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Abstract

We find one proof for one form of the change of variable in integration
result with Lebesgue integrals.

The main theorem We assume that N ∈ {1, 2, 3, . . .} is some number,
and equip RN with Euclidean topology. We assume that U ⊂ RN and V ⊂
RN are open sets. We assume that ϕ : U → V is a bijective mapping that is
continuously differentiable in its domain, and whose Jacobian Dϕ(x) is non-
singular for all x ∈ U . We assume that A ⊂ U is a Lebesgue measurable set.
Then ϕ(A) is Lebesgue measurable. If f : ϕ(A) → [−∞,∞] is a Lebesgue
measurable function, then∫

ϕ(A)

f(y)dmN (y) =

∫
A

(f ◦ ϕ)(x)
∣∣det(Dϕ(x))

∣∣dmN (x),

where the integrals are Lebesgue integrals. This means that if an integral on
one side of the equation exists as a member of [−∞,∞], then also the other
side exists with the same value. If an integral on one side of the equation
fails to exist, then also the integral on the other side fails to exist.

Theorem 1 We assume that N ∈ {1, 2, 3, . . .} is some number, and that
I ⊂ RN is a bounded interval. We fix some ε > 0. Then there exists a finite
collection C1, C2, . . . , CK ⊂ RN of cubes such that

I =
K⋃
k=1

Ck and
K∑
k=1

mN (Ck) < mN (I) + ε.

Here mN means the N -dimensional Lebesgue measure. By cubes we
mean intervals whose widths in all axis directions are the same. We omit
the proof of Theorem 1.

Theorem 2 We assume that N ∈ {1, 2, 3, . . .} is some number, and that
I1, I2, I3, . . . ⊂ RN is a sequence of intervals. Then there exists a sequence
J1, J2, J3, . . . ⊂ RN of intervals such that J1, J2, J3, . . . are almost disjoint
and

∞⋃
k=1

Ik =

∞⋃
k=1

Jk.
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By the intervals J1, J2, J3, . . . being almost disjoint we mean thatmN (Jk∩
Jk′) = 0 for all k, k′ ∈ {1, 2, 3, . . .} such that k 6= k′. So the boundaries of
the intervals can overlap. We omit the proof of Theorem 2.

Theorem 3 We assume that N ∈ {1, 2, 3, . . .} is some number, and
equip RN with Euclidean topology. We assume that U ⊂ RN is an open set
such that mN (U) < ∞. We fix some ε > 0. Then there exists a sequence
C1, C2, C3, . . . ⊂ RN of cubes such that

U =
∞⋃
k=1

Ck and
∞∑
k=1

mN (Ck) < mN (U) + ε.

Proof According to the definition of Lebesgue measure there exists a
sequence I1, I2, I3, . . . ⊂ RN of intervals such that

U ⊂
∞⋃
k=1

Ik and

∞∑
k=1

mN (Ik) < mN (U) +
ε

2
.

We can assume it to be known that since U is open, there exists a sequence
J1, J2, J3, . . . ⊂ RN of intervals such that

U =
∞⋃
k=1

Jk.

According to Theorem 2 there also exists a sequence J ′1, J
′
2, J
′
3, . . . ⊂ RN of

intervals such that J ′1, J
′
2, J
′
3, . . . are almost disjoint and

U =
∞⋃
k=1

Jk =
∞⋃
k=1

J ′k.

Now (Ik ∩ J ′k′)k,k′∈{1,2,3,...} is a countable collection of intervals and empty
sets such that

U =
∞⋃

k,k′=1

(Ik ∩ J ′k′)

and

∞∑
k,k′=1

mN (Ik ∩ J ′k′) =

∞∑
k=1

mN

(
Ik ∩

( ∞⋃
k′=1

J ′k′
))
≤

∞∑
k=1

mN (Ik)

< mN (U) +
ε

2
.

Let’s denote that I ′1, I
′
2, I
′
3, . . . is the same collection of intervals as

(Ik ∩ J ′k′)k,k′∈{1,2,3,...}. We can omit the empty sets from being present in
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I ′1, I
′
2, I
′
3, . . .. Then

U =

∞⋃
k=1

I ′k and

∞∑
k=1

mN (I ′k) < mN (U) +
ε

2
.

Then by Theorem 1 for all k ∈ {1, 2, 3, . . .} there exists a collection
Ck,1, Ck,2, . . . , Ck,Kk

of cubes such that

I ′k =

Kk⋃
k′=1

Ck,k′ and

Kk∑
k′=1

mN (Ck,k′) < mN (I ′k) +
ε

2k+1
.

Let’s denote that C1, C2, C3, . . . is the same collection of cubes as
(Ck,k′)k∈{1,2,3,...},k′∈{1,2,...,Kk}. Then

U =
∞⋃
k=1

Ck

and

∞∑
k=1

mN (Ck) =
∞∑
k=1

Kk∑
k′=1

mN (Ck,k′) <
∞∑
k=1

(
mN (I ′k) +

ε

2k+1

)
=

∞∑
k=1

mN (I ′k) +
ε

2
< mN (U) + ε.

�

Theorem 4 We assume that N ∈ {1, 2, 3, . . .} is some number, and
equip RN with Euclidean topology. We assume that U ⊂ RN is an open set,
and that X ⊂ U is a set such that m∗N (X) <∞. We fix some ε > 0. Then
there exists a sequence C1, C2, C3, . . . ⊂ U of cubes such that

X ⊂
∞⋃
k=1

Ck and

∞∑
k=1

mN (Ck) < m∗N (X) + ε.

