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Abstract

This paper shows how an application of zeta function regularisation
to a physical model of quantum measurement yields a solution to the
problem of wavefunction collapse. A realistic measurement ontology is
introduced, which is based on particle distinguishability being imposed
by the measurement process entering into the classical regime. Based
on this, an outcome function is introduced. It is shown how regu-
larisation of this outcome function leads to apparent collapse of the
wavefunction. Some possible experimental approaches are described.
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2 Deriving Measurement Collapse

1 Introduction and Contents of this Paper

This paper begins with some definitions which may serve as a reference for
the reader. Section 2 is a background to the measurement problem. Section
3 states the assumptions of the theory. Section 4 develops the derivation of
the collapse in mathematical terms. Section 4.1 describes the dimensions of
the relevant Hilbert spaces. Section 4.2 introduces a realistic outcome func-
tion based on a counting function. Section 4.3 derives the counting function.
Section 5 shows how regularisation is key to collapse. Section 6 shows how our
derivation maps onto the measurement operator formalism. Section 7 aims to
show how this theory might be experimentally validated. Section 7.1 gives an
overview of recent collapse emission experiments. Section 7.2 is an overview
of some approaches to show where the theory described in this paper differs
from other collapse approaches. Section 8 gives an overview of results. Section
9 is a discussion of some open questions, problems and points of interest.

Definitions

In this section we will define the key terms and objects which we will be using,
in the order they will introduced in the text. These can then act as a reference.
In the text, we may reiterate these definitions as we give them additional
context.

Ô is an arbitrary linear Hermitian measurement operator. Ψ is an arbitrary
total wavefunction of a system. ai is the probability amplitude of a wavefunc-
tion. ϕ is used to represent an eigenfunction onto which the wavefunction can
collapse. λ is an eigenvalue. H is a general Hilbert space. HΨ is the Hilbert
space of an arbitrary total wavefunction of a system, here typically referring
to the total wavefunction of the many objects involved in the measurement
process. d is the number of possible states following measurement of an iso-
lated quantum particle, or its dimension, or number of single-particle basis
states. m is the total number of interacting particles across the measurement
process. n is an index which counts the number of particles in each composite
system which interact in the measurement process, this index runs from 1 to
k. k is the size of the largest system involved in the measurement process. cn
is the number of many particle systems of size n across the measurement pro-
cess. C is the total number of n-particle systems. Ωc is number of micro-states
available for the distribution of the counting function, cn.

2 Background to the Measurement Problem

The reader may use [1] [2], or any other of a number of undergraduate or
elementary texts, for a basic treatment of the quantum measurement problem.
See [3] for a recent survey. In terms of [4]’s characterisation of the problem, this
paper aims to tackle the ‘problem of definite outcomes’. However, for clarity,
we will give a very brief overview of the measurement problem.
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Quantum theory is meant to be a universal theory to explain all phys-
ical phenomenon. However, there appears to be two distinct time evolution
phenomenon in quantum mechanics. Firstly, evolution of the wavefunc-
tion between measurements, as governed by the time-dependent Schrodinger
equation. Secondly, quantum mechanics under quantum measurement. Under
quantum measurement, the wavefunction appears to evolve non-linearly; that
is, the total wavefunction will suddenly appear to collapse into a single
eigenstate, with corresponding eigenfunction ϕ.

These two time evolution phenomena appear to be irreconcilable. In
this paper we propose a reconciliation of these two phenomena in quantum
mechanical terms.

3 Assumptions

We list some key assumptions below and give some explanation to those
assumptions where that may prove useful. Assumptions 1 and 5 in particular
are based on the model of the measurement process being the process in which
a quantum system becomes non-isolated and interacts with other quantum
and macroscopic objects, and the wider environment.

Assumption 1 Quantum objects in a measurement process can be modelled as
distinguishable.

In our derivation we use the idea that classical mechanics assumes distin-
guishable particles. With this principle in mind, we examine the measurement
problem as spanning both quantum and classical regimes. We therefore exam-
ine the measurement process through the standard quantum mechanical
formalism but assuming that particles can be considered distinguishable. Due
to this, we use general Hilbert space formalism and distinguishable-particle
statistical models. In other words, we assume that the classical world imposes
the principle of distinguishable particles onto the mathematical structure of
quantum mechanics. This assumption may be weakened, see footnote 1.

