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Abstract

All N =4 conformal supergravities in four space-time dimensions are constructed. These are the
only N =4 supergravity theories whose actions are invariant under off-shell supersymmetry. They
are encoded in terms of a holomorphic function that is homogeneous of zeroth degree in scalar
fields that parametrize an SU(1,1)/U(1) coset space. When this function equals a constant
the Lagrangian is invariant under continuous SU(1, 1) transformations. Based on the known
non-linear transformation rules of the Weyl multiplet fields, the action of N = 4 conformal
supergravity is constructed up to terms quadratic in the fermion fields. The bosonic sector
corrects a recent result in the literature. The construction of these higher-derivative invariants
also opens the door to various applications for non-conformal theories.



1 Introduction

Conformal supergravities in four dimensions are invariant under the local symmetries associ-
ated with the superconformal algebra su(2,2|N). The transformation rules and corresponding
invariant Lagrangians are known for N = 1 and 2 [1, 2]. For the N = 4 theory, the Weyl
multiplet and its full non-linear transformations were determined in [3]. A unique feature of the
latter theory is the presence of scalars fields which parametrize an SU(1,1)/U(1) coset space.
This U(1) factor extends the SU(4) R-symmetry to the U(4) that is generically present in the
algebra [4]. Furthermore, it was shown that N > 4 theories cannot exist off-shell [5], as they
would necessarily involve higher-spin fields and the supermultiplet would in general not contain
the graviton. It is also worth pointing out that the N < 4 superconformal field representation
and the transformation rules have been worked out in superspace [6]. Although the field repre-
sentation and its off-shell transformation rules are known, the full non-linear action for N = 4
conformal supergravity remains to be constructed. Recently, a calculation was performed based
on an on-shell N = 4 abelian gauge theory in a conformal supergravity background [7]. The
integration of the abelian gauge multiplet led to the determination of the bosonic terms of the
superconformal action [8]. These terms comprise the square of the Weyl tensor and are related to
the conformal anomaly, as was discussed long ago in [9]. The resulting action is invariant under
a continuous rigid SU(1, 1) symmetry, which can be explained by the fact that the gauge theory
action has SU(1, 1) as an electric-magnetic duality group. In this paper we calculate the SU(1, 1)
invariant action of N = 4 conformal supergravity by exploiting the known transformation rules
and imposing supersymmetry by iteration. This computation is of interest since it completes the
result of [8] to quadratic order in the fermion fields. However, we also find that our results do not
coincide. Actually, string theory indicates the existence of an extended class of actions in which
the continuous SU(1, 1) is broken. For instance, in ITA string compactifications on K3 x T2, the
effective action contains terms quadratic in the Weyl tensor and its dual, multiplied by a modular
function [10]. Further indications arise from the semiclassical approximation of the microscopic
degeneracy formula for dyonic BPS black holes [11, 12, 13|, which captures corrections to the
macroscopic entropy originating from the same class of actions. This paper deals exclusively with
the construction of the action invariant under the continuous SU(1,1). Conformal supergravity
is the supersymmetric generalization of conformal gravity, whose Lagrangian is the square of the
Weyl tensor. The combination of local supersymmetry and conformal symmetry necessarily im-
plies the presence of additional local invariances, which include a special supersymmetry known
as S-supersymmetry. The original supersymmetry is then called Q-supersymmetry. For N =4
the full non-linear transformation rules of the fields, which constitute the so-called Weyl super-
multiplet, have been determined [3]. This is the largest possible conformal supergravity that can
exist in four space-time dimensions [5], and so far a complete Lagrangian was not known. A
unique feature is the presence of dimensionless scalar fields that parametrize an SU(1,1)/U(1)
coset space. The U(1) factor is realized as a local symmetry with a composite connection, which
acts chirally on the fermions. Hence the so-called R-symmetry group is extended to SU(4) x U(1).
As explained below there are good reasons to expect that a large variety of these theories will
exist. This Letter reports important progress on this question as we derive the most general
invariant Lagrangian, which turns out to depend on a single arbitrary holomorphic and homoge-
neous function of the coset fields. Here we will present its purely bosonic terms; full results will
be reported elsewhere. When this function is constant these bosonic terms turn out to agree with
a recent result derived by imposing supersymmetry on terms that are at most quadratic in the
fermions. In the Lagrangian this function will, for instance, multiply the terms quadratic in the
Weyl tensor. The possible existence of such a non-minimal coupling was suggested long ago in the
literature. Meanwhile indirect evidence came from string theory, where the threshold corrections



in the effective action of IIA string compactifications on K3 x T2 reveal the presence of terms
proportional to the square of the Weyl tensor multiplied by a modular function [10]. The same
terms emerge in the semiclassical approximation of microscopic degeneracy formulae for dyonic
BPS black holes. Finally higher-derivative couplings derived for N =4 Poincaré supergravity do
also exhibit non-trivial scalar interactions. The results of this Letter can provide more detailed
information on such higher-derivative interactions. Likewise they can be utilized to study the
subleading contributions to N =4 BPS black hole entropy in a fully supersymmetric description.

In this paper, we take a more pragmatic approach which relies on the construction of a generic
supersymmetric action principle, also known as a density formula, directly at the component
level. Such a density formula is built upon an abstract multiplet whose component fields appear
linearly in the expression, along with some of the supergravity fields such as the vielbein. The
multiplet in question is typically required to obey only very mild supersymmetry constraints
(e.g. chirality), and it is in this sense that the action principle is generic. If one can build such
a multiplet, for example by combining more fundamental constituents, the action principle can
be applied. This approach is not distinct from superspace: whenever an invariant superspace
exists, the corresponding component action always falls into this type, where the multiplet in
question is identified with the superspace Lagrangian. The converse does not generally hold, and
a density formula may exist in the absence of a corresponding superspace. As we will show, there
exists such a density formula for four-dimensional N = 4 theories with local superconformal
symmetry. It is based on an abstract multiplet involving superconformally primary fields C%;,
Ciiyy = (C*;)*, and Ay = (AM;;)*, each in the 20’ of the SU(4) R-symmetry group, and whose
supersymmetry transformations into the 60 and 60 are constrained. That is,

6.C = € Em + En E9
5efélijkl =" Qijkl,m + €m Qij’mk:l ) (11)
for fermions = and () whose traceless parts are fixed as
E%mles = 2AnA Mgs ,  [E""leo =0, [QVkmles = [AnCVhleo (1.2)

in terms of the dimension-1/2 fermion A; of the Weyl multiplet. This implies that the fields C%y,
and AY;; must be intricately related. The density formula is

e\ L=F+ Q@Z_JW(QW + Q) + Q@Z_Jui(Q”i + vH)
1 - Wl jvi L/ - uv, | ij LT ij
+ gw[uz’}/ ¢u] 7 g <Z @DMV 77Z)1/j + 5 w,uiwujpa + hC)
jeo

+ g <wuiwuj (Zpk%fprsk wrs +2 zZuiwuj (Zpk’Ycr"fijk + h.C.)

e

=1 (Pt ™ OOy 20t B 00 AT e ). (13)
The fields C¥;; and AY}; of lowest Weyl weight multiply four gravitini v/, while higher weight
fields of the abstract multiplet appear with fewer gravitini: these include fermions p;;*, K,
Q. and ;, as well as bosons ,';, ", ¥, and F. They descend from the fields C*}; and A%y,
via supersymmetry in a manner that will be described in due course. Their superconformal
transformations, which leave (1.3) invariant, turn out to be determined entirely by the basic su-
persymmetry constraints (1.2). Provided such fields can be constructed out of more fundamental
constituents, invariant actions follow. The composite field F' then contains all the bosonic terms
of these actions. This is by no means the only possible density formula for N/ = 4, but it turns
out to be sufficient for our needs. Once one specifies the form of the basic fields C¥;; and A%y,
in terms of the N' = 4 Weyl multiplet fields, it allows the direct construction of the class of
superconformal Weyl squared actions which depend on a generic holomorphic function.
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2 N =4 conformal supergravity

N = 4 conformal supergravity [3] is built upon the gauging of the superconformal algebra
su(2,2|4). Its bosonic subalgebra contains the generators of the conformal group SU(2,2) and
the generators of a chiral SU(4) R-symmetry. The fermionic generators consist of sixteen Q
supercharges and sixteen S supercharges. In addition, the theory has a non-linearly realised rigid
SU(1,1) symmetry and a local chiral U(1) symmetry. The latter extends the R-symmetry group
to SU(4) x U(1). The field representation of the theory comprises the gauge fields associated to
the various superconformal symmetries and the local U(1), as well as a set of matter fields. In
this paper, we adopt the conventions of [3], unless stated otherwise.

