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Abstract: We present the theoretical description of plane Couette flow based on the previously proposed equations 
of vortex fluid, which take into account both the longitudinal flow and the vortex tubes rotation. It is shown that 
considered equations have several stationary solutions describing different types of laminar flow. We also discuss 
the simple model of turbulent flow consisting of vortex tubes, which are moving chaotically and simultaneously 
rotating with different phases. Using the Boussinesq approximation we obtain analytical expression for the 
stationary profile of mean velocity in turbulent Couette flow, which is in good agreement with experimental data 
and results of direct numerical simulations. Our model demonstrates that near-wall turbulence can be described 
by a coordinates-independent coefficient of eddy viscosity. In contrast to the viscosity of the fluid itself this 
parameter characterizes the turbulent flow and depends on Reynolds number and roughness of the channel walls. 
Potentially, the proposed model can be considered as a theoretical basis for the experimental measurement of eddy 
viscosity coefficient. 

1. Introduction 
To describe vortex flows, many authors construct Maxwell-type symmetric equations for the local 

velocity and vorticity vectors [1–6]. In particular, these equations are used for the description of turbulent 
flows [4] and electron-ion plasma in the framework of a hydrodynamic two-fluid model [7–15]. However, 
in all mentioned papers, the additional equation for vortex motion is obtained by taking the "curl" 
operator from the Euler equation and hence the resulting equation is not independent. Recently, we have 
developed an alternative approach based on the droplet model of a liquid, which was first introduced by 
Helmholtz [16]. In particular, we have obtained a closed system of Maxwell-type equations for vortex 
flow, taking into account the rotation and twisting of vortex tubes [17]. We applied this approach to derive 
self-consistent hydrodynamic equations for electron-ion plasma [18] and electron fluids in solids [19]. 

In the present paper, we apply the proposed equations for the description of the plane Couette flow 
between two moving plates [20,21]. This is a relatively simple canonical type of a walls-bounded shear 
flow, which is actively studied both theoretically and experimentally. At present, extensive experimental 
material accumulated on studies of laminar and turbulent Couette flows [22-26]. 

The conventional theoretical description of laminar Couette flow is based on the solution of the 
Navier-Stokes equation for a viscous fluid. The stationary solution of this equation corresponds to a steady 
flow with a linear velocity distribution in the channel between the plates [20]. The description of turbulent 
flow is a more difficult task. The turbulent flow is characterized by unsteady eddy movements with a wide 
range of spatial scales, which are superimposed on a slowly varying mean flow. Vortices mix fluid and are 
responsible for the higher rates of momentum, mass, and heat transfer from large to small scales. In 
accordance with the concept of Reynolds decomposition, in this case all quantities in a liquid can be 
represented as a composition of mean and fluctuating values, and the averaged turbulent flow is 
described by the Reynolds-averaged Navier-Stokes (RANS) equation for mean values [27,28]. The main 
problem related to this description is finding the Reynolds stress tensor, which takes into account the 
effect of velocity fluctuations on the average flow characteristics [28]. There are several approaches for 
calculation of the Reynolds tensor and closing the system of equations [29–39]. Boussinesq proposed the 
concept of turbulent viscosity [29], establishing a relationship between stress tensor and mean flow 
velocity. However, in order to obtain a satisfactory match with the experimental data within the 
framework of the RANS equation, it is commonly assumed that the eddy viscosity coefficient depends on 
the coordinates in the turbulent flow that requires the development of complex models of the boundary 
layer using additional equations [31-37]. With the development of computer technology, different 
methods for the direct numerical simulations (DNS) based on solution of non-stationary RANS equation 
have become widespread. These methods allow one to simulate the evolution of unsteady flows and 
calculate the average values of different physical characteristics [35-39]. Especially the DNS are in demand 



2 
 

in engineering calculations of complex flows. However, the requirement for a fine grid for calculations 
significantly limits the possibilities of these methods, especially at high Reynolds numbers. 

Although the existing analytical models of turbulence provide adequate description of experimental 
data, they contain many fitting parameters and are difficult to analyze. The advantages and disadvantages 
of various models are considered in [40,41]. A relatively simple analytical model of the turbulent Couette 
flow was proposed in [31]. It satisfactorily describes the experimental distributions of mean velocity in the 
central region of the flow, however the matching of the velocity profiles near the walls require additional 
assumptions related to the properties of the eddy viscosity in this region. Therefore, there is still a need for 
a simple analytical model suitable for the estimation calculations and simple explanation of experimental 
results. 

