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By Oussama Basta 

Abstract—The Goldbach’s Conjecture is an astonishing proposition that stands as one of the most renowned and enduring 

unsolved problems in number theory and mathematics. This research aims to provide a proof for this remarkable 

conjecture. The approach to be followed for the proof is yielded by using a predefined system of equations, and with a 

relatively simple analysis. The proof is quite simple compared to the size of the problem. 

In the second part of this study, we leverage the same system of equations to develop a general mathematical framework 

for predicting prime numbers within the known sequence, laying down a general mathematical framework that is 

computationally concise and can just achieve the objective. With proper selection of the coefficients of the equations in the 

algorithm, it’s guaranteed that prime numbers are among the outputs. The algorithm consists of basic arithmetic 

operations which is by itself ground breaking. The proof of the algorithm is also astoundingly straightforward and 

compact. 

Index Terms— Goldbach’s Conjecture, Number theory, Prime numbers, Prediction 

I. THE PROOF OF QUATERNARY, TERNARY, AND BINARY GOLDBACH’S CONJECTURES 

Definitions; Assuming ζ is an even number greater than 4 and 𝑃𝑐 is a prime number greater than 2, we define our 

system of equations as follows: 

 

 𝐹1 =  𝜁 − 𝑃𝑐                                                                                (1)  

 𝐹2 =  𝜁 + 𝑃𝑐                                                 (2) 

 

A. Proving The Quaternary Goldbach’s Conjecture (QGC)  

While as stated in Theorem 1 from [1]:“Every even integer is a sum of at most 6 primes” In this section, we will prove 

a variant of Theorem 1 referred to as the Quaternary Goldbach’s Conjecture (QGC). The QGC in here is defined as 

follows: "Every even integer greater than 6 can be expressed as the sum of 4 primes." 

From to [2] it is stated that: ”An arbitrary natural number, with the exception of 1, can, for sufficiently large k, be 

represented as the sum of at most k primes.” The Schnirelmann constant, denoted as k, is the resultant of this 

statement. The smallest confirmed value of k is known as the Schnirelmann constant and in [3] it is k≤6. Additionally, 

we have, that every odd number greater than 1 is the sum of at most five primes [4]. 

With all that said, and by writing 𝜁, 𝐹1 and 𝐹2 under the light of these definitions: we have from equations (1) and (2) 

that: 

 

ζ=Pζ1+ Pζ2+ Pζ3+ Pζ4+ Pζ5+ Pζ6                                   (3) 

 

According to k≤6 Because it’s even, then: 

 

F1= Pζ1+ Pζ2+ Pζ3+ Pζ4+ Pζ5+ Pζ6 -𝑃𝑐                                (4) 

 

F2= Pζ1+ Pζ2+ Pζ3+ Pζ4+ Pζ5+ Pζ6+𝑃𝑐                                (5) 

 

LHS of equation (5) can be redefined as the sum of five prime numbers since F2 is odd. In this case, we have: 

 



 

PF2,1+ PF2,2+ PF2,3+ PF2,4+ PF2,5= Pζ1+ Pζ2+ Pζ3+ Pζ4+ Pζ5+ Pζ6+𝑃𝑐                   (6) 

 

And 𝑃𝑐 can always be chosen, so it can be that 𝑃𝑐= 𝑃𝐹2,1or 𝑃𝐹2,2or 𝑃𝐹2,3 or 𝑃𝐹2,4or 𝑃𝐹2,5 in any expansion of 5 prime 

numbers of F2. As defined 𝑃𝑐 is a prime number and F2 is any odd number ≥11. So, if for example 𝑃𝑐= 𝑃𝐹2,5 is chosen 

and taking it to the LHS, then: 

 

PF2,1+ PF2,2+ PF2,3+ PF2,4 = Pζ1+ Pζ2+ Pζ3+ Pζ4+ Pζ5+ Pζ6                        (7) 

 

From the LHS of (7) we can see that the QGC is valid for even numbers greater than 10, as the smallest prime number 

is two and plugging that we get the RHS equals 12. The remaining cases for (7) are LHS =8 and LHS =10 so we prove 

them by plugging prime numbers. So, 8 =2+2+2+2 and 10= 2+2+3+3. Then we have it that QGC holds and k is 

updated to k≤5. 

 

B. Proving the Ternary Goldbach’s Conjecture (TGC) 

 

The famous TGC that is being proven here is defined as: 

“Every odd integer greater than 5 is the sum of three primes.” 