The bosonic gauge fields associated to the SU(2,2[4) symmetries are the vierbein e,*, the
spin connection w,, the dilatational gauge field b, the conformal boost gauge field f,* and the
SU(4) gauge field V,*;, while the fermionic ones are the Q- and S-supersymmetry gauge fields
¥," and ¢, respectively. Finally, the connection a, is associated with the local chiral U(1)
symmetry. The complete set of gauge fields of N = 4 conformal supergravity is listed in table
1 along with their algebraic restrictions, their SU(4) representation, their weight w under local
dilatations and their U(1) chiral weight c.

Table 1: Gauge fields of N = 4 conformal supergravity

Field Symmetries (Generators) Name/Restrictions SUM4) w ¢
8*Bosons | e,* Translations (P) vierbein 1 -1 0
w,® Lorentz (M) spin connection 1 0 0
b, Dilatation (D) dilatational gauge field 1 0 0
V. SU(4) (V) SU(4) gauge field 15 0 0
Vi = (Vi'3)" = =V
V,&'i=20
fu® Conformal boosts (K)  K-gauge field 1 1 0
a, U(1) U(1) gauge field 1 0 0
3*Fermions | ¢, S-supersymmetry (S) S-gauge field 4 % —%
V5 ¢,uz = _¢ul
¥, Q-supersymmetry (Q)  gravitino; ys ¢, = ¢}, 4 -z —2

5 Dy, an anti-
symmetric tensor T,;” and two spin-1/2 fermions A;, x¥/;. We list them in table 2 with their
various algebraic properties, and their representation assignments. The rigid SU(1, 1) indices are
denoted by «, 5 =1, 2.

An element of SU(1,1) can be written in terms of the doublet of complex scalars ¢, which
satisfies

The matter fields of the theory consist of three types of scalar fields ¢, E;;

¢ =1, (2.1)

where ¢% = naﬁgzﬁfg with 7% = diag(+1, —1). Therefore, due to the presence of the local U(1),
the scalars parametrise an SU(1,1)/U(1) coset.

Just as in ordinary gravity where the spin connection is a composite field, the gauge fields
w““b, fu* and ¢, are expressed in terms of the other ones through a set of conventional constraints



Table 2: Matter fields of N = 4 conformal supergravity

Field Restrictions SU4) w ¢
7*Bosons I N 1 0 -1
Eij Eij = Eji 10 1 —1
Tabij %gadeTcdij = _Tabij 6 I -1
Tabij = _Tabji
Dijkl Dijkl = igijmngklqupqmn 20/ 2 0
Dklij = (Dklij)* = Dijkl
Dijkj - 0
3*Fermions Al ’}/5Az = Az 4 % —%
Xk Xk =X XYk =% 200 5 =5
X =0
on the superconformal curvatures
R(P),," =0,
R(M)w/abeyb = O
YR(Q)u' =0. (2.2)
The U(1) gauge field a,, is also composite and solves the supercovariant constraint
"Dy = —1Ay, A, . (2.3)

The derivative D, is covariant with respect to all the gauge symmetries. By making use of the
Bianchi identities for the curvatures, the constraints (2.2) lead to an additional set of identi-
ties which are summarised. The independent fields of tables 1 and 2 constitute the full Weyl
supermultiplet of N = 4 conformal supergravity which contains 128 + 128 off-shell degrees of
freedom. The non-linear superconformal transformation rules of the fields were derived in [3].
The Q-supersymmetry transformations of the gauge fields read

5geu” =&, + hec.,
5Q¢,f =2 Duei — %vabTabij%ej + gl @/?Wek Ay,
dgby =2€¢,; +h.c.
5Qvuij =€ ¢M +e€ 7uX kj — ‘EﬂmeZ €"ih," — %Eikgj’VMAk

+ 1™ T E@Yabuhm + $EYPA,;

1
4

dga, = %i@’yﬂpAi 1E Azfyﬂej Sigijkl T, /_\i’yl/yabe]

— }Li(/iiyaAj — 5j Ay ) en“@b,ﬂ + h.c.

5Qwuab - _ %gi,yabgbm + EZ,YMR(Q) 2Tab 71%0” + h c.

5qua = - %eub Eade ezR(S)cdi - Ei’yquR(Q)abZ 2T," wb 61R<Q)abj
+h.c. + [terms X Py,

5Q¢ui = - 2fu ’Vae + 1Ta i ed ik fch'Y,u'y b
+3 [’Y;/V — 37 ’Yu} [R(V)ab j e+ §iFab€Z + %DaTch]’YCd’YbEj]
+ [terms o< 9,], (2.4)

P € Yatbu Ay A" — (h.c.; traceless)



while for the matter fields we have
5@@5& = — ?Aiéa[ggﬁ’g
5Q}_7a = —&@D,\; — AﬁbchC Ya€i — —eZA AJ%AJ ,
5QAZ = — 2 pEi + EUE —|— igijkl Tbckl"}/bc
ooTay’ _2EZR(Q)ab + 6 ’YabX”k + 3 LeM ey Yap Dy — 1Ek[i vy + %E[i%bp/\j] ;
50Xk = — 2 DT 7 ¢;, — v R(V) 'y € — L™ DEy €, + Dy
. %gklmnEl[i ab |:T 57]n m oy T 6]]} lE El[l 6]] 1 zjlmp,)/a T 1 Em
+ %ﬂaGn [2 €”lnXmlk ”lanlk]’YaA =+ 6 [ AJ]DAk +AkDAJ]}
- 1 ab [z [2 AJ Ya DbAk - Ak’y DbAJ]} 5 ZﬂmA El [EknA -2 PAk]
—|— 1 Z]lmA €L [ElnA — QPAI] — —/yabT ”’7 EkA ’YCAZ]
“bT Jiqe €[k A Yl + 5 Ll ATIA™ ALA,, — (traces),
5D, — 4—[@'D J] =l 9 filpymn 1 abp mn pas AJl L L pilm o A
QUK = — 4€ Xkl+€klmn€[— X pt3Y Law D + 3 »
— 2PAMEI 4 14T A, ATAP]
+ 6[1 [27 X kl AJ]’YQA + 2 P’}/abTa AJ] + A k:El AJ]Am + l’yabPAj] Ak/yabAl}
+ glimn gp ab [2 TopnpAm + Tabmn/\p} (h.c.; traceless) . (2.5)

where €' is the Q-supersymmetry parameter and where D,, is covariant with respect to the all
the bosonic symmetries except the conformal boosts. For instance, we have

Duei = [QL Wu ®Vab + 1 (b + 1a“)]e — VM’] e,

D,mi = [au - iwu Yab — %(bu - 1%)}?7 - Vuzj 77 ) (2.6)
The S-supersymmetry transformations of the fields are
dse, =0,
sy’ = — '

5Sb,u: _%1/_}/11772"’_}1(3
5V = — [um; — 1859 mk] —hee.,
(55'@“ = O
Fsw, ™ = %%ﬁv“bm +h.c.,
s fu =100,  — 1 R(Q), " + L7y Tod v, + hoc.
5S¢,ui = 2Du77i 67u7abTabU77y + 35 5 ”klnk/\z%g )

S5 =0
0sPo = — 517 7al\i
dsh; =0,
dsli; =216\,
5T = — 2e"™ ey

Ssx7k = %Tab e + %5[ T vy — e By, — SRy Al
+ o0 Ay Nyar? — Ry A ]
6sDY =0. (2.7)



As is clear from (2.4), (2.5) and (2.7), the coset space sector of the theory can be entirely
described in terms of P, and F},,. In what follows, we will make use of these SU(1, 1) invariant
quantities rather than the scalars ¢,. Note also that P, has Weyl weight w = 1 and is invariant
under K-transformations. We finally present several identities which will be useful in the next
sections. One can respectively derive

5[37Da¢ﬁDb¢7 =2 QﬁaD[a(rbagﬂ’ygbﬁDb}dﬂ - %]\Z’Y[a/\zpb] )

Da¢an¢a = — Pan — %Ai’}/a/\i/_\j’yb/\j . (28)

It follows that
Fup =2iP,Py — L[A'y,DyA; — hee], (2.9)
Do Py =Ny NPy + 2N R(Q) ' (2.10)

which are the supersymmetric generalisations of the Maurer-Cartan equations associated with
the coset space SU(1,1)/U(1).

