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Abstract. In this paper it is going to be proved that exists infinitely many

primes that are of the form n2 + 1.

1. Introduction

In this paper, it is going to be proved that there are infinitely many primes p of
the form p = n2 + 1 (the problem is known as 4th of the four ”unattackable” prob-
lems listed in the 1912 Fifth Congress of Mathematicians in Cambridge by Landau
[13, 3]; the first problem, Goldbach’s conjecture, has been recently disproved in [4];
the second problem, twin prime conjecture, has been recently proved in [5]). Using
a very similar methodology to the one that has been recently proposed in [5, 6], it
is going to be proved that exists infinitely many primes of the form n2 + 1. It will
become clear that, analogously, can be proved that exists infinitely many primes of
the form n2 + a, where n, a ∈ N.

Remark. In this paper, the author sticks to the idea that number of the even
numbers or number of natural numbers that are divisible by 3, and so on, can be
expressed as the fraction of the natural numbers that corresponds to the density
of the subset of natural numbers of interest, which is not in accordance with
adopted set theory. So, for the time being, this paper can be considered as a
thought experiment. (Working hypothesis is that it should not be allowed to make
copies (clones) of the elements of the set without counting them - axiomatic idea
that same elements are counted only once is not compatible with the rest of the
classical math and it is that axiom (and not infinity itself) that creates a bunch of
unusual phenomena that could not be found in finite cases. Applying similar ideas
on finite sets it is possible to create a very unusual phenomena as well.)

Remark. In this paper any infinite series in the form c1 · l± c2 is going to be called
a thread defined by number c1 (in literature these forms are known as arithmetic
progressions – however, it seems that the term thread is probably better choice in
this context). Here c1 and c2 are numbers that belong to the set of natural numbers
(c2 can also be zero and usually is smaller than c1) and l represents an infinite series
of consecutive natural numbers in the form (1, 2, 3, . . .).
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2. Special solutions of the quadratic equation

In this chapter, two theorems that will be used in the proof of the main thesis of
this work, that there are infinitely many prime numbers of the form n2 + 1, where
n ∈ N, are going to be proved. Some definitions and well-known theorems, will be
presented, first. Let’s start with the fundamental theorem of arithmetic.

Theorem 2.1 ([1, Theorem 2.10], see also [11, Theorem 5]). Every integer n > 1
can be expressed as a product of prime numbers (with one or more factors).

The following theorems and definitions are related to the number of solutions of
a quadratic equation using Legendre symbol.

Definition 2.2. Let (a,m) = 1. If the congruence x2 ≡ a mod m has a solution,
then we say that a is a quadratic residue modulo m. Otherwise, we say that a is a
quadratic nonresidue modulo m. [1]

Definition 2.3. Let p be an odd prime number. The Legendre’s symbol
(

a
p

)
is

equal to 1 if a is a quadratic residue modulo p, it is equal to −1 if a is a quadratic
nonresidue modulo p, and it is equal to 0 if p | a. [1]

The following properties of Legendre’ symbol can be found in papers [1], [14],
[12], [2], [11]:

(1) If m1 ≡ m2 mod p, then
(

m1

p

)
=

(
m2

p

)
.

(2)
(

m1m2

p

)
=

(
m1

p

)(
m2

p

)
.

(3) If p and q are distinct odd prime numbers, then
(

p
q

)(
q
p

)
= (−1)

p−1
2 · q−1

2 .

(4) If p is odd prime number, then
(

2
p

)
= (−1)

p2−1
8 .

(5) If p is odd prime number, then
(

1
p

)
= 1.

(6) If p is odd prime number, then(−1

p

)
=

{
1, if p ≡ 1 mod 4,

−1, if p ≡ 3 mod 4.

(7) If p ∈ P \ {2, 3}, then(3
p

)
=

{
1, if p ≡ ±1 mod 12,

−1, if p ≡ ±5 mod 12.

(8) If p ∈ P \ {2, 3, 5}, then(5
p

)
=

{
1, if p ≡ ±1 mod 10,

−1, if p ≡ ±3 mod 10.

Theorem 2.4 ([1, Theorem 4.2 (Euler’s criterion)]). For any integer a and any
odd prime number p, we have (

a

p

)
≡ a

p−1
2 mod p.

Theorem 2.5 ([7, Zadanie 53]). If p ∈ P, (a, p) = 1, n ∈ N, then xn ≡ a mod p

has a solution if and only if a
p−1
d ≡ 1 mod p, where d = (n, p− 1).
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The following two theorems will be used later in this paper.

