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Abstract

Matrix mechanics is very convenient to express all the operations in quantum me-
chanics that are vague to use probabilities. However, we are not always aware of
disadvantages of matrix mechanics. Matrices have generally properties of asymmetric,
and the symmetric are very limited as in the case of the diagonal ones of matrices. So
far, most experiments with their observables are in case of asymmetric cases in using
two matrices for two measurements to any of two objects, for example a position and
the related momentum of a particle at any condition. Here, naturally these objects
could not be symmetric in terms of matrices, and slightly related between each other.
That means it happens we have a convenient but disqualified explanation for the un-
certain principle on confusion between experiments with errors and a disadvantage of
using matrices. Therefore, using matrices looks fine analytically, but the essential of
the uncertainty principle using matrices are not always correctly mentioned when we
measure true symmetric cases between two objects and then their two observables.
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1 Introduction

Quantum physics is highly developed with its applications since longtime ago, see, e.g.,
[1, 2, 3, 4, 5, 6, 7]. One of the central points of the theory is so-called the uncertainty
principle which encompasses some kind of mathematical inequalities for the threshold
of precision of physical simultaneous measurements of pairs of physical observables in
physical quantities. For instance, in 1927, Werner Heisenberg stated that the more
precisely the position of some particle is determined, the less precisely its momentum
can be known, and vice versa [8].

It seems that when the uncertainty principle had disclosed, the experiment was
first and then the principle followed the results to explain. As for the experiment, in
observables the position of the particle is probably and naturally at least related to the
momentum of it in terms of some natural environment. It means that the two physical
quantities are disclosed by means of the matrices not diagonal in two characteristic
equations for solving each of the physical quantities. Therefore, since the two results
are not correctly measured, the use of two matrices not diagonal is naturally correct.

However, as these days the precision of measurement equipments became higher,
we could have the case where two observables are equal, and the two matrices in their
theoretical analyses correspond to the diagonal (See [9]). That means measurements
are independent each other and then symmetrical to the order of these observables by
virtue of two characteristic matrices diagonal. Here we do not have the uncertainty
principle because we have two correct observables simultaneously under two diagonal
matrices for the two measurements.

While the two characteristic matrices are not diagonal and then not commutative,
the two observables are not independent mathematically. So, the order of measure-
ments gives the different results and the observables are not simultaneous and depend-
ing on the order of measurements.

In fact, yet von Neumann’s axiom cannot explain the contradiction of such a sym-
metric observables even with the matrices not diagonal. If so, the sum rule and product
rule must be reconsidered in the axiom by him in formalized quantum mechanics [10].

As a result, the uncertainty principle is destroyed when two observables are in-
dependent on the order of the measurements, namely symmetric measurements and
then commutative in these observables with their theoretical characteristic matrices
diagonal.

The second section is on the quantum measurement theory for commuting observ-
ables based on functions, the third is about the symmetry of the observables, the four
is for orthodox measurements in quantum theory, and finally the fifth section is to the
uncertainty principle.

2 Quantummeasurement theory for commuting ob-

servables based on functions

The relation between quantum physics and Newton physics is based on observables in
measurements from quantum physics to Newton’s. So, it is convenient and important
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in progressing today’s physics, of course, in quantum’s. Therefore, we try to formalize
observables as functional values from in quantum physics, where the function is to
obtain the eigenvalue of some eigenvalue problem shown by its corresponding matrix.

In common practice, eigenvalues usually evolve as representative observables. the
series/order of measurements seem to be regarded as some function to show the two
eigenvalues as observables. Here the measurements consist of two observables in ob-
taining eigenvalues of two eigensystems based upon the matrices whose structures are
diagonal matrices. As a result, we may introduce the function to obtain observables
from the eigenvalue problem shown some matrix.

When the function is working for two matrices A1 and A2 eigenvalues problem with
the order of measurements, these matrices are treated in product rule between these
matrices, the measurement operation seems to be this.

f(A1) · f(A2) = f(A1 · A2). (2.1)

And the following relation as functions is very important: f(g(O)) = g(f(O)), where
O means A1 or A2, shows the order of the two measurements f and g.

In practice, the two measurements are usually depending on the order of these
operations because we do not have commutative between these matrices except for
diagonal matrices for two eigenvalue problem in product rule operation.

In short, at the same time we can obtain the observables of two eigenvalue problem
with only diagonal matrix cases. This mathematical proof in matrix physics is obvious
and rather should be usable in such quantum problems and their analyses. Therefore,
the theoretical fact is even in the uncertainty principle. In fact, the principle has the
exception where the two observables are true at the same time because these eigen
problem matrices are commutative and then we get two eigenvalues at the same time.