The gauge fields w,, f,* and ¢,* are composite. They are expressed in terms of the other
fields through the set of constraints (2.2). The latter, when combined with the superconformal
Bianchi identities, lead to the following useful relations

R(D)a =0,
R(M)abcd - R(M)cdab 5
5a€CdR<M)cdeb =0 9

e DyR(V)ed's = — 2™ Apyyy - TuR(Q)™* — (h.c.; traceless)
D.R(Q)"" = — 3" R(S)ed
R(Q)a' =0,
R(S)y' = PR(Q)w'
Y R(S)w' =0,
V'R(S)y =0,
Dy R(S)ea = — 2T - R(S); — AT DUR(Q)us, — 1 R(V).R(QY

~ 4" F - RQ) + DT, IRQ)™; — 1y Ty TO.R(Q)F . (21)

Note however that these relations are not independent. We recall that the (anti-)self dual part
of a curvature is defined here as R;tb = %(Rab + %eabcdRCd). The transformations of R,,¢(K) and
Ra'7)(S) can be easily derived from (2.1). Finally, for the purpose of section 4, we give the

explicit expressions of the fermionic supercovariant curvatures

R(Q),uuZ = QD[M'(/)V]i - 7[u¢u]i - %’7 : Tij'y[u%bu]j + %gjqu/_)ujdjukAl (2'2)
R(S) ' =2Dpéf = 2/ Yat] = 5707 - T6u; = 367 Gpadhithy + 07, o
+ [terms oc 1% (2.3)

(cov

where the symbol 5Q|w) denotes the supercovariant part of a Q-variation with the parameter
b
replaced by the gravitino.



The Q-supersymmetry and S-supersymmetry transformations of the supercovariant curva-
tures are

SQR(M)apea = — 2@V R(S) s — 2&7eaR(S) 0y + 1€ PYavR(Q)ecai + & PYeaR(Q)avi + hoc.
SoR(Q)ap’ = — SR(M) abeay™®e + 2 [v"Yat + 2797 [R(V)eds€ + iFae'+ DT ¢;]
SoR(V)ap'j =€ R(S)an; — 26 7a Dy X'sj + 26X i Tud” + T — 2 éPA — ElEikAk}
+ LMy - Tony - Ty Am — 3B jmn€ R(Q)atl
LeMPe €V R(Q) bk My A" + &7 Dy [ E™ Ay
+ 1eme Dy, [y le’yb]A | + 290Dy [PA'] — (h.c.; traceless)
SoR(S)S) = — 2D°R(M)*weaga’e + 3 [v"Yap + $7a07] [1°€ DeRed’s + 317°¢ DeF g
+ ;D DT + 26T T . TH — 4y DI T4 I Togyr, — 29°€" DI Toii T
SsR(M)abea = — 217 R(Q)ed — 211i7eaR(Q)ar + hoc.,
5sR(Q)at =2 [V "Vab + vy Tud"n; |
SsR(V)a’s ="' R(Q)avj + €™ Tupjiiie A, — T Yo X'k — 27 Yan [2 PA; — Ejul"]
— (h.c.; traceless) ,

6SR(S)ab - %R( )abcd”YCde + 3 [VCdeab + %’Vabfyccq [nJRG/)cdlj + %NIZch} . (24)

3 The quadratic action

In this section, we present the part of the action which is quadratic in the fields. It will be the
starting point for the iterative procedure presented in section 4, which we will use to generate
terms of higher-order in the fields. The action will be constructed such that all the derivatives and
curvatures that appear are fully supercovariantized with respect to all the gauge transformations
(bosonic as well as fermionic). Hence, we must insist that, throughout the paper, our counting of
the fields always excludes the gauge fields which are implicitly contained within the supercovariant
derivatives and curvatures.
The quadratic Lagrangian of N = 4 conformal supergravity reads

ab 1

e Lo = R(M)™R(M) 00+ R(V)R(V),
. 1 .
- 4Tab”DaDcTCbij + iEijDQEU + gDz‘j lekl”
—2P*[D,D"P, + D*P,] —2D“P"D,P, — D*P,D"P,
+ R(Q)a' R(S)™ = X7k PX"; — 3A: (D* P+ PD*— P*) A +he.,  (3.1)

with e = det[e,”] and where the (anti)self-dual part of a generic second rank tensor R, is
defined as R;tb = %[Rab + %EabcdRCd}. The expression (3.1) corresponds to the real part of the
chiral invariant of the linearized theory given in [3]. The imaginary part of the chiral invariant
is a total derivative.

The structures of the quadratic terms are uniquely fixed by requiring invariance under U(1),
SU(4) and Lorentz symmetry, while the number of derivatives in each term is fixed by Weyl
invariance. At the level of the action, the derivatives can be moved around using integration
by parts at the expense of higher-order terms in the fermions. However, requiring K-invariance
(i.e. under conformal boosts) fixes the position of the derivatives. Under these conditions, the
quadratic terms for the fields £¥, T,7and A; are uniquely determined. The case of the vectors

P, is more subtle and will be discussed below.



The relative coefficients between the different quadratic terms are fixed by requiring Q-
supersymmetry invariance at quadratic order in the fields. The K-invariance of the quadratic
terms involving the vectors P, is not straightforward. Out of the four possible terms, all appear-
ing in the Lagrangian (3.1), none is K-invariant. The two terms in which both derivatives act
on the same field should not be treated as independent. Indeed, only their sum is relevant at
quadratic order since their difference

D?P, — D,D"P, = D"DyP, + [D", D,]P,, (3.2)

is of higher-order in the fields due to (2.10). An arbitrary combination of the remaining three
independent quadratic terms is generically not K-invariant. However, when considering the
unique combination appearing in (3.1), one finds that it is K-invariant up to a term of higher-
order in the fields

5k [2P*(D,D"P, + D*P,)
+2D,P,D"P" + D,P*DyP’ + h.c.] = 4AXP,DPP + hec.. (3.3)

Here AX is the K-transformation parameter. We should emphasise that, at this point, requiring
K-invariance of each of the supercovariant terms in the Lagrangian is not necessary. The ad-
vantage of imposing such a condition already at the level of the quadratic action is that terms
with an explicit K-gauge field f,* will not have to be introduced when deriving the interaction
terms. This will be explained in section 4. Finally, it is important to emphasize that in this
paper, we will exclusively consider the real part of the chiral invariant. Without this reality
condition, the K-variation of the kinetic terms for P, is not of higher-order in the fields anymore
and consequently, one is forced to introduce explicit K-gauge fields.