Assumption 2 dimHΨ represents a measurement outcome counting function.

This assumption is based on the following fact:

Ô |Ψ⟩ =
dimHΨ∑

i

ai(Ô |ϕi⟩) =
dimHΨ∑

i

ai(λi |ϕi⟩) (1)

1This assumption can be weakened with an additional argument treating indistinguishable
spaces as subspaces of the most general Hilbert space. These subspaces undergo collapse by
imposition of a dimensional reduction due to contraction of the ambient spaces’ dimension.
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By definition, a linear operator on a finite dimensional vector space will pre-
serve that spaces’ number of dimensions. This may be seen as a consequence
of the Spectral Theorem of Hermitian Matrices, see [5] for example. We are
not claiming that there are dimHΨ distinct eigenvalues. Rather the number
of outcomes being counted correspond to the number of eigenvectors the ini-
tial state may be projected into, even when those eigenvectors might share the
same eigenvalues, e.g. λ1 = λ2 = λ3.

Assumption 3 We are able to model the number of many particle systems counting
function, cn, using the method of maximum entropy.

Assumption 4 The dimension of a single quantum particle, d, can be treated as a
finite constant.

In some cases it is possible to define d, such as in the case of magnetic spin
projection directly measured on a single Cartesian axis, where d = 2. This is a
truncated, or finite, Hilbert space. However, Hilbert spaces of infinite dimen-
sion are necessary in quantum mechanics [6] [7]. We treat finite dimensional
Hilbert spaces as good approximations to the calculations for the more gen-
eral, infinite, case. We assume a finite constant, d, as an approximation of the
infinite dimension of the more general Hilbert space in deriving our counting
arguments.

Assumption 5 We can model the size of the largest system involved in the
measurement process, k, as k → ∞.

To elaborate, this assumption is to consider the size k, when the size of a
macroscopic object such as the environment, as representing infinitely many
constituent microscopic particles. This is an approach commonly used in statis-
tical physics. The mathematical technique for modeling macroscopic systems
by considering them as an infinite composition of microscopic particles is called
taking the thermodynamic limit, or macroscopic limit. See [8] for a review of
the thermodynamic limit in contemporary statistical physics. [9] gives a good
overview of the thermodynamic limit, provides a number of references and
demonstrates that the thermodynamic limit is essential to a non-paradoxical
understanding of modern statistical physics.

In terms of a quantum mechanical approach, see [10] for a recent paper
applying the thermodynamic limit. [10] use similar assumptions to those used
in this paper in their approach to tackle the measurement problem. [10] consid-
ers ‘infinite tensor products of usual Hilbert spaces’, as this paper does. These
infinite tensor product spaces are described as the ‘large Hilbert spaces [that]
are typically the ones expected to describe the quantum properties of macro-
scopic systems’, similar to how these spaces are interpreted in this paper. [10]
identifies von Neumann’s [11] as being the ‘seminal’ article on this topic, and
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“translates the main elements of von Neumann’s paper on infinite tensor prod-
ucts into the mathematical language currently used in quantum mechanics”.
An advanced mathematical treatment of the foundations of quantum theory
at the thermodynamic limit are also discussed in [12], their Chapter 8, where
their goal is describing a “classical limiting system”.

4 Derivation of the Collapse

4.1 Hilbert Space Dimensions

For a basic composite system the Hilbert space is defined as:

HAB = HA ⊗HB (2)

and:
dim(HAB) = dim(HA)× dim(HB) (3)

For a many body system of m particles the Hilbert space is as follows:

H⊗m (4)

with dimension:
dim(H⊗m) = dm (5)

4.2 A Realistic Outcome Function

We introduce the idea of a counting function, cn, which will count the expected
number of complex systems of size n, all of which interact through the mea-
surement process. Since each system of size n particles contributes towards the
multiplicity of the number of outcomes according to d, we may therefore state
our realistic outcome counting function:

dimHΨ =

k∏
n=1

dncn (6)

with k as the largest n size system involved in the measurement process.