Here m∗N means the Lebesgue outer measure.

Proof According to the definition of Lebesgue outer measure there exists
a sequence I1, I2, I3, . . . ⊂ RN of intervals such that

X ⊂
∞⋃
k=1

Ik and
∞∑
k=1

mN (Ik) < m∗N (X) +
ε

2
.

We can assume it to be known that since U is open, there exists a sequence
J1, J2, J3, . . . ⊂ RN of intervals such that

U =

∞⋃
k=1

Jk.
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According to Theorem 2 there also exists a sequence J ′1, J
′
2, J
′
3, . . . ⊂ RN of

intervals such that J ′1, J
′
2, J
′
3, . . . are almost disjoint and

U =
∞⋃
k=1

Jk =
∞⋃
k=1

J ′k.

Now (Ik∩J ′k′)k,k′∈{1,2,3,...} is some countable collection of intervals and empty
sets such that

X ⊂
∞⋃

k,k′=1

(Ik ∩ J ′k′) and Ik ∩ J ′k′ ⊂ U ∀k, k′ ∈ {1, 2, 3, . . .}.

Let’s denote that I ′1, I
′
2, I
′
3, . . . ⊂ U is the same collection of intervals as

(Ik ∩ J ′k′)k,k′∈{1,2,3,...}. We can omit the empty sets from being present in
I ′1, I

′
2, I
′
3, . . .. Then by Theorem 1 for all k ∈ {1, 2, 3, . . .} there exists a

collection Ck,1, Ck,2, . . . , Ck,Kk
⊂ U of cubes such that

I ′k =

Kk⋃
k′=1

Ck,k′ and

Kk∑
k′=1

mN (Ck,k′) < mN (I ′k) +
ε

2k+1
.

Let’s denote that C1, C2, C3, . . . ⊂ U is the same collection of cubes as
(Ck,k′)k∈{1,2,3,...},k′∈{1,2,...,Kk}. Then

X ⊂
∞⋃
k=1

Ck

and

∞∑
k=1

mN (Ck) =

∞∑
k=1

Kk∑
k′=1

mN (Ck,k′) <

∞∑
k=1

(
mN (I ′k) +

ε

2k+1

)
=

∞∑
k,k′=1

mN (Ik ∩ J ′k′) +
ε

2
=

∞∑
k=1

mN

(
Ik ∩

( ∞⋃
k′=1

J ′k′
))

+
ε

2

≤
∞∑
k=1

mN (Ik) +
ε

2
< m∗N (X) + ε.

�

Theorem 5 We assume that N ∈ {1, 2, 3, . . .} is some number, and
equip RN with Euclidean topology. We assume that U ⊂ RN is an open set,
and that f : U → RN is a mapping that is differentiable in its domain. We
assume that there exists a constant C ∈ R such that

‖∇fn(x)‖ ≤ C ∀ n ∈ {1, 2, . . . , N}, x ∈ U.
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Then for all sets X ⊂ U

m∗N (f(X)) ≤ (NC)Nm∗N (X).

If C = 0 and m∗N (X) =∞, we use the convention 0 · ∞ = 0.

Proof If C = 0 or m∗N (X) =∞, the claim is obvious, so we can assume
that C > 0 and m∗N (X) < ∞. Let’s fix some ε > 0. Then according to
Theorem 4 there exists a sequence C1, C2, C3, . . . ⊂ U of cubes such that

X ⊂
∞⋃
k=1

Ck and

∞∑
k=1

mN (Ck) < m∗N (X) + ε.

Let’s denote that x1, x2, x3, . . . ∈ U are the center points of the cubes,
and that `1, `2, `3, . . . ∈ R are the widths of the cubes. Let’s define a
new sequence of cubes D1, D2, D3, . . . ⊂ RN by setting them to be closed,
their center points to be f(x1), f(x2), f(x3), . . ., and their widths to be
NC`1, NC`2, NC`3, . . .. Then the measures of the new cubes can be written
as

mN (Dk) = (NC)NmN (Ck) ∀ k ∈ {1, 2, 3, . . .}.

Let’s set our objective to be to prove the relation

f(Ck) ⊂ Dk ∀ k ∈ {1, 2, 3, . . .}.

We fix some k ∈ {1, 2, 3, . . .} and y ∈ f(Ck). There exists x ∈ Ck such that
y = f(x). Since Ck is a convex set that belongs to U , also the line between
xk and x belongs to U . According to Mean Value Theorem of differentation,
for all n ∈ {1, 2, . . . , N} there exists a point ξn along the line between xk
and x such that

fn(x)− fn(xk) = (x− xk) · ∇fn(ξn).

Then

∥∥y − f(xk)
∥∥2 =

N∑
n=1

(
yn − fn(xk)

)2
=

N∑
n=1

(
(x− xk) · ∇fn(ξn)

)2
≤

N∑
n=1

‖x− xk‖2
∥∥∇fn(ξn)

∥∥2 ≤ N∑
n=1

(√N`k
2

)2
C2

=
1

4
N2`2kC

2.