In view of their relevance for the present paper we first present some further details regarding
the fields ¢, and ¢%, which we refer to as the holomorphic and the anti-holomorphic fields,
respectively. The holomorphic fields carry U(1) charge equal to —1 and transform under Q-
supersymmetry into the positive chirality spinors A;, which themselves carry U(1) charge —3/2,

o — e @ g 0o = —EN;jcapd’ . (3.4)

The supercovariant constraint that determines the p(l) gauge field a, and the generalized su-
percovariant derivatives of the coset fields, P, and P,, are defined by

¢aDa¢a = = %Ai/yaAia (35)
Pa = ¢a €ap Daqbﬁ 5 Pa = _Qboa Eaﬁ Da¢,3 5
where D, denotes the fully superconformal covariant derivative. Note that P, and P, carry Weyl
weight +1 and U(1) weights +2 and —2, respectively. From these definitions one may derive
the supercovariant extension of the Maurer-Cartan equations associated with the SU(1,1)/U(1)
coset space,
F(a)ab = -2 P[a Pb} - %I(Alﬁ[an]Az — hC) s
D Py = — Ny Py + LA R(Q) i (3.6)
where F'(a)q and R(Q)ap; denote the supercovariant U(1) and Q-supersymmetry curvatures,
respectively. Note that the expressions (3.4) and (3.5), when combined with those for the anti-

holomorphic fields, reflect the structure of the three left-invariant vector fields associated with
the group SU(1, 1),

0 0
0 _ |« _
DO = ¢ o ba Joo (3.7)
0 0
T: Oéﬁ_ = — « —
D= ¢, 567 D gbsaga%,



which satisfy the commutation relations [DO, D] = 27D and [D, DT] = DY. Using these definitions
the supersymmetry variation and the supercovariant derivative of arbitrary functions H (¢, ¢°)
can be written as

H = — [eND+EN D H,
D,H = [P,D+ P, D'+ 1A'y, \, D] H. (3.8)

The class of Lagrangians presented below involves a function H(¢,) that is homogeneous of
zeroth degree in the holomorphic variables, so that D'H(¢,) = 0 and D°H(¢,) = 0. Using the
above commutation relations, it then follows that DT D"H(p) ox D" 'H(¢ps) for n > 1, and
vanishes for n = 1 so that DH(¢,) is holomorphic while D*H is not. Let us now turn to the
derivation of this result. It makes use of the fact that any supersymmetric component Lagrangian
can be written as the Hodge dual of a four-form built in terms of the vierbein, gravitini, and
possibly other connections, multiplied by supercovariant coefficient functions that we will treat as
composite fields. This approach is known as the superform method. Since for N =4 supergravity
chiral superspace does not exist, we aim to construct such a density formula directly, assuming
that only the vierbein and gravitini may appear explicitly within the four-form. Schematically
we will thus consider a four-form decomposed into five types of forms, namely 9%, e?, e??,
e31) and finally e*. The Weyl weight of these forms ranges from w = —2 for the first one to
w = —4 for the last one. This last form will be multiplied by a composite coefficient function
with w = 4 that contains all the purely bosonic terms of the Lagrangian specified in (5.3) as well
as fermionic terms.

4 Building up higher-order terms

In this section, we present the iterative procedure used to construct the supersymmetric com-
pletion of the quadratic Lagrangian (3.1). The non-linearity of the supersymmetry transforma-
tions rules will require us to add successive layers of terms of higher-order in the fields to the
Lagrangian. The higher-order terms will be chosen such that their supersymmetry variations
precisely cancel against the variations of the pre-existing lower-order terms. Ultimately, this
program terminates when all the necessary terms have been added such that the Lagrangian is
fully invariant under supersymmetry. Requiring QQ-supersymmetry invariance turns out to be
enough to ensure invariance under all the symmetries of N = 4 conformal supergravity. This is
due to the specific superalgebra obeyed by the different generators [3]. Indeed, the commuta-
tor of two infinitesimal Q-supersymmetry transformations yields the full set of superconformal
transformations including the U(1) transformation.

4.1 Structure of the full Lagrangian

This supersymmetrization procedure is unambiguous, yet lengthy, and provided sufficient com-
putational efforts are invested it is guaranteed to give the full off-shell superconformal invariant.
In practice however, the computation rapidly becomes unmanageable due to the rich field content
and the non-linearity of the transformation rules. Therefore it becomes essential to systematise
the work by making use of certain structure patterns appearing in the computation. Hence, we
argue that the full Lagrangian can be written in the following form

L= Lo+ YLy + Ly + VLo +YdLyg + 6" Lo +1U°Lys + V2 OLy2g + D Ly (4.1)

where here, ¥ and ¢ schematically denote the gravitino and the S-gauge field, respectively.
The quantities Lo, Ly, Ly, Ly2, L2, Ly, Lys, Ly24, Lys only depend on supercovariant fields,
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i.e. matter fields, supercovariant curvatures and their supercovariant derivatives. Note that the
terms of lowest-order in the fields in £y correspond to the quadratic Lagrangian (3.1). Conse-
quently, the other supercovariant quantities in (4.1) are at least of quadratic order in the fields.
The expression (4.1) only contains terms up to four explicit gauge fields (¢ or ¢). This can be
understood as follows. Under an infinitesimal Q-supersymmetry variation (Q-variation), a grav-
itino transforms into the gradient of the Q-supersymmetry parameter. In order for this variation
to be subsequently canceled, it first has to be integrated by parts such that when the derivative
hits any of the other explicit gauge fields, it yields a curvature (Q or S). This requires the explicit
gauge fields to appear fully anti-symmetrized in their vector indices and therefore rules out the
possibility of terms with more than four explicit gauge fields. The same reasoning holds for an
infinitesimal S-supersymmetry variation acting on ¢. However, for our current analysis the terms
with more than two explicit gauge fields are not required since we are only looking to construct
the Lagrangian up to quadratic order in the fermion fields. We will therefore not attempt to
derive them explicitly.

4.2 Constructing the interaction terms

In this subsection, we outline the iterative procedure used to construct the various supercovariant
quantities appearing in the schematic expression (4.1) of the full N = 4 conformal supergravity
Lagrangian. To this purpose, let us first write a part of (4.1) with explicit indices

1-. 1-. 1-. . 1~ . .
L= »CO + §¢az»cwai + §¢azﬁ¢ai + Zwbzcwabij@ba] + Z¢bi£¢2ablj aj

1-. A o
+§,¢)b2£¢¢abfl] aj + E@Dbiﬁwqg.abljéaj + hC . (42)

Since we are only interested in the Lagrangian up to quadratic order in the fermion fields, we
have truncated the full Lagrangian to the above expression. For the same reason, L is restricted
to terms up to quadratic order in the fermions, while £,%, £5% and L%, £,2%, L, 2%, L,
are only linear in the fermions and purely bosonic, respectively. Note also that, as discussed
in section 4.1, the last four quantities are antisymmetric in their vector indices. In what fol-
lows, we will work at specific orders in the supercovariant fields. To this purpose, we define
L5 L50%, L30%, L)y, L5779 and L)%, L)% which contain the terms of order n in the su-
percovariant fields of the quantities appearing in (4.1). In order to explain how the Q-variations
at a specific order cancel against each other, we compute below the Q-variations of the vari-
ous terms appearing in the Lagrangian at order n. To this purpose, we introduce the symbols
0Kl 9q|,, and g, which denote gauge transformations where the parameters are replaced by
the associated gauge fields. Additionally, we define (55"“) as the supercovariant part of a Q-
variation. In what follows, we insist that all the variations which are of cubic order, or more than
cubic order, in the fermions (gauge and matter fields) will be suppressed.