Theorem 2.6. The equation m2 = (4i−1)j−i ≡ −i mod (4i−1) has no solutions
when 4i− 1 ∈ P.

Proof. It will be shown that
(

−i
4i−1

)
≡ −1 mod (4i− 1), where 4i− 1 ∈ P. Then,

using Theorems 2.4 and 2.5, we get that the congruence m2 = (4i − 1)j − i ≡ −i
mod (4i− 1) has no solutions.

a) For i = 1 we have
(−1

3

)
≡ −1 mod 3 (by property (6)).

b) For i ∈ N \ {1} we obtain(
−i

4i− 1

)
=

(
−1

4i− 1

)(
i

4i− 1

)
= −

(
i

4i− 1

)
(by properties: (2), (6)). We will show that

(
i

4i−1

)
≡ 1 mod (4i− 1).

From Theorem 2.1 it follows that

i = 2n1 · pn2
2 · . . . · pnk

k ,

where pk ∈ P, nk ∈ N ∪ {0} for every k ∈ N. Hence we have(
i

4i− 1

)
=

(
2

4i− 1

)n1

·
(

p2
4i− 1

)n2

· . . . ·
(

pk
4i− 1

)nk

by property (1). Note that if i is an even number (n1 ⩾ 1) then(
2

4i− 1

)
= (−1)i(2i−1) = 1.

It will be shown that
(

pk

4i−1

)
≡ 1 mod (4i− 1) for every k ⩾ 2, then the proof

of this case will be completed. Let k ⩾ 2. By property (3) we know that(
pk

4i− 1

)(
4i− 1

pk

)
=

(
pk

4i− 1

)(
−1

pk

)
= (−1)

pk−1

2 ·(2i−1).

If pk = 4l − 1, where l ∈ N, then(
pk

4i− 1

)(
−1

pk

)
= −

(
pk

4i− 1

)
= −1

(by property (6)). Hence (
pk

4i− 1

)
= 1.

If pk = 4l + 1, where l ∈ N, then(
pk

4i− 1

)(
−1

pk

)
=

(
pk

4i− 1

)
= 1

(by property (6)). Hence (
pk

4i− 1

)
= 1.

Therefore
(

pk

4i−1

)
≡ 1 mod (4i−1). Since we have

(
2

4i−1

)
≡ 1 mod (4i−1)

and
(

pk

4i−1

)
≡ 1 mod (4i−1) for every k ⩾ 2 so it has been proved that following

holds for all i ∈ N: (
−i

4i− 1

)
≡ −1 mod (4i− 1),
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where 4i− 1 ∈ P.
□

Theorem 2.7. The equation m2 = (4i + 1)j + i ≡ i mod (4i + 1) has a solution
when 4i+ 1 ∈ P.

Proof. It will be shown that
(

i
4i+1

)
≡ 1 mod (4i + 1), where 4i + 1 ∈ P. Then,

using Theorems 2.4 and 2.5, we get that the congruence m2 = (4i + 1)j + i ≡ i
mod (4i+ 1) has a solution.

a) For i = 1 we have
(
1
5

)
≡ 1 mod 5 (by property (5)).

b) For i ∈ N \ {1} we will show that
(

i
4i+1

)
≡ 1 mod (4i+ 1).

From Theorem 2.1 we obtain that

i = 2n1 · pn2
2 · . . . · pnk

k ,

where pk ∈ P, nk ∈ N ∪ {0} for every k ∈ N. Hence we have(
i

4i+ 1

)
=

(
2

4i+ 1

)n1

·
(

p2
4i+ 1

)n2

· . . . ·
(

pk
4i+ 1

)nk

by property (1). Note that if i is an even number (n1 ⩾ 1) then(
2

4i+ 1

)
= (−1)i(2i+1) = 1.

It will be shown that
(

pk

4i+1

)
≡ 1 mod (4i+ 1) for every k ⩾ 2, then the proof

of this case will be completed. Let k ⩾ 2. By properties (3) and (5) it is known
that (

pk
4i+ 1

)(
4i+ 1

pk

)
=

(
pk

4i+ 1

)
= (−1)(pk−1)i.

Hence (
pk

4i+ 1

)
= 1.