4.3 The Approach for Deriving cn

The goal of this subsection can be simply summarised as being an attempt to
find the distribution for cn (i.e. the number of n-particle systems, for each n,
which all interact during the proposed measurement process) which best rep-
resents the current state of knowledge about a system. This is the distribution
with the maximum entropy. See [13] (their Chapter 3.3), [14] (their Chapter
6.1) or a number of other elementary statistical mechanics texts, for similar
approaches. We must also account for the additional number of ways that each
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n-particle system can interact with the total measurement system, Ψ in a clas-
sical, distinguishable particle way. This is based on the fact that there are n
ways for each n-particle system to interact with the total measurement system.

4.3.1 Derivation of cn

Lemma 1
cn =

n

eα
(7)

Proof Ωc is the total number of micro-states available for the distribution of the
counting function, cn. We want to find cn such that Ωc is maximised. We also define
the total number of n-particle systems, C, as:

k∑
n=1

cn = C (8)

Since we are interested in placing C distinct objects into k bins, it is clear that the
combinatorial function which describes the total number of arrangements (neglecting,
for now, to account for the n ways each particle interacts with the total system) is
the multinomial coefficient [15] [16].

To account for the n ways that each n size particle can interact with the wider
Ψ, we are introducing a ‘degenerate multiplicity’ of adding n sub-boxes to each cn.
This ‘degenerate multiplicity’ term is clearly ncn . We can now state Ωc as:

Ωc =
ncnC!

c1!c2!...ck!
(9)

We want to maximize Ωc with respect to cn. We take logarithms since
max log(f) = max f , and this simplifies calculations.

We have:

ln(Ωc) =

k∑
n

cn ln(n) + ln(C!)− ln(cn!) (10)

We also use Stirling’s approximation,
ln(x!) = x ln(x)− x.

Therefore:

ln(Ωc) =

k∑
n

cn ln(n) + ln(C!)− cn ln(cn) + cn (11)

We use the method of Lagranian multipliers, with the constraint that
∑

cn = C,
therefore adding the
α(C −

∑
cn) term. We therefore now have a function f which is to be maximised:

f =

k∑
n

(
cn ln(n)− cn ln(cn) + cn

)
+ α(C −

k∑
n

cn) + ln(C!) (12)

Bringing all the summed terms together:

f =
k∑
n

(
cn ln(n)− cn ln(cn) + cn − αcn

)
+ αC + ln(C!) (13)
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We now take the partial derivative in order to find the function cn which max-
imises Ωc. Note we use the fact that each n index in the sum is acted upon only by
the corresponding n index in the partial derivative. Different indexed sum terms dis-
appear since they are constants with respect to that n index derivative. We therefore
have:

∂f

∂cn
= ln(n)− ln(cn)− 1 + 1− α = 0 (14)

it is clear using the second derivative test that this is a maximum. So:

cn =
n

eα
(15)

□

5 Collapse: Regularisation of the Outcome
Function

Main Result Under measurement conditions

dimHΨ = 1 (16)

Proof Bringing cn from Lemma 1 into Equation 6, we have:

dimHΨ =

k∏
n=1

dn
2e−α

(17)

Using the counting function from equation 17 we can then examine what we
would expect to happen under conditions of measurement. Under these conditions,
we want to increase k → ∞. See Assumption 5. We therefore have the following for
the maximum number of possible outcomes following measurement:

dimHΨ =

k→∞∏
n=1

dn
2e−α

(18)

Taking logarithms of both sides:

log dimHΨ = e−α log d
∞∑

n=1

n2 (19)

Using Zeta function regularization to assign a value to the divergent sum [17]:

∞∑
n=1

n2 = 0 (20)

we find that:

log dimHΨ = 0 (21)

and so

dimHΨ = 1 (22)

□
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Therefore the maximum number of possible outcomes from a quantum
measurement following interaction with the environment is one. This is a
model of wavefunction collapse as it shows how the non-linear projection into
a measured, and single, state might occur. This will be further examined
below in terms of measurement operators.