SQLSY ~ [0gele L5V + edgle ™ LY], (4.3)
500[0d L% + huc] ~ fEWLEG + (067 0 1LTG + £040g[e L] + hue. (4.4)
%5Q[ _;Eif’)ai +he]~ Daéiﬁfb")“i — iéj%v . Tijﬁib")ai + %1%562 [e_lﬁip”)ai] +h.c.
~ —e@Dye” L] — é, L0 — Sésg, [T L0
— £&0s),, [e T LY — 1€y - TVLY Y + Sbadgle™ L7%]
the., (4.5)
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where in (4.5), we dropped a total derivative. Note that the term involving the field T,/ comes
from the covariant part of the variation of 1,. It will appear similarly in the subsequent variations.
We continue with

100 L1397 jtba” + Uni L5500’ + hoc]
~ (D@L 0, + D] L
—ﬂ%%V7“£ﬁ%ﬁa+€%ﬁ4M£W®”%]+h0
~ —e EiDb[e_lﬁi;z)abij]wa' — e&Dyle LT )asz]?ﬂaj
— &y, LN — @k, LB,
—%[Ew“ﬁfﬁwwﬂhwa+3(%£+§%T%%%d
— @y - THLE 0 + @y - Twl£52™40a’] + hoc. (4.6)
where we have again dropped a total derivative. In the sixth line, we have used that Ef;;)abij, E;"Z)“b"j

are antisymmetric in their vector indices and we have rewritten the curl of the gravitino making
use of the explicit expression of R(Q)44 given in (2.2). Finally, we have

Lo L5 00" + hni L) 0” + huc!]
~ DL 60" + [P L5000
— 1leny - T L) 500" + @y - Tl 0d]
— ' L) e € f5 — VL5 v € fi 4 5[0e' L)% + huil£) 5106 ¢d + hec.
~ —e@Dyfe L) )00 — e&Dyle L) )0s
— Ewy - THLE 06" + vy - T Ly ™04
— O L) e € fi — huilL5) e € f + $[hn L)% + hn £5) 1067 ¢d
= [ELE + GLL P [R(S)od — 29e0d £ + gy - T bar — S &6 ] + e, (4.7)

2 o i

=

where after dropping a total derivative, we used in the last line that L)%, ﬁ("mbl are antisym-

metric in their vector indices. This allowed us to rewrite the curl of the S-gauge field through
the expression of R(S), given in (2.3). Note that we have also used 6x L)%, = o L)% = 0.
This is because n > 2, and in our case, £])%;, L)% are bosonic quantities with Weyl weight.

We now present in detail how the different variations appearing in (4.3)—(4.7) cancel each
other out up to order n in the supercovariant fields. The purely supercovariant variations must
cancel as

?
L

n—1

13 b0 (e8) Yo T Y (e + 2[00 Y (L)
k=2

1

i

—
B
||
no

i

—
=
Il

k=2 k=2
n—1 n—1

SO (L) RS), — ba S (7 L0 R(S),] + he
k=2 k=2

= [#Da (e7'LP%) +he.| +On+1), (4.8)
k




where O(n + 1) denote variations whose number of supercovariant fields is equal to or greater

than n + 1. We carry on with the variations containing an explicit K-gauge field. They have to
satisfy

SEw Y L% — €, Y LYY +he = O +1). (4.9)

k=2

The variations containing an explicit gravitino must satisfy

n

%[5Q€] Z <e*1£ék)) _ g—i(SQ'wa Z (eflcl(pk)ai) + 51%5@ Z (eqﬁ;k)ai)
k=2

k=2 k=2
n—1 n—1
— Leny Y (£9%5) vl — Lo T (£979) v
k=2 k=2
n—1 n—1
—1e (L““)“”zj> VT e — 5D (Lﬁp’ifa"ﬂ v T
k=2 k=2
n—1 n—1
17 abi (cov) 1.7 ab (cov) ]
+ 2 > (LD™) 55 6d + i Y (L) 05 6d
k=2 k=2
n—1 n—1
1= abi (cov) 1= ab (cov) ]
+16) (LW )(5% ¢ + e Z (eLt);) Og ¢f + h.c.
k=2 k=2
— e [eiDbZ< L) el @Dy (LGN ) wd he | + O+ 1), (410)
k=2 k=2

We continue with the variations containing a bare S-gauge field

n

= 501, D (eTLD%) + 56000 Y (71 LP")
k=2

k=2
- %EZ Z ( 'C(k)asz) Vo gba - _62 Z ( —lﬁ(k)abz ) Vo ¢a
k=2 k=2
n—1 n—1
— 156 > (€7 LD) wy T bu — 56 Y (7 LE™) Wy T b
k=2 k=2
n—1 n—1
— 4G Ty (e LW ) dd — 1@wr Ty Y (¢ LUM) éd + hc,
k=2 k=2
= _ZDbZ (e7'LB®) ¢d +&Dy Y (e7'LI?Y) ¢d +he| +O(n+1).  (4.11)
k=2

The Lagrangian (4.2) is build iteratively using the equations (4.8)-(4.11). The first step of
the iterative procedure starts at the lowest-order, i.e. at n = 2. At this point, the left-hand
side of equation (4.8) obviously only contains the first term and the expression of £ is already
know as it corresponds to the quadratic Lagrangian given in (3.1). This allows us to derive £
Subsequently, £7% and Effg“b”, E(%b * are determined by imposing (4.9) and (4.10), respectively.
This, in turn, allows to compute Effj,“w and L)% from (4.11). At the (n — 1)th iteration step,
we consider the cancellation of the supersymmetry variations of order n in the supercovariant
fields. We start with equation (4.8), where every term on the left-hand side is known from
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previous iterations, except for E[()"). At this stage, one has to determine E(()n) so that the whole
left-hand side cancels at order n up to a total supercovariant derivative. The quantity on which
the derivative acts upon is then £{’%. This will then lead to £, E(")“sz, £(”)“b’ ﬁ("mz’w and

L5795 by solving the equations (4.9), (4.10) and (4.11). It is important to mentlon that at every
step of the iteration, the equations (4.8)—(4.11) should be solved one after the other as each
equation requires an input obtained by solving the previous one. In this way, we build all the
terms of the Lagrangian (4.2) up to quadratic order in the fermion fields.

5 Building all N = 4 conformal supergravity actions

In this section, we provide the foundation for the construction of all N' = 4 conformal supergravity
actions. Making use of the density formula built in the previous section, we only need to specify
the lowest Weight covariant fields C%); and A%,. Our goal will be to build candidates for
these composites, using only the fields of the Weyl multiplet as our constituents. Once such
composite fields are specified, the supersymmetry transformations can be used to build all of the
other composite fields appearing in the density formula. Invariance under local superconformal
transformations is then guaranteed. This approach is however not a priori guaranteed to lead to
all possible conformal supergravity actions. To establish that the class we construct is actually
exhaustive, we show that its supercurrent (the multiplet containing the energy-momentum tensor)
corresponds to the most general supercurrent of conformal supergravity.

5.1 Ansatz for CY;; and A7y,

Let us attempt to construct C¥;; and A¥, out of the constituent fields of the N = 4 Weyl
multiplet. We will need basic “building blocks” X%}, corresponding to S-invariant combinations
of Weyl weight two in the 20". It turns out that there are essentially four possible combinations
which we denote X,,, with n = 1,--- /4 indicating the degree of homogeneity in the covariant
Weyl multiplet fields. X; is real, and we simply denote it as D%}, from now on. X, X3, and X,
are complex. We then choose the following ansatz for C¥;; and A% y;:

Cilyy = 2 piiy, Ay = A9 pii,
+ C(O)X ij L+ C(—4)X2ij + Aé+2)X2ijkl + flg_m)_(gijkz 5.1)
+ O X5+ Y Xg1 + ASHY X5 + AS VXS |
+ C’ (+4) X4Uk + C’ R P + A51+6)X4ijkl + /_14(1_6))24”1@1 ;

with C%;; given by complex conjugation. The factors sz)’ Ago), A§+2), etc., are functions of

the coset scalars ¢4 , 0%, and their superscript correspond to their U(1) charge. Their complex
conjugates are denoted by C_'l(H), Aﬁo), 14_1&72), etc.

The supersymmetry constraints (1.2) on C%p; and A%y, should then become constraints on
these functions of the coset scalars. This is indeed the case since the four combinations X, turn
out to transform into each other under supersymmetry when we restrict to the largest SU(4)
representations:

[VamD71leo =0,
[VamXQ i+ NamD7aleo =0, [V Xo") — 20" X3 lge =0,
[VamX57 1 + AamXa"1leo =0, [V X357 — 6A" X4 lge =0, (5.2)
[VamX17 ki + Aam X357 koo = 0, V" X4 lge =0,

[AamXs”1aleo =0 .