This means ∥∥y − f(xk)
∥∥ ≤ 1

2
NC`k,
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and y ∈ Dk, so we succeeded in proving the relation f(Ck) ⊂ Dk. Then

f(X) ⊂ f
( ∞⋃

k=1

Ck

)
=

∞⋃
k=1

f(Ck) ⊂
∞⋃
k=1

Dk,

and

m∗N (f(X)) ≤ m∗N

( ∞⋃
k=1

Dk

)
≤

∞∑
k=1

mN (Dk) =
∞∑
k=1

(NC)NmN (Ck)

< (NC)N
(
m∗N (X) + ε

)
.

We get the claim of the theorem by taking the limit ε→ 0. �

We can assume it to be known that a measure of a parallelogram is
given by an absolute value of a determinant, and that a linear mapping
A ∈ RN×N transforms the outer measure of a set X ⊂ RN according to
the formula m∗N (AX) = |det(A)|m∗N (X). Then you might guess that if a
function is approximately ϕ(x) ≈ Ax, it should also have the approximation
m∗N (ϕ(X)) ≈ |det(A)|m∗N (X). Theorem 6 below is one way of turning this
approximation into a rigor form.

Theorem 6 We assume that N ∈ {1, 2, 3, . . .} is some number, and
equip RN with Euclidean topology. We assume that X ⊂ RN is some set,
that A ∈ RN×N is an invertible matrix, and that a function ϕ : X → RN

has been defined by a formula

ϕ(x) = ψ(x) + Ax,

where the function ψ : X → RN has the property that it is differentiable in
int(X), and

‖∇ψn(x)‖ ≤ ε ∀ n ∈ {1, 2, . . . , N}, x ∈ int(X)

with some constant ε ≥ 0. Then

m∗N
(
ϕ(X)

)
≤
(
1+2εN‖A−1‖F

)N |det(A)|mN

(
int(X)

)
+ m∗N

(
ϕ(X∩∂X)

)
.

Here int(X) means the interior of X, and ‖ • ‖F means the Frobenius
norm.

Proof Relations

ϕ(X) = ϕ
(
int(X) ∪ (X ∩ ∂X)

)
= ϕ(int(X)) ∪ ϕ(X ∩ ∂X)

and
m∗N

(
ϕ(X)

)
≤ m∗N

(
ϕ(int(X))

)
+ m∗N

(
ϕ(X ∩ ∂X)

)
6



are clear, so it is sufficient to prove

m∗N
(
ϕ(int(X))

)
≤
(
1 + 2εN‖A−1‖F

)N |det(A)|mN

(
int(X)

)
.

If mN (int(X)) =∞, the claim is obvious, so we can assume mN (int(X)) <
∞. Then also

mN

(
Aint(X)

)
= |det(A)|mN

(
int(X)

)
< ∞.

Since A is invertible, Aint(X) is open. Let’s fix some ε > 0. Then according
to Theorem 3 there exist a sequence C1, C2, C3, . . . ⊂ RN of cubes such that

Aint(X) =

∞⋃
k=1

Ck and

∞∑
k=1

mN (Ck) < |det(A)|mN (int(X)) + ε.

Let’s denote that `1, `2, `3, . . . ∈ R are the widths of the cubes C1, C2, C3, . . ..
Let’s define new cubes C1(ε), C2(ε), C3(ε), . . . ⊂ RN by setting Ck(ε) to be
that closed cube which is obtained from Ck by extending it to both directions
of all axes by amount εN‖A−1‖F`k. This means that

mN

(
Ck(ε)

)
=
(
1 + 2εN‖A−1‖F

)N
mN (Ck) ∀ k ∈ {1, 2, 3, . . .}.

Let’s choose some xk ∈ A−1Ck for all k ∈ {1, 2, 3, . . .}. Then also x1, x2, x3,
. . . ∈ X. Let’s set our objective to be to prove the relation

ϕ
(
int(X)

)
⊂

∞⋃
k=1

(
ψ(xk) + Ck(ε)

)
. (1)

If we succeed in this, then

m∗N
(
ϕ
(
int(X)

))
≤

∞∑
k=1

m∗N
(
ψ(xk) + Ck(ε)

)
=
(
1 + 2εN‖A−1‖F

)N ∞∑
k=1

mN (Ck)

<
(
1 + 2εN‖A−1‖F

)N(|det(A)|mN

(
int(X)

)
+ ε

)
,

and we can complete the proof by taking the limit ε→ 0. So now everything
depends on proving (1).

Let’s fix some y ∈ ϕ(int(X)). Then there exists x ∈ int(X) such that
y = ϕ(x). There also exists k ∈ {1, 2, 3, . . .} such that Ax ∈ Ck. If we
succeed in proving that

ϕ(x) ∈ ψ(xk) + Ck(ε),
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we succeed in proving (1). Relation

ϕ(x) = ψ(xk) +
(
ψ(x)−ψ(xk)

)
+ Ax ∈ ψ(xk) +

(
ψ(x)−ψ(xk)

)
+ Ck

is clear, so (1) follows, if we prove(
ψ(x)− ψ(xk)

)
+ Ck ⊂ Ck(ε). (2)

Now everything depends on proving (2).
Relations x ∈ A−1Ck and xk ∈ A−1Ck are true, and since A−1Ck is con-

vex, the line between x and xk also belongs to A−1Ck ⊂ int(X). According
to Mean Value Theorem of differentiation, for all n ∈ {1, 2, . . . , N}, there
exists ξn on the line between x and xk such that

ψn(x)− ψn(xk) = (x− xk) · ∇ψn(ξn).