6 Measurement Operators and Selection
Criteria

6.1 Single Eigenstate Selection

Take an arbitrary linear Hermitian measurement operator, Ô acting on our
total system, Ψ. Since, by definition, as above, it is clear that

Ô |Ψ⟩ =
dimHΨ∑

i

ai(Ô |ϕi⟩) =
dimHΨ∑

i

ai(λi |ϕi⟩) (23)

Upon collapse, however, the cardinality of the set of possible eigenstates
must reduce to

card({λi |ϕi⟩}) = dimHΨ = 1 (24)

So clearly upon collapse there is only one eigenfunction and eigenvalue, as
expected.

6.2 Born Rule

This single eigenstate is selected from the possible set of eigenstates and this
outcome is selected with a probability defined by the Born rule. In bra-ket
notation, the probability of measuring an eigenvalue, λi, that corresponds to
an outcome relating to an isolated system is:

|⟨ϕi|Ψ⟩|2 = |ai|2 (25)

The laws of quantum physics dictate the probabilities associated with the
outcomes, and the possible eigenstates, and so the selection process, through
the Born rule and the measurement operators, is physically realistic.

7 Approaches to Experiments

[18] gives an overview of some possible experimental tests of some popular
collapse models, [19] provide an overview of non-interferometric collapse exper-
iments and discuss avenues for future experiments. [20] describes some the
philosophical, theoretical and experimental aspects of collapse models. The
experimental methods described may be suitably altered to allow for a direct
test of the approach described here, and the theoretical and philosophical
aspects are relevant.
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7.1 Emission Experiments: the Dioso-Penrose Approach
and Direct Validation

A recent experimental test has ruled out a parameter-free version of the
gravity-collapse, Diosi-Penrose model [21] [22] [23] [24], testing for emissions
based on a proposed random diffusion process [25]. This emission process has
been derived from the fluctuations the Dioso-Penrose model would predict. The
model suggested in this paper does not explicitly involve a random emission
process (although we do recognise that neither did the Dioso-Penrose model).
It would be interesting to understand how the theorem described in [26] should
apply to our model. This theorem proves that given certain assumptions, all
collapse theories should induce a diffusion. Understanding the specifics of this
theorem, and its application to the regularisation model presented in this
paper, might provide a direct route to validation of the approach described in
this paper. Performing the calculations involved in determining the diffusion
radiation that might be observed is beyond the scope of this paper.

7.2 Differentiating Tests Against the GRW Model

An approach to potentially differentially validate this model of measurement
against other proposed collapse models would be to highlight key differ-
ences between collapse theories, and test these differences experimentally. The
GRW model is a well known collapse model2 and is a suitable model for this
differential validation.

The GRW model has two parameters: the collapse strength, τcollapse, and
the spatial correlation collapse function, rc.

Fist, let us examine the τcollapse parameter. τcollapse gives the collapse
rate and is measured in collapses per second. Numerically, GRW suggested
τcollapse,GRW = 10−16s−1, [29], while Adler later suggested a value of
τcollapse,Adler = 10−8s−1 [30]. The model proposed in this paper does not
explicitly have any time parameters associated with the principle theory, and
so a differentiating test for our model against the GRW model might be to test
for whether collapse is associated with time, or whether, as our model sug-
gests, it is determined solely by the sequence of interacting particle systems,
and complexity of those systems. For example, this model would suggest that
a small number of particles, kept sufficiently isolated, will not undergo collapse
without further interaction. The GRW approach suggests otherwise, however.

Another potential route for differential validation is to look at the spatial
correlation function rc parameter. A proposed value for rc, according to GRW
was rc = 10−7m [29]. This is the scale at which collapses become apparent.
For distances < rc collapses are not apparent, for distances > rc collapses
are apparent. This paper does not explicitly suggest that collapse should be
dependent on length scales. Collapses would be apparent over all length scales,

2[27] gives a good review of the history of Collapse Theories, some recent positions and a
thorough bibliography. Of note, [27] mentions how the stochastic modification to the Schrödinger
equation was first developed in [28].
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so long as the criteria for complexity of systems interacting and sequence of
interactions are met.