The final condition arises because five A;’s cannot be placed into the 60. From these results,
one can derive a set of differential equations on the coset functions and search for a solution. To
explain these conditions, we first make a brief detour to discuss the structure of the coset space
geometry.

5.2 Presentation of results

From the expressions of the lowest dimension composite (5.1) in terms of the Weyl multiplet fields
and the supersymmetry transformations rules, we generate the full N' = 4 conformal supergravity
Lagrangian. The purely bosonic part Lg of the Lagrangian was already presented in the current
literature and can be written as

e 'Lp=MH|LRM)"™ R(M);.,+ RV)™; RVl + LDy DM + L B, D*EY
— AT D*D.T?; — P*DyDyP" + P*P* + {(P"F,)* —  P*P, E;; BV
— 8P, PT Ty — 1—16 E; E'* Ey E" + ﬁ (Eij B9 + T Ty T Tog*
= T T Ty T — L B TPM RV ™, 2 jaan + 3 By Ty R(V), o 2750
— 2 BBy T Tappg €™ &9 — L EVEM T ™ TP e €ing
— 2T (P DgTy™ + L P°D. Tt + L TyM D.P?) ey
— 2T (PuDyTyr — 2 P°D T i) 5““]
DY |:%1Tabij TcdklR<M)abcd e + By abik R(V>abjk b ek R(V), ™ €im
- ﬁ Eij EY T®M To™ Extmn — % EY Tabkl reemn Tbcp ? Eikim Ejpgn
— LD (T T iy — 5 B Ej )|
DY [ 3_12 abij edpa o mn K €Lkt Emmpa — 6%1 abij pedpa KL mn €4kt Emmpa

1 ik rpacjl b mn 1 ikm, jln
+ 6 Eij Tw" T A ¢ Ekimn + BTV Eij Ey Enn qu ghmp g1l

~ L By By T* T |
+2H e £ N [Pa Pt — pip, nab} +he (5.3)

The coset derivatives D = D+ and Df = D~ are defined and here we use the notations where
the U(1) charges are suppressed. D, is the fully supercovariant derivative (including the gravitino
connection) and it coincides with the projection to components of the superspace derivative V,.
All covariant fields of the Weyl multiplet play a role in the action, including £ and D%, as well
as the SU(4) curvature R(V),'; and the Lorentz curvature R(M )gpeq. P, is the supercovariant
vielbein on the coset space.

From the point of view of the density formula, this Lagrangian corresponds to the bosonic
part of the composite field F. The conformal supergravity Lagrangian obtained from our ac-
tion principle a priori depends on the real and complex functions of the coset scalars and Z,
respectively. It was further argued that the dependence on these functions can be removed by
extracting a total derivative. The elimination of Z in this way however typically generates terms
that depend on H. These terms can modify the structure of the density formula. In particular,
at the purely bosonic level this total derivative introduces a dependence on the bare K-gauge
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field. This explains the last term in (5.3) whose presence also ensures the invariance of the kinetic
term for the coset scalars under conformal boosts. The expression (5.3) is then fully invariant
all the bosonic symmetries. A very stringent check of our result can be performed by setting the
function H to a constant. The Lagrangian is then invariant under rigid SU(1,1) transformations
and the bosonic terms (5.3) reduce precisely to the result. In this case, the bare K-gauge field can
also be eliminated by extracting a total derivative and writing a kinetic term for the coset scalars
which is invariant under conformal boosts up to fermionic terms. For any other holomorphic
function, the rigid SU(1,1) invariance is broken.

Let us now present all the supercovariant terms which are quadratic in the fermion fields.
They are still all contained in the field ' and for legibility we will decompose them according to
the number of coset derivatives acting on the holomorphic function H. Once again, all the terms
depending on the function Z can be eliminated by splitting off a total derivative. The terms
which do not depend on derivatives of ‘H read

H[R(Q)i RIS)® = $X74Dxi" — 1x" DX — 2A' (DD? + DD - D*) A,
— 1A, (DD*+ D*D — D*) A" — 1"y - DT N¥eiji, — X" 1y - DTij Ay €7
+ %leﬂ T DA*e 1 + %Xklm'y T3 DARe""™ — LET M o™ s
— LB XX mn € = LR(Q) DT Neyjyy — SR(Q) DT iy Ay €M
— DR(Q)™ N Ty eijig — 2D.R(Q)1 Ve jTop i €7 + 2 D, A R(Q)™ P,
+ %Tij T /_\kaln gmn 4 %TU : Tkl]\kalngijmn + %Pa/_\k”y : Tij’Yanij
+ %pa/_\k’Y ‘ Tz‘j’YaXijk - %EijEkl/_\iank Ejimn — %EijEkl/_\ikan gltmn
— sEVP N X" €tim — § By P Ao X' 10 €M™ — §EY Dy Ejj, Ay A
— 2 EYDEjj Aiy*A* — L EiD EV Ny N — LEYE; Ay D A*
+ 2EYE;; DMy * N + LEE;jj Ay Do — LEy EY Do Ay AF
+ SDEYP NN + D, Ejj PPN'N — YEY P*Nya, DyAj + S EY D, POAA,
+ 1E;; D PUN'N — ANy N Dy Py P* — SAY*N; Dy P, P* + 2Ny Dy P, PP
— 2D, NP AP*PY + LAY N; D, P P’ — LA A;D,P*P* — 2D, N'v*A; P° P,
+ 3 A DN P Pye™ — 2T T Ny " DN — 2T 15D T My N
— 2T i T DAy’ A* — 2 D Tif T Ayy? N + 2P, T A Dy Ay™
+ 1P, TN DyN'e;jiq — L P.D Ty Ay * Mg — L PCDy T Aoy Ne
- %DchTabij/_\k’YacAzfijkl - %DchTabij/_\k%cAl&jkz + %EiijTablm/_\i’YaAszjkzm
— LB DyT® 1y Ao N — LB T 1 Dy Ny o N'e™™ + S EIT M Ay, DyA™ €
— %DbEkaabijf\k%Algiﬂm + DbEkaabl-jf\maAkgiﬂm — iEijTableabmnAiAjgklm"
— LBy Ty " T ™ N N ey — B3 P Ty  My" N + L EY PYT o 5Ny A"
- %PcPcTabij[\ﬂabAj - %PcchabijNVabAj - Q—ZTabijTGbMI\m%AmPC&jkz
+ Q—ZTabijT“bklAmycAmpcgijkl — %]\fy“AijR(V)abij +h.c.. (5.4)