In the model proposed in this article, vortex tubes are directly involved in the formation of 
walls-bounded flow, which is especially important in the case of turbulent motion. The theoretical 
description of turbulent flow, in addition to the RANS equation, includes an equation describing the 
motion of vortex tubes. This makes it possible to obtain simple analytical solutions for the profiles of the 
mean velocity in Couette flow. Our model contains only two fitting parameters and the calculated mean 
velocity profiles in a good agreement with the experimental data and DNS in the entire cross section of the 
turbulent flow and for various Reynolds numbers (Re). 

2. Model of vortex plane Couette flow 
We consider a flow of viscous vortex fluid formed between two infinite, parallel plates moving 

relative to each other in opposite directions (Fig. 1).  

 

Fig. 1. Sketch of a system consisting of fluid placed between two infinite plates, which move along the X axis with 
speed v in opposite directions. 

As we previously showed in [17], a vortex isentropic flow of viscous fluid is described by the 
following symmetric system of equations: 
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Here с  is a speed of sound, v  is a local velocity,   is the kinematic viscosity, 

  is the Hamilton 

operator,   is the Laplace operator. The value u  is proportional to the enthalpy  




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1u = ,
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cd = d ρ,
ρ

       (2) 
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where   is an enthalpy per unit mass, ρ  is a fluid density. The vector w  characterizes the rotation of 
the vortex tube around its axis 





= 2с ,

d= ,
dt

w θ

θω
        (3) 

where 

θ  is the angular vector of rotation of the vortex tube, ω  is the angular velocity of the vortex tube 

rotation. The value ξ  characterizes the twisting of the vortex tube 

|ξ|= с ,         (4) 

where   is the twisting angle of the vortex tube [17]. To simplify the model we assume that the liquid is 
incompressible ( ρ = const, u = const ) and neglect the twisting of the vortex tubes ( ξ = 0 ). Then the system 
of equations describing the motion of the fluid takes the following form: 
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In plane flow we assume that for the one-dimensional motion along the X axis, the velocity v  has only x 
component and depends only on y coordinate x xv = v (y,t) . Similarly, in plane flow the vector of rotation 
angle w  has only z component and depends only on y coordinate z zw = w (y,t) . Thus, the system of 
equations for the plane flow of vortex fluid takes the following form 
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These equations make it possible to describe the plane Couette flow taking into account the effects 
associated with the rotation of vortex tubes. 

3. Laminar plane Couette flow of vortex fluid 

3.1. Stationary flow without rotation of vortex tubes 
First, we consider a stationary flow, when the angular velocity of the vortex tubes rotation is equal to 

zero ( = 0zω ). We assume that the functions ( )v yx  and ( )zw y  are time-independent. Then the system of 
equations (6) takes the following form: 
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Here we introduce the parameter   /c= . In addition, we assume that for the liquid at the plate surfaces 
the conditions of complete no-slip are realized. This means that the near-wall liquid layer moves at the 
same speed as the plate, and the vortex tubes are rigidly attached to the wall without the possibility of 
rotation around their axis. This brings us to the following boundary conditions 
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       (8) 

The solutions of system (7) satisfying the boundary conditions (8) are 
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The velocity distribution in the channel between the plates is shown schematically in Fig. 2. 

 

Fig. 2. The steady profiles of flow velocity in channel between two moving plates. The solid blue line corresponds to 
the distribution (9). The dotted red line corresponds to the distribution (15). 

Since for the majority of experimentally realized channels (except very thin capillary channels) / 1 h , 
such laminar flow is realized only near the plates surface. 

Schematically, the distribution of the angle of the vortex tubes rotation (10) is shown in Fig. 3. 

 

Fig. 3. Schematic normalized distribution (10) of the angle of the vortex tubes rotation ( / 2zw czθ ) across the channel. 

zwmin (0)θ /2c . 

According to (9) the vortex of velocity (vorticity,  
  

 vΩ ) has only z-component, which is equal to 
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The distribution of the vorticity in the channel between the plates is shown schematically in Fig. 4. 
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Fig. 4. Distributions of vorticity in the channel between two moving plates. The solid blue line corresponds to the 
distribution (11). The dotted red line corresponds to the normalized distribution (18). 