Then

∥∥ψ(x)− ψ(xk)
∥∥2 =

N∑
n=1

(
ψn(x)− ψn(xk)

)2
=

N∑
n=1

(
(x− xk) · ∇ψn(ξn)

)2
≤

N∑
n=1

‖x− xk‖2
∥∥∇ψn(ξn)

∥∥2 ≤ N‖x− xk‖2ε2,

and∥∥ψ(x)− ψ(xk)
∥∥ ≤ √N‖x− xk‖ε =

√
N‖A−1A(x− xk)‖ε

≤
√
N‖A−1‖F‖A(x− xk)‖ε ≤

√
N‖A−1‖F

(√
N`k

)
ε

= εN‖A−1‖F`k.

Inequality ‖Ax−Axk‖ ≤
√
N`k comes from the fact that since the points Ax

and Axk both belong to the cube Ck, whose side length is `k, the distance
between the points cannot be larger than

√
N`k.

The cube Ck(ε) was defined so that Ck was extended to all axis directions
by the amount εN‖A−1‖F`k, and now the length of ψ(x) − ψ(xk) is equal
or less than this amount, so we can conclude that (2) is true. �

Theorem 7 We assume that N ∈ {1, 2, 3, . . .} is some number, and
equip RN with Euclidean topology. We assume that U ⊂ RN is an open
set, that X ⊂ U is a compact set, and that V ⊂ X is an open set. We
assume that ϕ : U → RN is a mapping that is continuously differentiable in
its domain, and whose Jacobian Dϕ(x) is non-singular for all x ∈ U . Then

m∗N
(
ϕ(V )

)
≤
∫
V

∣∣det(Dϕ(x))
∣∣dmN (x).
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Most people who see Theorem 7 probably wonder that why do we use the
relation V ⊂ X ⊂ U in a such complicated way, and wouldn’t it be simpler to
just estimate m∗N (ϕ(U))? The answer is that estimating m∗N (ϕ(U)) directly
would be more difficult, and the relation V ⊂ X ⊂ U makes the proof
easier. You can criticize Theorem 7 for being a weak result due to its
formulation, but we will use Theorem 7 as a tool to prove a similar stronger
result Theorem 8 later below.

Proof According to the assumptions (Dϕ(x))−1 exists for all x ∈ U .
Let’s justify that the mapping x 7→ (Dϕ(x))−1 is continuous for all x ∈ U .
There exists a formula for inverse matrices where each element of the inverse
matrix depends on finite amount of additions, subtractions, multiplications
and divisions of the elements of the matrix, so in domain where the de-
terminant is non-zero, inverse matrix depends continuously on the matrix.
We have assumed that x 7→ Dϕ(x) is continuous, so x 7→ (Dϕ(x))−1 is a
composite of two continuous functions. Also the Frobenius norm ‖ • ‖F is
continuous. Real valued continuous functions reach their maximal values on
compact sets, so we can define

M := max
x∈X
‖(Dϕ(x))−1‖F,

and then M <∞.
Let’s fix some ε > 0. Continuous mappings on compact sets are al-

ways uniformly continuous, so the restriction X → RN×N , x 7→ Dϕ(x) is
uniformly continuous. We can choose δ1 > 0 such that the relation

‖x− x′‖ < δ1 =⇒ ‖∇ϕn(x)−∇ϕn(x′)‖ < ε

∀ n ∈ {1, 2, . . . , N}, x, x′ ∈ X

is true. Also X → R, x 7→ det(Dϕ(x)) is uniformly continuous, so we can
choose δ2 > 0 such that the relation

‖x− x′‖ < δ2 =⇒
∣∣det(Dϕ(x))− det(Dϕ(x′))

∣∣ < ε ∀ x, x′ ∈ X

is true. Let’s denote δ := min{δ1, δ2}.
Let’s write V in form V = V1 ∪ V2 ∪ · · · ∪ VK , where V1, V2, . . . , VK

are almost disjoint, and where each Vk has been defined so that it is an
intersection of V and some cube that is of the form[
j1

δ

2
√
N
, (j1+1)

δ

2
√
N

]
×
[
j2

δ

2
√
N
, (j2+1)

δ

2
√
N

]
×· · ·×

[
jN

δ

2
√
N
, (jN+1)

δ

2
√
N

]
,

with some indices j1, j2, . . . , jN ∈ Z. We can assume that all V1, V2, . . . , VK
are non-empty. Then for all k ∈ {1, 2, . . .K} the set Vk has the property

x, x′ ∈ Vk =⇒ ‖x− x′‖ ≤ δ

2
< δ.
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Let’s fix some k ∈ {1, 2, . . . ,K}, and investigate what kind of upper bounds
we can find for m∗N (ϕ(Vk)). Let’s fix some xk ∈ Vk, and define a mapping

ψ : Vk → RN , ψ(x) = ϕ(x) − (Dϕ(xk))x.

Now ψ has the property that it is differentiable in int(Vk), and∥∥∇ψn(x)
∥∥ =

∥∥∇ϕn(x)−∇ϕn(xk)
∥∥ < ε

∀ n ∈ {1, 2, . . . , N}, x ∈ int(Vk)

If we write ϕ in form

ϕ(x) = ψ(x) + (Dϕ(xk))x,

we see that according to Theorem 6

m∗N (ϕ(Vk)) ≤
(
1 + 2εN‖(Dϕ(xk))−1‖F

)N ∣∣det(Dϕ(xk))
∣∣mN (int(Vk))

+ m∗N
(
ϕ(Vk ∩ ∂Vk)

)
.