Therefore
(

pk

4i+1

)
≡ 1 mod (4i + 1) for every k ⩾ 2, which means that the

following holds for all i ∈ N:(
i

4i+ 1

)
≡ 1 mod (4i+ 1),

where 4i+ 1 ∈ P.
□

3. Proof that exists infinitely many primes in the form n2 + 1

It is well known that all odd numbers bigger than 1 can be expressed by one of
the following forms l = 4k−1 or l = 4k+1, where k ∈ N. It is obvious that numbers
of the form n2 + 1 cannot be primes if n is an odd number (the only exception is
number 1 which can generate the only even prime 2, and 2 can be represented as
2 = 12 + 1). So, the case of interest is when n is an even number, i.e. n = 2m,
where m ∈ N. In that case

n2 + 1 = 4m2 + 1.

In order to have prime numbers of that form, it is necessary to eliminate all
composite numbers of the form 4m2 + 1. Since all numbers of the form 4m2 + 1



PROOF THAT EXISTS INFINITELY MANY PRIMES OF THE FORM n2 + 1 5

are actually odd numbers of the form 4k + 1, it is easy to conclude that composite
numbers of the form 4m2 + 1 can be expressed in the following form

4m2 + 1 = (4i− 1)(4j − 1),

or in the form

4m2 + 1 = (4i+ 1)(4j + 1),

where i, j ∈ N. Now, it is easy to see that the following equations hold

(1) m2 = (4i− 1)j − i,

or

(2) m2 = (4i+ 1)j + i.

A few cases are going to be considered:
Case i = 1: m2 = 3j − 1 or m2 = 5j + 1.
Case i = 2: m2 = 7j − 2 or m2 = 9j + 2 = 3(3j + 1)− 1.
Case i = 3: m2 = 11j − 3 or m2 = 13j + 3.

From examples it can be concluded (and it will be further analyzed in Appendix
A) that threads that are defined by odd prime numbers and that have certain
quadratic residues, should be removed. For instance, it is known that there is no
solution to the equation

m2 ≡ −1 mod 3,

so not a single thread defined by prime number 3 is going to be removed. On the
other side we know that equation

m2 ≡ 1 mod 5,

has two solutions, so threads 5j + 1 and 5j − 1 are going to be removed. (It is
known that quadratic residue equation has no solution or has exactly 2 solutions
[9, Lemma 9.1]).

From Theorems 2.6 and 2.7 from the previous section, it can be seen that equa-
tion (1) has no solutions, and equation (2) always has a solution.

Now, a three stage process for obtaining prime numbers in the form n2 + 1 is
going to be presented.

STAGE 1. From the set of all natural numbers n remove all odd numbers, except
number 1. As it was already mentioned, number 1 creates the only even prime 2,
and 2 can be written as 2 = 12 + 1. However, we are going to ignore number 2 in
the analysis that follows, since it has no impact on the final conclusion.

STAGE 2. The numbers that are left after Stage 1 are even numbers n = 2m,
m ∈ N. From numbers m it is necessary remove all threads defined by odd prime
numbers p that are in the form pj−l, where j is any natural number and l represents
a specific natural number that is obtained as a solution of certain quadratic residue
equation (2). We denote the amount of numbers that are left after this stage, as
NS2

.
STAGE 3. From the numbers m that are left after Stage 2, remove all threads

defined by odd prime numbers p that are in the form pj+ l, where j is any natural
number and l represents a specific natural number that is obtained as a solution of
certain quadratic residue equation (2). We denote the amount of numbers that are
left after this stage as NS3

.
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In order to prove that exist infinitely many prime numbers of the form n2 + 1,
the processes in the Stage 2 and Stage 3 are going to be compared to processes
generated by Sundaram sieve [8] (which is equivalent to Erathostenes sieve).

STAGE 2a. We index the even numbers. Implement Erathostenes sieve on
indices of the even numbers (or equivalent Sundaram sieve). In that case, it is
known that only the indices that are equal to prime numbers are going to be left.
Their number is infinite. The number of those numbers that are smaller than some
natural number t, is denoted as π(t) and then the following equation holds [10]
π(t) ≈ t

ln(t) . From [10, Corollary 1] we know that the following holds π(t) ≥ t
ln(t)

for t ≥ 17. It will be explained that NS2 is bigger than the number of prime
numbers. From this, it is easy to understand that there will be infinitely many
numbers left after the completion of Stage 2.

In order to understand why Stage 2 leaves more numbers than Stage 2a, table
that follow is going to be analyzed. The table present the fraction of the numbers
that are eliminated in each step of the processes defined by Stage 2 and Stage 2a.
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Table 1. Comparison of the Stage 2a and Stage 2 – threads de-
fined by a few smallest primes.