And according to QGC proven earlier, 

 

ζ=Pζ1+ Pζ2+ Pζ3+ Pζ4                                       (8) 

 

Because it’s even, if one of Pζ1, Pζ2, Pζ3 or Pζ4 is chosen to be equal to 𝑃𝑐, in which  𝑃𝑐 is defined as a prime number 

and 𝐹1 in this case is any odd number ≥11. In this case and following the same logic of proving QGC: 

 

𝐹1= Pζ1+ Pζ2+ Pζ3+ Pζ4 -𝑃𝑐                                     (9) 

𝐹2= Pζ1+ Pζ2+ Pζ3+ Pζ4+𝑃𝑐                                      (10) 

 

Let’s establish that 𝑃𝑐=Pζ1 or Pζ2 or Pζ3 or Pζ4 in any expansion of 4 prime numbers of ζ so the work is done on the 

RHS this time, where: 

 

PF1,1+ PF1,2+ PF1,3+ PF1,4+ PF1,5= Pζ1+ Pζ2+ Pζ3+ Pζ4 -𝑃𝑐                        (11) 

 

For k≤5 since 𝐹1 is odd, so if 𝑃𝑐 = 𝑃ζ4 is chosen then, 

 

PF1,1+ PF1,2+ PF1,3+ PF1,4+ PF1,5= Pζ1+ Pζ2+ Pζ3                             (12) 

 

And since 𝐹1 ≥11 the remaining cases of F2 =7=2+2+3 and F2 =9=3+3+3. Then TGC holds for this case. And 

Schnirelman’s constant is indeed k≤4. 

 

C. Proving the Binary Goldbach’s Conjecture (BGC) 

Let, 

 

 ζ=Pζ1+ Pζ2+ Pζ3 + Pζ4                                                              (13) 

 

Because It’s now established that Schnirelman’s constant is k≤4, in this case, we have: 

 

F1= Pζ1+ Pζ2+ Pζ3+Pζ4-𝑃𝑐                                      (14) 

F2= Pζ1+ Pζ2+ Pζ3+Pζ4+𝑃𝑐                                            (15) 

 

Again since 𝑃𝑐= is a prime number and F2 is any odd integer >5. 𝑃𝑐 can be always chosen, so, 𝑃𝑐 = PF2,1 or PF2,2 or PF2,3 

in any expansion of 3 prime numbers of F2, which are the TGC primes of F2; This time we will use the LHS of 

equation (15): 

 

F2 = PF2,1+ PF2,2+ PF2,3                                      (16) 

 

So, 

 

PF2,1+ PF2,2+ PF2,3= Pζ1+ Pζ2+ Pζ3+ Pζ4+Pc                              (17) 



 

PF2,1+ PF2,2+ PF2,3- Pc= Pζ1+ Pζ2+ Pζ3+ Pζ4                              (18) 

 

So if we choose 𝑃𝑐 = 𝑃𝐹2,3, 

 

PF2,1+ PF2,2= Pζ1+ Pζ2+ Pζ3+ Pζ4                                  (19) 

 

And since ζ is any even number sufficiently large>6, for the case of F2 =6, 6=3+3 and for F2 =4, 4=2+2. Then BGC 

holds for this case and k≤3 now. And Finally The Binary Goldbach’s Conjecture is proven. 

II. THE ALGORITHM   

Define the following three equations: 

 

𝑃𝑐 = |𝛼1𝑃1 − 𝛽
1

𝑃𝑖+1 − 𝛾
1
|                                                                     (20)  

𝐹1 = |𝛼2𝑃𝑖 + 𝛽2𝑃𝑖+1 + 𝛾2 − 𝑃𝑐| = 𝜁 − 𝑃𝑐                                          (21) 

𝐹2 = 𝛼2𝑃1 + 𝛽2𝑃𝑖+1 + 𝛾2 + 𝑃𝑐 = 𝜁 + 𝑃𝑐                                           (22) 

 

Where Pi is a prime number with index i from the known sequence of prime numbers and the coefficients α1, β1, γ1, α2, 

β2, and γ2 are natural numbers. 

After defining those equations, the following algorithm shall be used: 

1. Get two consecutive prime numbers. 

2. Sieve through the coefficients. 

3. If equation (20) outputs a prime number and 𝜁 ≫ 𝑃𝑐, then one of the equations (21) and (22) must yield a 

prime number. 

III. PROOF OF THE ALGORITHM   

Define: 

 

𝐹1 = 𝜁 + 𝑃𝑐                                                               (23)  

𝐹2 = 𝜁 − 𝑃𝑐                                                                (24)  

 

Where, 

 

𝑃𝑐 = 𝛼1𝑃𝑖 + 𝛽
1
𝑃𝑖+1 + 𝛾

1
                                                       (25)   

𝜁 = 𝛼2𝑃𝑖 + 𝛽2𝑃𝑖+1 + 𝛾2                                       (26)   

     

Where α1, β1, γ1, α2, β2, and γ2 are natural numbers. 

With simple adding, subtracting and multiplying 𝐹1 and 𝐹2 from equations (23) and (24) we have these three 

equations, 

 

𝐹2 − 𝐹1 = 2𝑃𝑐                                              (27)  

𝐹2 + 𝐹1 = 2𝜁                                                    (28)  
𝜁2−𝐹1𝐹2

𝑃𝑐
2 = 1                                                         (29)  

 

First of all equation (29) shows that 𝜁 ≫ 𝑃𝑐.Now, there are three cases, (A) both F1 and F2 are not prime numbers, (B) 

either one of them is a prime number, or (C) both are prime numbers. 