Let’s justify that m∗N (Vk∩∂Vk) = 0. In general boundaries don’t necessarily
have measure zero, but boundaries of cubes do, and Vk ∩ ∂Vk is a subset of
boundary of the cube (that was defined with some indices j1, j2, . . . , jN ∈ Z).
Assume as an antithesis that some x ∈ Vk ∩ ∂Vk would not belong to a
boundary of the cube. Then x belongs to the interior of the cube, so some
B(x, r1) is a subset of the cube. Also x belongs to V that is an open set,
so some B(x, r2) is a subset of V . Now B(x,min{r1, r2}) is a subset of Vk,
meaning that x ∈ int(Vk), and not x ∈ Vk ∩ ∂Vk.

Then according to Theorem 5

m∗N
(
ϕ(Vk ∩ ∂Vk)

)
≤
(
N max

x∈X
n∈{1,2,...,N}

‖∇ϕn(x)‖
)N

m∗N (Vk ∩ ∂Vk)︸ ︷︷ ︸
=0

= 0.

By using inequalities ‖(Dϕ(xk))−1‖F ≤ M and mN (int(Vk)) ≤ mN (Vk) we
get an upper bound

m∗N (ϕ(Vk)) ≤ (1 + 2εNM)N
∣∣det(Dϕ(xk))

∣∣mN (Vk).

A relation ∣∣det(Dϕ(xk))
∣∣ ≤ ∣∣det(Dϕ(x))

∣∣ + ε ∀ x ∈ Vk

is true, so we can write the upper bound as

m∗N (ϕ(Vk)) ≤ (1 + 2εNM)N
∫
Vk

∣∣det(Dϕ(xk))
∣∣dmN (x)

≤ (1 + 2εNM)N
(∫
Vk

∣∣det(Dϕ(x))
∣∣dmN (x) + εmN (Vk)

)
.
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Since V1, V2, . . . , VK are almost disjoint, we can write an integral over V as
a sum of integrals over V1, V2, . . . , VK .

m∗N (ϕ(V )) = m∗N

( K⋃
k=1

ϕ(Vk)
)
≤

K∑
k=1

m∗N (ϕ(Vk))

≤ (1 + 2εNM)N
K∑
k=1

(∫
Vk

∣∣det(Dϕ(x))
∣∣dmN (x) + εmN (Vk)

)
= (1 + 2εNM)N

(∫
V

∣∣det(Dϕ(x))
∣∣dmN (x) + εmN (V )

)
Since X is compact, it is bounded and has a finite measure, so mN (V ) ≤
mN (X) <∞. We get the claim of the theorem by taking the limit ε→ 0.

�

There is a theorem that states that if a continuous mapping maps sets of
zero measure to sets of zero measure, then it maps Lebesgue measurable sets
to Lebesgue measurable sets. This is based on a result that if A is Lebesgue
measurable, then it is possible to write it in a form A = E∪X1∪X2∪X3∪· · · ,
where E has measure zero, and X1, X2, X3, . . . are compact. A continuous
mapping will map X1, X2, X3, . . . into compact sets, which are Lebesgue
measurable, so essentially the image of A will be Lebesgue measurable, if
the image of E is Lebesgue measurable. If the image of E has measure zero,
then it is Lebesgue measurable.

Theorem 8 We assume that N ∈ {1, 2, 3, . . .} is some number, and equip
RN with Euclidean topology. We assume that U ⊂ RN is an open set, that
X ⊂ U is a compact set, and that A ⊂ int(X) is a Lebesgue measurable set.
We assume that ϕ : U → RN is a mapping that is continuously differentiable
in its domain, and whose Jacobian Dϕ(x) is non-singular for all x ∈ U .
Then ϕ(A) is Lebesgue measurable, and

mN

(
ϕ(A)

)
≤
∫
A

∣∣det(Dϕ(x))
∣∣dmN (x).

Proof To prove that ϕ(A) is Lebesgue measurable, it is sufficient to
prove that ϕ maps any subset of int(X), that has a measure zero, into a set
of measure zero. Let E ⊂ int(X) be some set such that m∗N (E) = 0. Then
according to Theorem 5

m∗N (ϕ(E)) ≤
(
N max

x∈X
n∈{1,2,...,N}

‖∇ϕn(x)‖

︸ ︷︷ ︸
<∞

)N
m∗N (E)︸ ︷︷ ︸

=0

= 0.

11



Let’s fix some ε > 0. Since mN (A) ≤ mN (X) <∞, there exists an open set
V ⊂ RN such that

A ⊂ V and mN (V \A) < ε.

Then V ∩ int(X) is an open set that satisfies the relation

V ∩ int(X) ⊂ X ⊂ U,

so according to Theorem 7

m∗N
(
ϕ(V ∩ int(X))

)
≤

∫
V ∩int(X)

∣∣det(Dϕ(x))
∣∣dmN (x).

Also
A ⊂ V ∩ int(X) and mN

(
(V ∩ int(X)) \A

)
< ε,

so

mN (ϕ(A)) ≤ m∗N
(
ϕ(V ∩ int(X))

)
≤

∫
V ∩int(X)

∣∣det(Dϕ(x))
∣∣dmN (x)

=

∫
A

∣∣det(Dϕ(x))
∣∣dmN (x) +

∫
(V ∩int(X))\A

∣∣det(Dϕ(x))
∣∣dmN (x)

≤
∫
A

∣∣det(Dϕ(x))
∣∣dmN (x) + εmax

x∈X

∣∣det(Dϕ(x))
∣∣.