Step Stage 2a Step Stage 2

1
Remove even numbers (ex-
cept 2) amount of numbers
left is 1/2.

1
Remove numbers defined by
thread defined by 5 amount
of numbers left is 4/5.

2

Remove numbers defined by
thread defined by 3 (obtained
for i = 1) amount of numbers
left is 2/3 of the numbers that
are left after previous step.

2

Remove numbers defined by
thread defined by 13 (because
equation (2) has solution in
this case) amount of numbers
left is 12/13 of the numbers
that are left after previous
step.

3

Remove numbers defined by
thread defined by 5 (obtained
for i = 2) amount of numbers
left is 4/5 of the numbers that
are left after previous step.

3

Remove numbers defined by
thread defined by 17 (because
equation (2) has solution in
this case) amount of numbers
left is 16/17 of the numbers
that are left after previous
step.

4

Remove numbers defined by
thread defined by 7 (obtained
for i = 3) amount of numbers
left is 6/7 of the numbers that
are left after previous step.

4

Remove numbers defined by
thread defined by 29 (because
equation (2) has solution in
this case) amount of numbers
left is 28/29 of the numbers
that are left after previous
step.

5

Remove numbers defined by
thread defined by 11 (ob-
tained for i = 5) amount of
numbers left is 10/11 of the
numbers that are left after
previous step.

5

Remove numbers defined by
thread defined by 37 (because
equation (2) has solution in
this case) amount of numbers
left is 36/37 of the numbers
that are left after previous
step.

STAGE 3a. We index the numbers left after Stage 2 with consecutive natural
numbers. Implement Erathostenes sieve (or equivalent Sundaram sieve) on indices
of the numbers that are left after the implementation of the process defined by
Stage 2. In that case, it is known that only the indices that are equal to the prime
numbers are going to be left. It is simple to understand that their number is infinite.
It will be shown that NS3

is bigger than the number of numbers left by the process
in the Stage 3a. That will lead to the conclusion that exists infinitely many prime
numbers of the form n2+1.

In order to understand why Stage 3 leaves more numbers than Stage 3a, table
that follow is going to be analyzed. The table present the fraction of the numbers
that are eliminated in each step of the processes defined by Stage 3 and Stage 3a.
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Table 2. Comparison of the Stage 3a and Stage 3 – threads de-
fined by a few smallest primes.

Step Stage 3a Step Stage 3

1
Remove even numbers (ex-
cept 2) amount of numbers
left is 1/2.

1
Remove numbers defined by
thread defined by 5 amount
of numbers left is 3/4.

2

Remove numbers defined by
thread defined by 3 (obtained
for i = 1) amount of numbers
left is 2/3 of the numbers that
are left after previous step.

2

Remove numbers defined by
thread defined by 13 (because
equation (2) has solution in
this case) amount of numbers
left is 11/12 of the numbers
that are left after previous
step.

3

Remove numbers defined by
thread defined by 5 (obtained
for i = 2) amount of numbers
left is 4/5 of the numbers that
are left after previous step.

3

Remove numbers defined by
thread defined by 17 (because
equation (2) has solution in
this case) amount of numbers
left is 15/16 of the numbers
that are left after previous
step.

4

Remove numbers defined by
thread defined by 7 (obtained
for i = 3) amount of numbers
left is 6/7 of the numbers that
are left after previous step.

4

Remove numbers defined by
thread defined by 29 (because
equation (2) has solution in
this case) amount of numbers
left is 27/28 of the numbers
that are left after previous
step.

5

Remove numbers defined by
thread defined by 11 (ob-
tained for i = 5) amount of
numbers left is 10/11 of the
numbers that are left after
previous step.

5

Remove numbers defined by
thread defined by 37 (because
equation (2) has solution in
this case) amount of numbers
left is 35/36 of the numbers
that are left after previous
step.

Values of the fractions presented in the Table 1 and Table 2 are asymptotically
correct (in the finite case those values are only approximately correct - for details
see [5]).