For the first case (A) where both are not prime 

By TGC 

 

𝐹1𝐹2 = (𝑃1 + 𝑃2 + 𝑃3)(𝑃4 + 𝑃5 + 𝑃6) = 𝑃1𝑃4 + 𝑃1𝑃5 + 𝑃1𝑃6 + 𝑃2𝑃4 + 𝑃2𝑃5 + 𝑃2𝑃6 + 𝑃3𝑃4 + 𝑃3𝑃5 + 𝑃3𝑃6            (30) 

 

𝐹1𝐹2  =  (𝜁 +  𝑃𝑐)(𝜁 −  𝑃𝑐) =  𝜁2  −  𝑃𝑐
2
                                      (31) 

=  𝜁2  −  (𝛼1𝑃𝑖  +  𝛽1 𝑃𝑖+1  +  𝛾1)2 (𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝑃𝑐 𝑓𝑟𝑜𝑚 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (20)) 
=  (𝛼2𝑃𝑖 + 𝛽2 𝑃𝑖+1  +  𝛾2)2  −  (𝛼1 𝑃𝑖  +  𝛽1 𝑃𝑖+1  +  𝛾1)2(𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝜁 𝑓𝑟𝑜𝑚 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (21) 𝑜𝑟 (22)) 
= 𝛼2

2 𝑃𝑖
2 + 𝛽2

2 𝑃𝑖+1
2  +  𝛾2

2  +  2𝛼2𝛽2 𝑃𝑖  𝑃𝑖+1  +  2𝛼2 𝛾2 𝑃𝑖  +  2𝛽2𝛾2𝑃𝑖+1 
−(𝛼1

2 𝑃𝑖
2  −  𝛽1

2𝑃𝑖+1
2  −  𝛾1

2  −  2𝛼1 𝛽1 𝑃𝑖  𝑃𝑖+1  −  2𝛼1𝛾1 𝑃𝑖  −  2𝛽1𝛾1 𝑃𝑖+1) 

 
𝐹1𝐹2 = (𝛼2

2 − 𝛼1
2)𝑃𝑖

2 + (𝛽2
2 − 𝛽1

2)𝑃𝑖+1
2 + 2(𝛼2𝛽2 − 𝛼1𝛽1)𝑃𝑖𝑃𝑖+1 

+2(𝛼2𝛾2 − 𝛼1𝛾1)𝑃𝑖 + 2(𝛽2𝛾2 − 𝛽1𝛾1)𝑃𝑖+1 + (𝛾2
2 − 𝛾1

2)                                                                            (32) 



 

 

It can be seen that by comparing equations (30) and (32) that there is no integral solution to the coefficients which we 

already defined as integral. To show that, we equate equations 25 and 27 and express them in matrix form as AX=B, 

 

[

(𝛼2
2 − 𝛼1

2) 2(𝛼2𝛽
2

− 𝛼1𝛽
1

) 2(𝛼2𝛾
2

− 𝛼1𝛾
1
)

2(𝛼2𝛽
2

− 𝛼1𝛽
1

) (𝛽
2
2 − 𝛽

1
2) 2(𝛽

2
𝛾

2
− 𝛽

1
𝛾

1
)

2(𝛼2𝛾
2

− 𝛼1𝛾
1
) 2(𝛽

2
𝛾

2
− 𝛽

1
𝛾

1
) (𝛾

2
2 − 𝛾

1
2)

 ] [
𝑃𝑖

𝑃𝑖+1

1
] = [

𝑃1𝑃4 𝑃1𝑃5 𝑃1𝑃6

𝑃2𝑃4 𝑃2𝑃5 𝑃2𝑃6

𝑃3𝑃4 𝑃3𝑃5 𝑃3𝑃6

 ]            (33) 

 

It can be noticed that the Matrix A is symmetrical, hence, the rows of the matrix A are linearly dependent, and the 

determinant of A is zero the there are no integral coefficients, one of 𝐹1 and  𝐹2 or both are prime numbers. 

 

IV. A PRIMALITY TEST BASED ON THE ALGORITHM 

The steps for creating a primality test algorithm using a predetermined matrix of coefficients; which are adjusted to 

identify whether either 𝐹1, 𝐹2, or both are prime numbers. Can be summarized as follows, based on the provided 

previously provided proof: 

 

1. The first step is to create the matrix A. This matrix contains the coefficients found by iteration for the two 

equations (20), (21) and (22). 

2. The second step is to create the vector B. This vector contains the values of N, N + 1 or any small even 

number, and 1. 

3. The third step is to calculate the dot product of A and B. The dot product is a common operation in linear 

algebra, and it can be calculated in any programming language. 

4. The fourth step is to check if either element of C is equal to 1. If either element of C is equal to 1, then N is 

prime. Otherwise, N is not prime. 
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