We get the claim of the theorem by taking the limit ε→ 0. �

Theorem 9 We assume that N ∈ {1, 2, 3, . . .} is some number, and
equip RN with Euclidean topology. We assume that U ⊂ RN and V ⊂ RN

are open sets. We assume that ϕ : U → V is a bijective mapping that
is continuously differentiable in its domain, and whose Jacobian Dϕ(x) is
non-singular for all x ∈ U . We assume that X ⊂ U is a compact set, and
that A ⊂ int(X) is a Lebesgue measurable set. We denote Y := ϕ(X) and
B := ϕ(A). Then Y is compact, B is Lebesgue measurable, and B ⊂ int(Y ).
If f : B → [0,∞] is a Lebesgue measurable function, then∫

B

f(y)dmN (y) =

∫
A

(f ◦ ϕ)(x)
∣∣det(Dϕ(x))

∣∣dmN (x),

where the integrals are Lebesgue integrals. This means that either the both
integrals are finite with the same value, or that they are both infinite.

Most people who see Theorem 9 probably wonder that why do we use
the relation A ⊂ int(X) ⊂ X ⊂ U in a such complicated way, and wouldn’t

12



it be simpler to integrate over an arbitrary Lebesgue measurable set A ⊂ U?
A challenge with an arbitrary Lebesgue measurable set A ⊂ U is that the
behaviour of ϕ can become bad in the limit where x approaches the boundary
∂U , and it is difficult to approximate how ϕ distorts subsets close to the
boundary. By using the relation A ⊂ int(X) ⊂ X ⊂ U , where X is compact,
we isolate A from the boundary ∂U , which makes the proof easier. However,
we will replace the relation A ⊂ int(X) ⊂ X ⊂ U with the simpler relation
A ⊂ U later in Theorem 11.

Proof Continuous mappings map compact sets into compact sets, so
compactness of Y is clear. B is Lebesgue measurable according to Theorem
8. Let’s prove the relation B ⊂ int(Y ) next, and fix some y ∈ B. Then
there exists x ∈ A such that y = ϕ(x). There also exists ε > 0 such that
B(x, ε) ⊂ X. According to Inverse Function Theorem ϕ−1 is continuous, so,
also keeping in mind that V is open, there exists δ > 0 such that B(y, δ) ⊂ V
and ϕ−1(B(y, δ)) ⊂ B(x, ε). Then also

B(y, δ) ⊂ ϕ
(
B(x, ε)

)
⊂ ϕ(X) = Y,

which means that y ∈ int(Y ).
Let’s assume that∫

B

f(y)dmN (y) ≤
∫
A

(f ◦ ϕ)(x)
∣∣det(Dϕ(x))

∣∣dmN (x).

is true under the assumptions of the theorem. What would this imply?
According to Inverse Function Theorem ϕ−1 : V → U is continuously differ-
entiable with a Jacobian Dϕ−1(y) that is non-singular for all y ∈ V . We can
swap the places of the objects (x,A,X,U) and (y,B, Y, V ), and apply the
“≤”-result by substituting functions ϕ ← ϕ−1 and f ← (f ◦ ϕ)|det(Dϕ)|.
We get∫

A

(f ◦ ϕ)(x)
∣∣det(Dϕ)(x)

∣∣dmN (x)

≤
∫
B

(
(f ◦ ϕ) ◦ ϕ−1

)︸ ︷︷ ︸
=f

(y)
∣∣det(Dϕ)(ϕ−1(y))

∣∣∣∣det(Dϕ−1)(y)
∣∣︸ ︷︷ ︸

=1

dmN (y)

=

∫
B

f(y)dmN (y).

This is the “≥”-direction of the claim of the theorem. So we see that it is
sufficient to prove the “≤”-direction of the claim of the theorem, since the
“≥”-direction follows on its own.

Let’s assume that ∫
B

f(y)dmN (y) < ∞

13



and fix some ε > 0. According to the definition of Lebesgue integral there
exists disjoint Lebesgue measurable sets B1, B2, . . . , BK ⊂ B and numbers
c1, c2, . . . , cK ∈ [0,∞] such that for all k ∈ {1, 2, . . . ,K} ck ≤ f(y) for all
y ∈ Bk, and ∫

B

f(y)dmN (y) <

K∑
k=1

ckmN (Bk) + ε.

Let’s define sets A1, A2, . . . , AK by setting Ak := ϕ−1(Bk) for all k ∈
{1, 2, . . . ,K}. Then A1, A2, . . . , AK are disjoint, since ϕ is a bijection, and
for all k ∈ {1, 2, . . . ,K} ck ≤ (f ◦ ϕ)(x) for all x ∈ Ak. According to
Theorem 8 A1, A2, . . . , AK are Lebesgue measurable, and

mN (Bk) = mN (ϕ(Ak)) ≤
∫
Ak

∣∣det(Dϕ(x))
∣∣dmN (x).

Then∫
B

f(y)dmN (y) <
K∑
k=1

ckmN (Bk) + ε

≤
K∑
k=1

ck

∫
Ak

∣∣det(Dϕ(x))
∣∣dmN (x) + ε

≤
K∑
k=1

∫
Ak

(f ◦ ϕ)(x)
∣∣det(Dϕ(x))

∣∣dmN (x) + ε

=

∫
A1∪A2∪···∪AK

(f ◦ ϕ)(x)
∣∣det(Dϕ(x))

∣∣dmN (x) + ε

≤
∫
A

(f ◦ ϕ)(x)
∣∣det(Dϕ(x))

∣∣dmN (x) + ε.