It can be noticed that it is possible that threads defined by the same number in
the first and the second column of Table 2 will not remove the same percentage of
numbers. The reason is obvious - consider for instance the thread defined by 5: in
the first column it will remove 1/5 of the numbers left, but in the second column
it will remove 1/4 of the numbers left, since the thread defined by 5 in Stage 2 has
already removed one fifth of the numbers. So, only odd numbers that give residual
0, 1, 2 and 3 when they are divided by 5 are left, and there is approximately same
number of numbers that give residuals 0, 1, 2 and 3, when the number is divided
by 5 (the numbers of those numbers are asymptotically the same). The same way
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of reasoning can be applied for all other threads defined by the same prime in
different columns (see [5]). From Table 1 and Table 2 can be seen that in every
step, threads in the second column will leave bigger percentage of numbers than
the corresponding threads in the first column. This could be easily proved using
the methodology presented in [5]. From Table 1 and Table 2 it can be seen that
bigger amount of numbers is left in every step of the second column than in the
the first column. From that, it can be concluded that after every step, part of the
numbers that is left in the second column is bigger than number of numbers left in
the first column (that is also noticeable if we consider amount of numbers left after
removal of all numbers generated by threads that are defined by all prime numbers
smaller than some natural number). From previous analysis it can be concluded
that the number of numbers m that is left after Stage 3 is infinite, since it is known
that the number of numbers left after Stage 3a is infinite. Since every number m
corresponds to one number n, it can safely be concluded that the number of primes
of the form n2 + 1 is infinite. That concludes the proof.

Without going into the details, here, we propose an approximate formula for the
number of prime numbers of the form n2 + 1, that are smaller than some natural
number m:

π2,1(m) = 0.9468

√
m
4

e

√
ln

(√
m
4

)
e

√
ln(

√
m
4 )− ln

(
e

√
ln

(√
m
4

)) .
The following table presents the quality of approximation for several values of m.

Table 3. Comparison of the true (T) and approximate (A) values
of the number of prime numbers of the form n2+1 that are smaller
than natural number m.

m 101 102 103 104 105 106 107

T 2 4 10 19 51 112 316

A 2 3 7 18 48 129 358

4. Proof that exists infinitely many primes in the form n2 + a

Using the approach proposed in Section 3, it is not difficult to be proved that
exists infinite number of primes in the form n2 + a, where n, a ∈ N. For every a it
should be determined if the number n2 + a should be of the form 4k− 1 or 4k+ 1.
In the case 4k − 1 the analysis is a bit easier since the number of the form 4k − 1
is composite only in the case when one of the factors is of the form 4i+ 1 and the
other of the form 4j−1. Theorems 2.6 and 2.7 do not hold for all a and they cannot
be used, but their usage is not critical part of the proof, anyway. Apart from those
two differences, analysis is completely analogous.

5. Appendix A

Here it is going to be proved that m in (1) and (2) is represented by threads
defined by odd prime numbers. Now, the form of (1) and (2) for some values of i
will be checked.
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Case i = 1: m = 3j − 1, m = 5j + 1,
Case i = 2: m = 7j − 2, m = 9j + 2 = 3(3j + 1)− 1,
Case i = 3: m = 11j − 3, m = 13j + 3,
Case i = 4: m = 15j − 4 = 3(5j − 1)− 1, m = 17j + 4,
Case i = 5: m = 19j − 5, m = 21j + 5 = 7(3j + 1)− 2,
Case i = 6: m = 23j − 6, m = 25j + 6 = 5(5j + 1) + 1,
Case i = 7: m = 27j − 7 = 3(9j − 2)− 1, m = 29j + 7,
Case i = 8: m = 31j − 8, m = 33j + 8 = 11(3j + 1)− 3.

It can be seen that m is represented by the threads that are defined by odd
prime numbers. From examples, it can be seen that if (4j+1) or (4j−1) represent
a composite number, m that is represented by thread defined by that number
also has a representation by the the thread defined by one of the prime factors of
that composite number. That can be proved easily in the general case, by direct
calculation. Here, one case is going to be analyzed. Assume that 4j + 1 is a
composite number and that 4l + 1 is one of its prime factors. Then, the following
holds

4j + 1 = (4l + 1)(4s+ 1)

where l, s ∈ N. That leads to
j = 4ls+ l + s.

The simple calculation leads to

m = (4l + 1)(4s+ 1)i+ 4ls+ l + s = (4l + 1)(4s+ 1)i+ s(4l + 1) + l

or

m = (4l + 1)((4s+ 1)i+ s) + l

which means

m = (4l + 1)f + l,

and that represents the already existing form of the representation of m for the
factor 4l + 1, where

f = (4s+ 1)i+ s.

In the same way this can be proved for the all other cases of interest.
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