3.2. Flow with in-phase rotation of vortex tubes 
Another stationary flow satisfying Equations (6) is characterized by a uniform field of vortex tubes 

rotating at constant angular velocity zω const=  and having the same phases. We find a solution for the 
angle of vortex tubes rotation as 

z zw t =2сω t.( )        (12) 

In this case the system (6) takes the following form 
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From the first equation of system (13) we obtain 

xv y
h
v= .         (15)  

From the expression (12) we get 

z zθ t = ω t.( )         (16) 

From the second equation of system (13) we obtain the relationship between the angular velocity of tubes 
rotation and the velocity of the plates 

zω
h

v= .
2

        (17) 

Expression (17) shows that in this case the vortex tubes rotate with the maximum angular velocity 
determined by the speed of the plates. The vorticity is constant over the channel cross section and is equal 
to 

2 .z   zω
h
v=        (18) 

The distributions of velocity (15) and vorticity (18) are shown in Figs 2 and 4 by dotted lines. Stationary 
distributions (15) and (18) coincide with the known classical solutions for the Couette flow. 
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3.3. Case of vortex tubes rotating with different phases 
Let us consider a stationary flow consisting of vortex tubes oriented along the Z axis and rotating 

with a constant angular velocity zω = const , but with different phases ( )z y  depending on the y 
coordinate. We will look for a solution in the form 

( ).zz zw y,t = 2сω t + y( )        (19) 

In this case, the Equations (6) take the following form 
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Also we take the following boundary conditions: 
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The solution of the system (20) can be represented in the following form: 
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where the dimensionless parameter α  is 

. zω hα = 2
v

       (24) 

The schematic distribution of velocity over the channel cross section is shown in Fig. 5. Note that in the 
case of α = 0  the solutions (22)-(24) are reduced to (9)-(10), and in the case of α = 1  these solutions are 
reduced to (15)-(17). 

 

Fig. 5. The profile of the velocity in the channel between two moving plates corresponding to the distribution (22).  

4. Turbulent plane Couette flow 
To describe a turbulent flow, we introduce the time-averaged values of the flow velocities denoting 

them as x y zv , v , v  and corresponding fluctuations   x y zv , v , v . Then the local velocities of the turbulent 
flow are written in the following form: 
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Let us consider a plane turbulent flow along the X axis. We take into account that 0y zv = 0, v  and the 
mean velocity ( )xv y,t  depends only on the y coordinate. Also we assume that vortex tubes oriented along 
the Z axis 0xw , 0yw , ( )z zw w y,t . Substituting (25) and (26) into Equation (6), we account that 

fluctuations xv , yv , yv  and xw , yw , zw  depend only on the y coordinate. Then averaging over time 
(Reynolds averaging) we obtain: 
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Here  x yv v  and  z yyw v  are the components of the corresponding Reynolds tensors [27,28]. In the 
framework of Boussinesq approximation [29, 30], we can write 
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where T  is the turbulent (eddy) kinematic viscosity. Let us assume const T , then the Equations (27) 
take the form 
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Let us consider fully developed stationary flow ( )x xv = v y , in which the vortex tubes on average rotate 
with a constant angular velocity zω = const , but with different phases ( )z y . So, we will look for a 
solution in the following form 
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Then the Equations (30) take the final form 
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Here we introduced a characteristic scale of the turbulent length ( ) /T c   T . As the boundary 
conditions, we choose 
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Then the solutions of Equations (32) are written as 
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In form, the solutions (34)-(36) coincide with (22)-(24), but they have a different characteristic spatial scale 
T  , defined by eddy viscosity. As an example, in Fig. 6 we demonstrate the comparison of solution 

(34) with the DNS results for Couette flow with Re = 3000 [42] and Re = 12800 [43].   

 

Fig. 6. Distributions of the mean-velocity in a turbulent Couette flow between two moving plates. Squares ( ) are the 
results of DNS with Re = 3000 [42]; solid red line corresponds to (34) at T / h= 0.18, α = 0.165. Circles ( ) are the DNS 
results with Re = 12800 [43]; solid blue line corresponds to (34) at T / h = 0.072, α = 0.189. The characteristic scale of the 
velocity profiles is Ty . 

 

Fig. 7. Distributions of the mean-velocity in a turbulent Couette flow. Squares ( ) are the experimental results for 
Re = 2900 [44]; solid red line corresponds to (34) at T / h = 0.16, α = 0.3. Circles ( ) are the experimental results for 
Re = 18000 [44]; solid blue line corresponds to (34) at T / h = 0.09, α = 0.24. 
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Fig. 8. Profiles of the mean-velocity in a turbulent Couette flow. Squares ( ) are the experimental data for rough walls 
channel, Re = 10850 [24]; solid red line corresponds to (34) at T / h = 0.14, α = 0.34. Circles ( ) are the experimental 
results for smooth walls channel, Re = 9524 [24]; solid blue line corresponds to (34) at T / h = 0.065, α = 0.21. 