This result can once more be checked by setting the function H to a constant. The remaining
terms which are quadratic in fermions depend on derivatives of H. Those with a single derivative
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can be written as
DH [W%%X P = 2By — Ay Y T e — EGR(Q)L, R(Q)™
Tab”R(Q)abk Meiiim — $DY XM — SR(V)a? k Ay x™*; — LB B Ay
Eij A DX 1™ ™ + BT Ay ™ X ™ jehimn + $E7 T Ay X ™™ jhin
+ %Aﬂ STPDx i — 15X ey - T PA i + X iy - T PAge?"™ — 38"y, D* A, P
+ %EijTabkl]\iR(Q)abmejklm + %Tabz‘jpcf_\k%R(Q)abﬁijkl — 3T TP R(Q) ™ e Neijm
+INRQ), PP — INR(Q)™R(V) ' s — 3ATY - R(S); + 1/_\i'yCdR(Q)“biR(M)abcd
+ LN YA R(V ) o i Pee™ + LA N TG R(V ) oy "™ + BA'AP N PO Py Py + £ Do Ny, DAy Py
— LAY D, DyN; P* — AN'DA; D, P* — ANy DyA; D, P° + LA~ D*A'P,
+ LD°AY*DyN' P, — LAA' D, DN P — LA, DA'D,P* — 1Ay DyN' D, P
— Do A;DN'P* 4 LD N'DAP* — LA'y*A; DDy P’ — 12 N'y*A; P, P* P,
+ 3B Top NN PR + LEIT WM Ny N PO jjm + 2By T DPAyy* N
+ $ DV BT Ay N + L BTy Ay DN — L DT Ay Y
Tubi Aey " D D™ + £ Do DT g Aiy ™ Aje M — 3T Do A Dy Ay
— $D, T ;A DyNie"™ + 5D Thoij Ay DA™ — 5 DT i Aey™ Dy Ny
— 1T0i; D" Ny DeNg "™ + 2P, T N;DyA; — 1 DT, P Ay ™A
— P DTy Ay A + 1P T T Ay DA + S PUT3. 7 Ay Do A
— 3T, T P PNy N ey + S Touri; PP PNy Ay gwkl LB E™ Ay N P°
+ LB EY Ny AP, — 5Tac’f’T“b”Ak%DCA Eijim + 2T - TN, DA™e;j1
+ 3T T DMy A ijim — 37T - TN DAijrr — 5T DyT*M Ay A" i
+ §Tac” DyT M Ay N et + 5T DT Mgy N i + 5T DT ™M Ay A1
+1D°EYNN; + $P*PEGNN — LPP,EVN A — LAy - R(V)* A EY
+ 31 By EYEM NNy — 15 B E™ BV AL — 5 BY EMT ™ Ny ™ Ak jimm
+ TﬁTabijTa T AmVCd/\neklm” + & T T P Tod™ Ny A g
- gEijTableabmn/’\pAqgiklpejm”Q] +he., (5.5)
while those with two and three derivatives of the function read
D | By T Ay ™y = S5 T Bk R(Q)™ = By Bra Ry ™™
+ LA T T e+ 2R X T T e g + SNV R(Q) S T T 11
+ 3NRQ)E T T, M e g — 2N YDy Py P’ — 2N DA PP, — 2Ny, A;P* D, P’
— INAPNP*D, Py + SAA*DyN' P, P’ — LN, DN PP, — LE;; PP Ay N'T "
— §Twij PN DA g”’fl + 31 PaD T Mgy Mg — T i3 P Ay DO Nyg?M
E §TM-DCP Ay N 4+ E T PP A A + @TabijT“bklpC/_\mchmsijkl
— AN ARV ) o T + AN R(V) ™ T + LNy N R(V ) o' By
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+ %AiWCdAjR(M>abchabij - %AiwabAjTableijkl + T%AjAnEimDijkﬁklmn
— LEGEIT W My A+ L By E* T Mey™ Ay — L EVTMT 0™ Ay je i
_ 1_12E’ijTab leacmn]\i'chAkgjlmn]

3 1 Da D A be ijkl 1 ik A ab ilmn 1 rpabij klmcmn A

+D"H [gTabijP PNy Mg — 1 By B Top™ Ny Np&®™™" — 5T T, T ™ NN jran
1 abij kl mnpA cd 1 ijrackl mn A . bd

+ 5L Ty Tea™ Ny Njertmn — 55 Lap” T " Teg™ Niy" N j€ktmn

+ %TabijTaclecdmnAk’}/bd/\lﬁijmn + ﬁEijEklEmn]\pAqgikmpﬁjlnq - g]\i’}/b/\ipapapb]

+ h.c. (5.6)

We emphasize that (5.4),(5.5) and (7.7) correspond to all the terms quadratic in the superco-
variant fermion fields. The remaining fermionic terms at this order then necessarily involve bare
gravitini and/or S-supersymmetry gauge fields. From the perspective of the density formula,
these bare gravitini terms are associated with the composite fields Q°, Q,%, ¥, ¥, and ,*;. How-
ever, there will also be contributions coming from the various total derivatives we have extracted
in order to write the result as above.

6 Terms with explicit fermionic gauge fields

In this section, we present all the terms at quadratic order in the fermion fields which contain
explicit fermionic gauge fields. Therefore, we give the expression for the supercovariant quantities

L5, Ly Ly, Ly, Ly, Lod®y (6.1)

which, as described in (4.2), appear in the Lagrangian coupled to bare fermionic gauge fields. For
the purpose of this paper, we can restrict ourselves to the terms in £, and L4} which are linear in

fermions. Likewise, it is enough to only consider the bosonic terms in £¢,2“bij, L% Lo, Lyl

Let us first consider £,% which is contracted with a gravitino in the Lagrangian. For the
reader’s convenience, we split this quantity into

L= LYG+ LY+ L)%+, (6.2)

where Eﬁ;)ai,ﬁij)ai and £§;)ai are quadratic, cubic and quartic in the fields, respectively. Due
to Weyl weight restrictions, the dots denote terms which are of higher-order in fermions. The
quadratic part reads

e LY =Nk D™N + 577 - Tie X% 4 27 R(Q) e RV) ™Y + 57" Vb R(Q) eas R(M )
- 2’YaR(S)cdjTCdij - Gijkl’Ya’deAijDcTCdkl + %Ez‘jkl’ya DX E™ + %’YaAjDinj
+ 79[ (Da P+ PDa+vaD?) Ai] P + 37y Ni[DyDy P* + D*Py] + v* IPA; Dy P?
+ 294D N; D(a Py + ¥y - R(V VX", (6.3)
while the cubic part is
e L)% = = 3N BuEY — wR(Q)i - T T — 6 R(Q)k - Ty T™7* + 4~ X i1 Ty T
— jhim Y VX" P 4 e gy - TX P = 2845107 R(Q)' - TP,
+ 35ijklR(Q)l - Tk pe + %5jklm’}’bankEmTablm - 5jklm’YbXnijEknTablm
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— Ejam VX i BT — L%y - R(VY A Ej — 2y R(V)iAFEj,
+ 377 - R(V)RA Ejy + 367y R(Q);j - Tt B + 2R(Q)™7 P, By
+ Yea A R(M) ™ Py + v R(Q) ™ P Py — 2™ Ay D' Ty i T,
— 6 DN, Ty i T, + 38 A, DT Ty ji, + 2 7™ A, T% D The i
—2&MM N, DTy - Ti] — 27 e Dy Ay T T, + €]klm7dc/\ DyT"0, T,
— 2878y 1 Ny T% Dy T, + €™M 4o Ny Dy T U T + S A Tod ™ R(M)™
+ 2 A, D BT + 2 A EP* DT + 37" N D°E7* Ty, ji + 37" DN B Ty 5,
- %’YbaAkEjchchji + LfVCAjpraTbcji + 376A]DanTbcﬁ + %’YCDGAjprbcji
+ 29. Dy NPT + 227N P* DTy — 2y N PP DT + 2~4°D°N P,
+ 29N D BT + 29°N DP P*Tyejy + 34PN P,D.T; — 24" N PP DTy
+ BN P.DyT ™ — 57 DN P*Toyj; + 29" N Dy PTG + 57" Dy N BT,
+ 1 37ear™ + 1 Yea] A R(V )Y Py — g%dVabAjR(V)Cdjin — $Yeal\; R(V) ¥ P
— INR(V)" Py — 29\ jR(V) P — 4 ey N T R(V)™,
— 3€iy " N TRV ) oo + 3€jam 1N T R(V)
+ 2€jm Y N T M R(V) o - (6.4)
The quartic part takes the following form
e LYY = F5V N EGEGEY — 37 N By B EY + (N B B P + 2N By BV P,
+ 2N E; BN P* — 1A B EY Py — 24*N Ejj B,P* — 49°N E;; PP,
+ WP N By PP — Le®y N PP Ej; + 17" P* PP, — 27"\, P,P.P"
— 2%\, P,P"P, — §A-PbeP“ + lA-PbP“P — Leymy N T,H PP Pe
+ emkl’ybAJT“CkleP + gl]kl%AJT“C’“P pb— -&Jkl’YbA]TbcklP“Pc
§€z’jkl’7 AJTbcklPCPa + 4€ijkl’YbAJTbakchPc - gé'ijkl’YbAmea]kEmnEnl
+ 2Ty A" B Eq T — e imim N By E"" T + 24N BT Td*
+ 2 €ij1Emnpg VA E T T g% + Lo mnpgy N E™ TP - TIF
— By NEGT T + 27N Ey T T" + 5™ N By T Py
geijkl'ychmEmlT”’b]ch — 2"y A g T P° + S0y A E™ T, 0" P°
@A TabijijiPc @ATabjkT cjch 34 ch Tabk]TbCﬂPd