We get the “≤”-direction of the claim of the theorem by taking the limit
ε→ 0.

Let’s assume that ∫
B

f(y)dmN (y) = ∞

and fix some R ∈ R. According to the definition of Lebesgue integral there
exists disjoint Lebesgue measurable sets B1, B2, . . . , BK ⊂ B and numbers
c1, c2, . . . , cK ∈ [0,∞] such that for all k ∈ {1, 2, . . . ,K} ck ≤ f(y) for all
y ∈ Bk, and

R <
K∑
k=1

ckmN (Bk).
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Let’s again define sets A1, A2, . . . , AK by setting Ak := ϕ−1(Bk) for all k ∈
{1, 2, . . . ,K}. Again A1, A2, . . . , AK are disjoint and Lebesgue measurable,
and

mN (Bk) ≤
∫
Ak

∣∣det(Dϕ(x))
∣∣dmN (x).

Using similar steps as above we get

R <
K∑
k=1

ckmN (Bk) ≤
K∑
k=1

ck

∫
Ak

∣∣det(Dϕ(x))
∣∣dmN (x)

≤ · · · ≤
∫
A

(f ◦ ϕ)(x)
∣∣det(Dϕ(x))

∣∣dmN (x).

We get ∫
A

(f ◦ ϕ)(x)
∣∣det(Dϕ(x))

∣∣dmN (x) = ∞

by taking the limit R → ∞. We conclude that the “≤”-direction of the
claim of the theorem is true whether the integral of f(y) is finite or not. �

Theorem 10 We assume that N ∈ {1, 2, 3, . . .} is some number, and
equip RN with Euclidean topology. We assume that U ⊂ RN is an open set.
Then there exists a sequence X1 ⊂ X2 ⊂ X3 ⊂ · · · ⊂ U of compact sets such
that

U =
∞⋃
k=1

int(Xk).

Proof If U = RN , we can set Xk = [−k, k]N , so we can next assume
that U ( RN . Let’s define a function f : RN → [0,∞[ by setting

f(x) = dist(x,RN \ U) = inf
x′∈RN\U

‖x− x′‖.

Then f is continuous, because relation

f
(
B
(
x,
ε

2

))
⊂
]
f(x)− ε, f(x) + ε

[
is true for all x ∈ RN and ε > 0. Let’s justify this. If we fix some arbitrary
point from f

(
B
(
x, ε2

))
, we can denote it as f(x) with some x ∈ RN such

that ‖x− x‖ < ε
2 . There exists x′ ∈ RN \ U such that

‖x− x′‖ < f(x) +
ε

2
.

Then

f(x) ≤ ‖x− x′‖ ≤ ‖x− x‖ + ‖x− x′‖ < f(x) + ε.
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There also exists x′′ ∈ RN \ U such that

‖x− x′′‖ < f(x) +
ε

2
.

Then

f(x) ≤ ‖x− x′′‖ ≤ ‖x− x‖ + ‖x− x′′‖ < f(x) + ε.

We can summarize these results as

f(x) − ε < f(x) < f(x) + ε.

Let’s define sets S1, S2, S3, . . . ⊂ RN by setting

Sk = f−1
([1

k
,∞
[)

∀ k ∈ {1, 2, 3, . . .}.

Then all S1, S2, S3, . . . are closed, and satisfy relation S1 ⊂ S2 ⊂ S3 ⊂
· · · . Relation Sk ⊂ U is true for all k ∈ {1, 2, 3, . . .}, since for all x ∈ Sk
dist(x,RN \ U) ≥ 1

k , meaning x /∈ RN \ U .
Let’s prove

f−1
(]1

k
,∞
[)
⊂ int(Sk) ∀ k ∈ {1, 2, 3, . . .}.

For this, let’s fix arbitrary

x ∈ f−1
(]1

k
,∞
[)
,

and define a radius

r :=
1

2

(
f(x) − 1

k

)
.

Then r > 0. We want to prove that B(x, r) ⊂ Sk. This is the same as

f
(
B(x, r)

)
⊂
[1

k
,∞
[
.

If we fix an arbitrary point from f(B(x, r)), we can denote it as f(x) with
some x ∈ RN such that ‖x − x‖ < r. Then there exists x′ ∈ RN \ U such
that

f(x) > ‖x− x′‖ − r ≥ ‖x− x′‖︸ ︷︷ ︸
≥f(x)

− ‖x− x‖︸ ︷︷ ︸
<r

− r > f(x) − 2r =
1

k
.

Let’s next prove that

U =
∞⋃
k=1

int(Sk).
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The “⊃”-direction is obvious, so it is sufficient to prove the “⊂”-direction.
For this it is sufficient to prove that

U ⊂
∞⋃
k=1

f−1
(]1

k
,∞
[)
.