In Fig. 7 we show the comparison of mean velocity distribution (34) with experimental results for Re 2900 
and 18000 [44]. In Fig. 8 we represent the results of velocity profiles fitting for the flows in channels with 
smooth and rough walls at close Re [24]. As can be seen, the velocity profiles calculated within the 
framework of the proposed model are in good agreement with the experimental data and the results of the 
DNS. We believe that it is possible to reproduce the mean velocity profile for the Couette flow with any 
Reynolds number by choosing corresponding combinations of the parameters T and α. 

5. Discussion 
The considered model predicts several types of stationary laminar Couette flow. As can be seen from 

the solution (9)-(10), the laminar motion without vortex tubes rotation is realized only in a narrow region 
near the plates. This regime can be important in tribology at low Re, in case of supersmooth plates sliding 
relative to each other, when a narrow gap between them is filled with a viscous lubricant. However, in the 
case of macroscopic channels the plates have rough surfaces and the microvortices in the near-wall region 
can destroy this flow regime [45,46]. The linear distribution of velocity is obtained in the case when the 
vortex tubes rotate in-phase with the same angular velocity. On the other hand, taking into account the 
non-uniform phases of the tubes rotation, we obtained the solutions (22)-(24), which describe the 
combination of previous two flows.  

The proposed model of a vortex fluid allowed us to describe the stationary profile of the mean 
velocity in turbulent Couette flow. For this purpose, we used the Boussinesq approximation for the 
Reynolds shear stress tensor. In this simple case, we have obtained a closed system of equations for the 
time-averaged values xv

 
and zw , which correctly describes turbulent flow. In particular, we have shown 

that by optimizing the parameters T and α  in (34), it is possible to describe both experimental and DNS 
produced profiles of mean velocity for turbulent Couette flow.  

The experimental data and the results of the DNS (Figs 6 and 7) show that an increase in Re leads to a 
decrease in the slope of the velocity profile in the central region of the channel and a faster decay in the 
near-wall region. In the proposed model, the scale of the profile change in the near-wall region is 
unambiguously determined by the parameter T, which is proportional to the eddy viscosity coefficient 
(see Figs 6 and 7). The parameter α  (which is determined by the speed of walls v  and the velocity of the 
vortex tubes rotation zω ) mainly adjusts the slope of the profile in the central region of the channel. Thus, 
an important achievement of this model is that, within the framework of the equations for a vortex fluid, 
the developed turbulence in the near-wall region is described by a constant eddy viscosity coefficient that 
essentially simplifies the transition layer model. In addition, the comparisons of calculated velocity 
profiles and experimental data for the Couette flows in channels with smooth and rough walls (Fig. 8) 
show that the shape of velocity profile for rough wall channel remains the same, only the slope and the 
rate of near-wall decay are changed. This shows that the model with constant eddy viscosity also works in 
the case of channel with rough walls. An increase in wall roughness is simply described by an increase in 
the eddy viscosity coefficient. 
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So, we emphasize that within the framework of the proposed model the constant coefficient of eddy 
viscosity unambiguously characterizes the turbulent motion of the fluid and is determined by the 
maximum flow velocity (Reynolds number) and the boundary conditions (surface roughness) on the 
channel walls. 

6. Conclusion 
Thus, we considered various types of steady state flow in the channel between two plates moving 

relative to each other, based on the equations describing the vortex motion of viscous fluid. We obtained 
several solutions corresponding to different stationary laminar flows. 

It is especially important that the considered model of a vortex fluid made it possible to describe the 
turbulent Couette flow in the Boussinesq approximation. The calculated average velocity profiles are in 
good agreement with the experimental data and the results of the DNS. This shows that, within the 
framework of these equations, near-wall turbulence is described by a constant coefficient of eddy 
viscosity. This model allows a fairly simple interpretation of the average velocity profiles and simple 
estimates of eddy viscosity coefficient based on experimental measurements. 

In the future, the model of vortex viscous fluid is planned to be applied to describe the plane 
Poiseuille flow and mixed Poiseuille-Couette flow. 
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