/2 + ϵ > 1/2

|M(x)| < Km
1
2
+ϵ

I obtain that ϵ can be arbitrarily small.

Proposition 1.
m∑

n=1

µ(n) = O(m
1
2
+ϵ)

I guess this proposition’s unprovability. This proposition is equivalent to
the Riemann Hypothesis (by theorem 1).

From now on, we will consider two axiom systems to create two models:
one where the Riemann hypothesis is true and one where it is false. First,
the axiom system that real and complex numbers satisfy. This satisfies the
completion axioms. On the other hand, the axiom system that Non-Standard
Analysis satisfies. The concepts of infinity and infinitesimals ([?] p.36), whose
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existence is allowed by nonstandard analysis, do not satisfy the completion
axioms. Here, infinitesimals are positive real number smaller than any posi-
tive number, and infinity is the reciprocal of infinitesimals, a number larger
than any finite number. Clearly, Cauchy sequences never converge in the
infinitesimals.

From now on I argue in the Non-Standard Analysis. I define “the sum of
the distorted Möbius function” as

∑
n≤P−1 µ(n)+f(P ) that is in the summa-

tion of Möbius function (up to some large prime P ) add (or subtract) f(P )
instead of µ(P ). (The sign of f(P ) can be chosen freely. This is due to the
multiplicative nature of the Möbius function.) Using non-standard analysis,
let P → ∞(P is a prime number). I define “the distorted Möbius function”
at P ∗M as f(P ) ∗ µ(M). (When M is divisible by P , I set it to 0.) This
value can be determined from P to infinity with no contradiction. Since only
the value at P is needed from now on, I only consider that the sum of the
Möbius function up to P can be determined freely. The sum of the Möbius
function at P → ∞(P is a prime number) can be determined arbitrarily.
(By the way, the sum of the Möbius function can be taken arbitrarily for
any m that satisfies P < m < 2P .) (There are two forms that will be used

later. First, |
∑

n≤P−1 µ(n) + f(P )| < KP
1
2
+ϵ0 and P → ∞, ϵ0 > 0 is the

infiniesimal. (P is a prime number). Next, |
∑

n≤P−1 µ(n) + f(P )| = KP
2
3

and P → ∞(P is a prime number).
The validity of “the sum of distorted Möbius functions” is shown by the

short proof of Theorem 1 above: when |f(P )| = P σ, for Re(s) > σ + ϵ′

1

ζ(s)
=

∞∑
n=1

µ(n)

ns
= lim

P→∞
(
µ(1)

1s
+

µ(2)

2s
+ · · ·+ f(P )

P s
)

is true. In other words, if I take f(P ) at P , then ζ(s) has a zero point at
Re(s) > 1/2. It is assumed that the zero point is s = σ + ∞i, but this
argument is not accurate. Here, I will only discuss the fact that it is possible
to take “the distorted Möbius function” instead of the Möbius function.

conjecture 1. The Riemann Hypothesis is unprovable. In other words, the
Riemann Hypothesis is an ”independent proposition”.

Consider the Riemann Hypothesis for the Möbius function as stated in
Proposition 1.

First, consider the case where the negative proposition of the Riemann
Hypothesis can be proven in normal axiom system. This is one possibility.
In the following, I assume that there is no counterexample to Proposition 1
in a finite range.
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Next, I show that the positive proposition of the Riemann Hypothesis is
unprovable.

As Model A, consider the case where

m∑
n=1

µ(n) = O(m
1
2
+ϵ)

is true for all m.

As Model B, consider in non-standard analysis.

m∑
n=1

µ(n) = O(m
1
2
+ϵ0)

holdss for some infinitesimal ϵ0 > 0 and m = ∞ case. amd the case where

m∑
n=1

µ(n) = O(m
1
2
+ϵ)

is not true for m = ∞.

Model A is the model the Riemann Hypothesis is true. Model B is the model
the Riemann Hypothesis is false.

There is no counterexample to Proposition 1 in a finite range. Model
A holds in a finite range. Model A is ”consistent” in ZFC(K.Kunen[?] In-
troduction§1). (Model A consists of equations that are not contradictory to
each other. In such a case, it is said to be ”consistent”. (K.Kunen[?] Intro-
duction§1))

Let take “the sum of distorted Möbius functions” for m = P well. Then,
Model B is true when m = ∞. Model B is ”consistent” in Non-Standard
Analysis.

