The constant relationships between heat, temperature and mass

Emil Junvik

Abstract

A closer look at the mass-energy equivalence reveals details of constant relationships between heat, temperature and mass. Not only does heat $emission(T^4)$ have a constant relationship to mass via the speed of light, but temperature does as well.

Results

Quote from "Does the inertia of a body dependupon its energy-content?":

"If a body gives off the energy L in the form of radiation, its mass diminishes by L/c2."

The relationship between thermal radiation and mass is according to Einstein $L = mc^2$, where $L = \sigma T^4$. There are several constant relationships here that appears to have been overlooked.

Since $L = \sigma T^4$, it means that:

$$\frac{T^4}{m} = \frac{c^2}{\sigma} = 1.58500147 * 10^{24} K^4 / kg \ (1)$$

The definition of the Stefan-Boltzmann constant:

$$\sigma = \frac{2\pi^5 k^4}{15c^2 h^3} = \frac{\pi^2 k^4}{60\hbar^3 c^2} = 5.67037442 * 10^{-8} W/m^2/K^4$$

When including it in its entirety, we can now see that:

$$\frac{T^4}{m} = \frac{c^2}{2\pi^5 k^4 / 15c^2 h^3} = \frac{c^4 15h^3}{2\pi^5 k^4} = \frac{c^4 60h^3}{\pi^2 k^4}$$
 (2)

Where:

Planck's constant $h = 6.62607015 \times 10^{-34} J/Hz$

Boltzmann's constant $k = 1.380649 * 10^{-23} J/K$

Planck's reduced constant $\hbar = 1.054571817 * 10^{-34} J/s$.

Which leads to:

$$T^4 2\pi^5 k^4 = mc^4 15h^3$$
 (3)

And with Planck's reduced constant:

$$T^4\pi^2k^4 = mc^460\hbar^3$$
 (4)

Now we can reduce it to a constant relationship to mass for both T^4 and temperature.

Here I'll use k=konstant.

$$k_1 = \frac{T^4}{mc^4} = \frac{15h^3}{2\pi^5k^4} = \frac{60\hbar^3}{\pi^2k^4} = 1.9622162 * 10^{-10}K^4/kg/m^4/s^4$$
 (5)

Instead of $L = mc^2$ we now have:

$$T^4 = mc^4k_1 \tag{6}$$

where
$$c^4k_1 = 1.58500147 * 10^{24}K^4/kg$$
 . (7)

Then, with the fourth root of k_1 , we get another constant:

$$k_2 = \sqrt[4]{k_1} = 3.742714625 * 10^{-3} K/kg/m/s$$
 (8)

And now we can get a constant relationship also between temperature and mass:

$$T = mck_2$$
 (9)

References

e mc2.pdf (fourmilab.ch)