8 Overview of Results

The theory in this paper shows how a quantum system, under measurement,
is projected into a single state at measurement and “collapses”, given cer-
tain assumptions. We also discussed how this theory might be experimentally
tested, either directly, or as a comparison against other collapse approaches.

9 Discussion

In this section we highlight some open questions and points of interest.
This approach avoids problems of other interpretations. The

approach described, does not create any obvious conflicts with the existing
mathematical framework, or require a conscious observer. This new inter-
pretation of quantum mechanical measurement therefore avoids some of
the problems associated with other interpretations, which have been widely
discussed.

However, no clear line is drawn. An important thing to note is that
this formulation suggests that it is unclear where the line between quantum
and classical worlds may lie, exactly. We have found that it is in the (thermo-
dynamic) limit, k → ∞, where k is the size of the largest k-particle system
involved in measurement, that this formulation produces a physically inter-
esting result. However, it is unclear how to interpret this when trying to
understand how large objects might be before they collapse. Perhaps this sug-
gests that so long as there are a finite number of quantum particles in a system
then wave-function collapse will not occur? We assume that k → ∞ when the
system interacts with the measurement environment but this k might identify
the universe itself. We also acknowledge that taking the thermodynamic limit,
while central to statistical physics (see [8], [9]), may have its own philosophical
and interpretive difficulties. It is also clear that in the thermodynamic limit,
the volume, V , should also V → ∞ (while particles density is fixed). This
agrees with the model of the measurement process involving larger and larger
objects as the quantum system becomes non-isolated.

Quantum and classical physics are mixed. Another thing to note
is that this formulation includes both quantum (counting the dimensionality
of a many-body Hilbert space and resulting outcomes), statistical-mechanical
(counting the number of ways for systems of particles to interact with other
systems of particles) claims and classical claims, all of which are needed for the
regularisation-based collapse to take place. This approach suggests that the
number of quantum outcomes, at measurement, collapses to just one, but also
that the number of ways that the system of particles (described classically)
can interact collapses to just one. Our argument also relies on distinguishable
particle statistics. We have worked on the assumption that since the measure-
ment process spans classical and quantum worlds, then this distinguishable
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property is imposed, and so relevant in calculations. We treat the thermody-
namic limit in the quantum scale as the same limit in which distinguishability
becomes apparent at the interface between quantum and classical worlds. It
is possible that this might be seen as a controversial claim, and acknowledge
that more work can be done to examine the distinguishable property in phys-
ical terms. This is an open area of research in quantum foundations, see [31],
for example.

This approach is highly reliant on regularisation. It might be argued
that the approach described in this paper simply hides the mystery of the
measurement problem inside the mystery of regularisation, and reveals nothing
about either.

This approach might be useful at other scales. It would be interesting
to investigate the theory of the scale changes in physical terms at different
scales. For example, taking a simplified but realistic physical model at the
quantum, atomic and larger levels, then examining these through the lens of
the theory discussed.

This approach would benefit from experimental validation. In
future, we would like to further develop this work to be able to validate or
invalidate its theory, whether through direct experiment or through examina-
tion to understand if this theory is incompatible with existing quantum theory
and experiments. It would be interesting to calculate the radiation emissions
from random diffusion, which is predicted by [26] to directly test the model
proposed here. It would also be interested to validate this model against the
GRW model by looking at differences in predictions in regards to wavefunction
collapse, with time components and length components being particularly of
interest.

This approach would benefit from further theoretical work. We
would also like to understand how this theory might work in the broader con-
text of quantum field-theory, which has only been touched upon. In terms
of theoretical validation, it would also be useful to understand the role that
quantum decoherence might play, given its important role in the foundations
of quantum physics. It would also be interesting to examine whether some
of the ideas presented in this paper, such as the measurement ontology; out-
come counting argument and regularisation approach to mediate wave-function
collapse, might be usefully deployed in the frameworks outlined by other inter-
pretations. For example, might the regularisation approach be useful as a
potential mechanism in other objective collapse interpretations? It may also
be interesting to further understand the cn function.
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