In such a case, the Riemann Hypothesis is independent of theory and
cannot be proven. (K.Kunen[?] Introduction§1)

It is possible that the negative proposition of the Riemann Hypothesis is
provable, or the positive proposition of the Riemann Hypothesis is unprov-
able.

2 Equivalent Propositions

I will state that the three equivalent propositions of the Riemann Hypothesis
are unprovable.
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Proposition 2.
π(x) = li(x) +O(x

1
2
+ϵ)

In the Non-standard Analysiis, I will consider the situation at P → ∞,
assuming that π(x) is summed g(P ) > 1 for a certain prime number P . Or

π(x) = O(m
1
2
+ϵ0)

holds some infinitesimal ϵ0 > 0 and m = ∞.
As with the Möbius function, it is also clear that two opposing models

exist and that they are consistent. Therefore, it is impossible to prove. Of
course, it is equally possible to disprove it.

Proposition 3.

σ(n) < eγn log log n(for n > 5040)

In the Non-Standard Analysiis, For a sufficiently large prime factor P of
σ(n), replace all divisors AP s related to P with AP s × h(P )s(h(P ) > 1).
Note that this proposition is an ”inequality”, so a model in which only one
number does not satisfy the inequality is sufficient. This is because, unlike
the previous two, σ(n) should not be treated as ”quantitative”. Similarly,
two consistent models can be created. Of course, this can also be disproved
by finding a case in which the inequality does not hold within a finite range.

Proposition 4. The only non-trivial zero point of the Riemann Zeta function
is on Re(s) = 1/2.

In this case, it is a ”conjecture” half. I think in Non-Standard Analysis.

conjecture 2. For Re(s) > 1/2, there exists a zero point of the Riemann
Zeta function that can be written in the form s = Re(s) +∞i.

I can only see in some calculations.

ζ(2/3 + 1020.9 · · · i) = 0.21 · · ·+ 0i

ζ(2/3 + 100, 049.4239 · · · i) = 0.19 · · ·+ 0i

ζ(2/3 + 10, 000, 111.93 · · · i) = 0.21 · · ·+ 0i

ζ(2/3 + 1, 000, 000, 395.2 · · · i) = 0.189 · · ·+ 0i

ζ(2 + 1009.9753 · · · i) = 0.73 · · ·+ 0i

ζ(2 + 1, 000, 000, 402.2 · · · i) = 0.71 · · ·+ 0i
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Of course, I have not examined all pure real values, and the result only seems
to gradually approach zero. If I replace the real value part (2/3, 2) with a
number smaller than 1/2, the result becomes even worse and it is hard to
imagine that it approaches zero.

If ζ(s) = 0, Re(s) = 1/2, then for infinitesimal ϵ0, we can set ζ(s+ ϵ0) =
0, Re(s + ϵ0) ̸= 1/2. We used the continuity of the Riemann Zeta function.
This condition alone is sufficient to show that the Riemann hypothesis is
unprovable. This impossibility of proving includes a scenario that I do not
want to think about. It is impossible to prove, but it is possible to disprove it.
This means that I can find a counterexample to the zero point from a small
number, but the Riemann Hypothesis cannot be proven in this direction.

Let’s look at one more thing

Proposition 5.∫ ∞

0

∫ ∞

1
2

1− 12t2

(1 + 4t2)3
log|ζ(σ + it)|dσdt = π(3− γ)

32

In this case,

∑
ρ

Re(ρ)

|ρ|2
=

∑
ρ

1
2

|ρ|2
⇔ the Riemann Hypothesis

is the basis, so

lim
Im(ρ)→∞

Re(ρ)

|ρ|2
= 0

Therefore, (in the sense of this paper) in cases where the Riemann Hypothesis
does not hold and where the Riemann Hypothesis does hold,

∑
ρ

Re(ρ)

|ρ|2
=

∑
ρ

1
2

|ρ|2

holds. (Note that the only two zero points where the imaginary part of the
model B’s secondary case, the infinity are s = Re(s) +∞i, Re(s)−∞i.) In
other words, this is insufficient as a judgment condition (at least within this
paper). That is, it is not necessary to discuss it.

Special thanks: I was very grateful to my friend H. Tokitu for translating in
English. I would like to express my gratitude to him.
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