3 Symmetry of observables

The symmetry of observables is worth considering, in order to obtain a true interpre-
tation of the uncertainty principle.

It can be said that the symmetry of two observables and the commutative of the
two are equivalent. To prove this, let us investigate that when the observables are not
commutative, the observables are not symmetric using spin’s behavior.

1. Trying to measure spin observables of σx and σz in eigenstate with the eigenvalue
+1.

σz| ↑� = +1| ↑�. (3.1)

2. Then, we have +1 as the result of measurement spin observable σz.

3. The result of spin observable σx is −1 with a probability 0.5.

σx| ↑� = ±1| ↑�. (3.2)
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4. Even though the results are ±1, these measurements are depend on the order of
these two.

5. It happens that the first measurement of spin observables σx might obtain +1
with the probability 0.5.

σx| ↑� = ±1| ↑�. (3.3)

6. This means that if the two observables are non-commutative, the result of mea-
surements is not symmetric, which means that the fact depends on the order of
these two measurements.

7. Let us make the contraposition of the two above. We can obtain that when the
two observables are symmetric, namely the case not concerning the two measure-
ments’ order, these observables are commutative.

8. Obviously if the two observables are commutative, the results of the two mea-
surements are symmetric independent of the order of the measurements.

As a result, if two observables are symmetric independent of the order of the two
measurements means if and only if the two observables are commutative.

4 Orthodox quantum measurement theory

Let σ1
z
, σ2
z
be two z-component Pauli operators, where they are also supposed to be

commutative. They could be defined respectively as follows:

σ1
z
≡

�
1 0
0 −1

�
and σ2

z
≡

�
1 0
0 −1

�
. (4.1)

Let | ↑� and | ↓� be eigenstates of σz such that σz| ↑� = +1| ↑� and σz| ↓� = −1| ↓�.
The measured results of trials are either +1 or −1. These +1 or −1 are real value
in Newton’s physical real world from quantum world. Generally speaking, the results
through measurements are in Newton’s mechanics.

5 Counterexample against the uncertainty princi-

ple

The uncertainty principle says we cannot have precisely and simultaneously two data
concerning two observables respectively. However, if the measured observables are
commutative, we can have simultaneously two data under study. Therefore the uncer-
tainty is not general principle if the measured observables are commutative. Figure 1
represents how to learn or rather how to rethink of the uncertainty principle. Let us
discuss this point more precisely as follows:

Let us consider a simultaneous eigenstate of σ1
z
, σ2
z
, that is, | ↑↓�. We might be

in an inconsistency against the uncertainty principle when the first result is precisely
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Figure 1: How to learn or rather how to rethink of the uncertainty principle

+1 by the measured observable σ1
z
, the second result is precisely −1 by the measured

observable σ2
z
, and then [σ1

z
, σ2
z
] = 0. We may be in the inconsistency against the

uncertainty principle when we suppose [σ1
z
, σ2
z
] = 0 because we have simultaneously

two data concerning two observables respectively.
In summary, we may have been in the inconsistency against the uncertainty prin-

ciple when the first result is precisely +1, the second result is precisely −1, and then
[σ1
z
, σ2
z
] = 0, where the quantum state is a simultaneous eigenstate of σ1

z
, σ2
z
, that is,

| ↑↓�.

6 Discussion and Conclusion

Basically the uncertainty principle needs the case [σ1
z
, σ2
z
] not equal 0, which theoreti-

cally causes the different results in each of the two observavles in calculations. Such a
model is very much suitable for the practical experiments in Newton’s world capturing
the practical measurement results including errors with the experiments.

Extending our understanding the uncertainty principle to much more, the uncer-
tainty principle is based upon the matrix mechanics in terms of the beauty of mathe-
matical explanation of it. In fact the above relation does not explain the rare but true
case in observables.

It seems that most observables with their real physical experiment errors, even very
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small, admit the above relation with matrices not diagonal. While the measurement
precision with the equipment is not so high, the uncertainty principle is reasonable with
the feature of matrices mathematics. And most cases in measurements in Newton’s
world are allowable as their experimental errors. So far so good!

Proportional to the development of experimental equipment, the measurements are
more precisional, and the mathematical analyses of the observables are not always
correct. There could be the case that we cannot use the matrix mechanics in all the
cases because there could be the one where the matrices diagonal were needed.

In conclusion, we, with our sincere desire, explain that the uncertainty principle is
convenient with its own property due to matrix mechanics’s power limit, if measure-
ments are done with not so high precision equipment to make results including errors.
However, if the observables are from on the experiment with correct measurements
in high precision, and the matrix analyses with the matrices diagonal are used to the
correct results, the uncertain principle is, of course, used reasonably and correctly.
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