Let’s fix arbitrary x ∈ U . Since U is open, there exist a radius r > 0 such
that B(x, r) ⊂ U . This means that f(x) = dist(x,RN \ U) ≥ r, and

f(x) ∈
]1

k
,∞
[

and x ∈ f−1
(]1

k
,∞
[)

for k so large that 1
k < r. Then also the relation

U =
∞⋃
k=1

(
int(Sk) ∩ ]− k, k[N

)
is obvious. If we define a sequence X1, X2, X3, . . . ⊂ RN by setting

Xk := Sk ∩ [−k, k]N ∀ k ∈ {1, 2, 3, . . .},

then all X1, X2, X3, . . . are compact and satisfy the relation X1 ⊂ X2 ⊂
X3 ⊂ · · · ⊂ U . If we prove that

int(Sk) ∩ ]− k, k[N ⊂ int(Xk) ∀ k ∈ {1, 2, 3, . . .},

then

U =
∞⋃
k=1

int(Xk)

follows, and the proof becomes complete. Let’s fix arbitrary x ∈ int(Sk)∩
] − k, k[N . Then there exists r1 > 0 such that B(x, r1) ⊂ Sk and r2 > 0
such that B(x, r2) ⊂ [−k, k]N . If we set r := min{r1, r2}, then B(x, r) ⊂
Sk ∩ [−k, k]N = Xk, meaning that x ∈ int(Xk). �

Theorem 11 We assume that N ∈ {1, 2, 3, . . .} is some number, and
equip RN with Euclidean topology. We assume that U ⊂ RN and V ⊂ RN

are open sets. We assume that ϕ : U → V is a bijective mapping that is
continuously differentiable in its domain, and whose Jacobian Dϕ(x) is non-
singular for all x ∈ U . We assume that A ⊂ U is a Lebesgue measurable
set. Then ϕ(A) is Lebesgue measurable. If f : ϕ(A)→ [0,∞] is a Lebesgue
measurable function, then∫

ϕ(A)

f(y)dmN (y) =

∫
A

(f ◦ ϕ)(x)
∣∣det(Dϕ(x))

∣∣dmN (x),
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where the integrals are Lebesgue integrals. This means that either the both
integrals are finite with the same value, or that they are both infinite.

Proof According to Theorem 10 there exists a sequence X1 ⊂ X2 ⊂
X3 ⊂ · · · ⊂ U of compact sets such that

U =
∞⋃
k=1

int(Xk).

Then relations

A =
∞⋃
k=1

(
A ∩ int(Xk)

)
and

ϕ(A) =
∞⋃
k=1

ϕ
(
A ∩ int(Xk)

)
are true. According to Theorem 9 set ϕ(A∩int(Xk)) is Lebesgue measurable
for all k ∈ {1, 2, 3, . . .}. A countable union of Lebesgue measurable sets
is Lebesgue measurable, so ϕ(A) is Lebesgue measurable. According to
Theorem 9∫

ϕ(A∩int(Xk))

f(y)dmN (y) =

∫
A∩int(Xk)

(f ◦ ϕ)(x)
∣∣det(Dϕ(x))

∣∣dmN (x)

for all k ∈ {1, 2, 3, . . .}. Also relations

A ∩ int(X1) ⊂ A ∩ int(X2) ⊂ A ∩ int(X3) ⊂ · · ·

and

ϕ(A ∩ int(X1)) ⊂ ϕ(A ∩ int(X2)) ⊂ ϕ(A ∩ int(X3)) ⊂ · · ·

are true, so according to Monotone Convergence Theorem∫
A

(f ◦ ϕ)(x)
∣∣det(Dϕ(x))

∣∣dmN (x)

= lim
k→∞

∫
A∩int(Xk)

(f ◦ ϕ)(x)
∣∣det(Dϕ(x))

∣∣dmN (x)

and ∫
ϕ(A)

f(y)dmN (y) = lim
k→∞

∫
ϕ(A∩int(Xk))

f(y)dmN (y),
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so ∫
ϕ(A)

f(y)dmN (y) =

∫
A

(f ◦ ϕ)(x)
∣∣det(Dϕ(x))

∣∣dmN (x).

�

Proof of the main theorem Set ϕ(A) is Lebesgue measurable ac-
cording to Theorem 11. Let’s denote B = ϕ(A), and define new sets by
setting

B+ :=
{
f(y) > 0

∣∣ y ∈ B}, B− :=
{
f(y) < 0

∣∣ y ∈ B},
A+ :=

{
(f ◦ ϕ)(x) > 0

∣∣ x ∈ A} and A− :=
{

(f ◦ ϕ)(x) < 0
∣∣ x ∈ A}.

Sets A± and B± are Lebesgue measurable, since f is Lebesgue measurable
and ϕ is continuous. Also the relation B± = ϕ(A±) is true with the both
sign choices. According to the definition of Lebesgue integral∫

B

f(y)dmN (y) =

∫
B+

f(y)dmN (y) −
∫
B−

(
− f(y)

)
dmN (y)

and∫
A

(f ◦ ϕ)(x)
∣∣det(Dϕ)(x)

∣∣dmN (x) =

∫
A+

(f ◦ ϕ)(x)
∣∣det(Dϕ)(x)

∣∣dmN (x)

−
∫
A−

(−f ◦ ϕ)(x)
∣∣det(Dϕ)(x)

∣∣dmN (x).

Here the integrals on right are integrals of non-negative functions. According
to Theorem 11∫

B+

f(y)dmN (y) =

∫
A+

(f ◦ ϕ)(x)
∣∣det(Dϕ)(x)

∣∣dmN (x)

and ∫
B−

(
− f(y)

)
dmN (y) =

∫
A−

(−f ◦ ϕ)(x)
∣∣det(Dϕ)(x)

∣∣dmN (x),

so we see that the claim of the main theorem is true. �
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