ININT ¥ Ty Py + By - T AT Py — 27 - TIPAT P
= 2 jum WA T - T T, + EijmbAlT]k STl
+ 8 €hm g N T, Ty JF T e (6.5)

We now present the expression of L4; which appears contracted with an S-gauge field in the
Lagrangian. The terms linear in fermions can only be of cubic order in the fields

e 'Ly = 3N EITY + WA BT — 39" N P Ty s
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+ IyON PTyesi + 267 Ny Toeti T + 27y N T - T (6.6)

We move on to £¢2 i and Ly, 0% which enter the Lagrangian contracted with two gravitini.

For clarity, we split them into

Ly = E(Q)“b +£(3)“b ., (6.7)
‘Cw abz — E(Q)abz +£(3)abz ., (68)
where Ef;%abl-], ,C(Q)“’”] and £(3§“”U, £(3)“b’ contain terms quadratic and cubic in the bosonic fields,

respectively. The higher- order terms denoted by the dots, are fermionic. The expressions of the
quadratic parts are

Lij%abij = l&klmWGbEang‘nkl - l€ijkﬁ[a%d7b]R(V)CdlmEmk - QWGbPCDcEz’j - VGbDCPcEz‘j

— 2T D' + 24y pyea P ROV H %, — Lty e (A R(V) IR T4

+4 R( )abchch 44 Eiikl cabed P, DeTedkl 4 Eisl pe DCTbakl

— 24 D PT (6.9)
L3H® = — 4e5%y,D° [P Py . (6.10)

while the cubic parts read

Ei;;ablj 1Tab[ EJ]kEkl 2TabijEklEkl 4 %gijklgmnpqulEkaabqn + 8 Tbalelj . Tzk
+ 16 - THT TP, + 8 P.PI*T"S; — 16 P.PIT"; + 4 X B, Thjmd“T%
+ Lepm Ly y - T EM (6.11)
£ abij = — 27, Eki p[aTb]ckj — e Eki chabkj —274.Ey; plagbleki _ V°E,; PcTabki
+ E_Gfilkm'YcTabjlpchdkm +8 5iklm7[bTa]clmpchdjk —4 5iklm’YCP[bTa]dldecjkz
_ 9 giklm 7[a pb]Tj T — % ki %Tabik Pdeclm + 8&im ,y[bTa]clm PdTC dik
— 4 &jpmy PETIMM TR 9y PO T (6.12)

Finally we present the results for £,2%; and £,°% which are coupled to a gravitino and an

S-gauge field. The only bosonic terms are clearly at most quadratic

Lpi% =2¢eme™ g PeT.H (6.13)
Ly = —46;PlpP. (6.14)

7 The general results

In this section, we present all the supercovariant terms of the N = 4 conformal supergravity
Lagrangian up to quadratic order in the fermion fields, obtained through the iterative procedure
presented in section 4. We argued the Lagrangian takes the form (4.1). Within this scheme, the
purely supercovariant terms at all order in the fields, bosonic or fermionic, are cast within the
quantity denoted by Ly. Let us now split £ into

£0:£Q+£B+£F+---7 (71)

where L, Lp and Ly are respectively the quadratic Lagrangian (3.1), all the purely bosonic su-
percovariant interaction terms and the supercovariant interaction terms quadratic in the fermion
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fields. Here, the dots denote terms which are quartic, sextic and octic in the fermion fields and
which, therefore, are outside of the scope of this paper.
We first recall the quadratic Lagrangian

,1‘60 R<M)abcd R(M)abcd T R(v)abl R(V);b]z
— 4T, D*D.T%; + LE;; D*EY + 1D} DV
—2P*[D,D"P, + D*P,] —2D“P"D,P, — D*P,D"P,
+R(Q)a' R(S)™ = X7k DX"; — 5A: (D* P+ PD*= P°) A’ +he,  (7.2)

which was discussed in section 3 and served as the basis for the iterative procedure.
The bosonic interaction terms at all order in the fields are

e 'Ly =1P"P,P"P,+ PP, P"P,
~ LB, B By B + L[E, EY]’
— LE;; BV P* P, — 8T%" Tyeij P, P°
+ TP T Ty T% — T Tt Togiy T%
+ M T B ROV ) ™
— M P[4 DT Tyers — DT Topri
— Leiitt Emnpg TV Ty E* E' + hec. (7.3)

which involve cubic and quartic terms in the fields. Quintic terms are forbidden due to the Weyl

weights of the bosons.
The interaction terms which are quadratic in the fermion fields read

6_1£F = igijklxi m7 - Tkl pAm - _51]le m’7 TklﬁAm
— LeuX XL E™ = 3eVRR(Q) s DTy — e7F R( )zﬁ T\
+ 2 DN R(Q)ari P’ + A7 N'D*R(V ) s + 5”’“ XA Ty - T
+ XYy TN Po + LeijiuX P A E™ E™ — LeiiuXmy A" E™ P,
— 5N DN ERE* 4+ 1A DN EjpE* — Iy "N Do Ejp B + 3N\, D,EV P°
+ 2NN EVD P + Ay Do A jEY Py + §Mi7a Dy A PP P* — L A7, A" Dy P* P’
— AN Dy PP PO + 2N PN'PPY + 2" Niyo DyN' PPy — 2 Do Ay N T 15"
— 2 A N DT Td* + 2 DAy N T T + 2 Ay N DT T
— 2eVM N DN Tt PP + €7 Ay Ny Do Toera P + 27 Niy™ A Ty Do P°
— 28 DONA N B Tapit + €31V A D* BT T + Ly Ny P AT BV DT, )"
— LFm NN T - Ty BV 4 LM ™ NN Ty - T B + 2A* N Ejp T ™ PP
— AN T PP — e juum Ny N T% - T P, + hec. (7.4)

They involve cubic, quartic and quintic terms in the fields. Note that there are no terms of sextic,
septic or octic order in the fields as, due to the restrictions on the Weyl weights, these would
be of higher-order in the fermion fields. Finally, (7.2), (7.3) and (7.4) are SU(1, 1) invariant and

their sum is K-invariant.
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As we already mentioned in section 1, the bosonic part of the N = 4 conformal supergravity
Lagrangian has been derived in [8]. Because it was obtained in a different set of conventions, we
have converted their result in the conventions of the present paper to facilitate the comparison
with our results. In particular, this requires to covariantize the curvatures and derivatives with
respect to the conformal boosts and to switch to a different parametrisation of the coset space.
Up to a Gauss-Bonnet term, the Lagrangian in [8] is then equivalent to

e 'L =31R(M)™* R(M)apea + R(V)™"; R(V )/

— 4T, D*D.T%; + LE;; D*EY + 1D, DV

—2P*[D,D"P, + D*P,] —2D“P"D,P, — D*P,D"P,

+4pP*P, P'P,+ P*P, P' P,

— & E; E* By EY

+ 5B EY P*Py — AT Ty P, P

+ Ty TR T T 4 AT T Togiy T% + hic. (7.5)
We now compare the above expression with (7.3) and the bosonic part of (7.2). Clearly, the
quadratic Lagrangians agree as the first three lines of (7.5) coincide with the bosonic part of
(7.2). We note, however, a number of differences when comparing interaction terms. The most
obvious one is perhaps the presence of terms cubic in the fields in our results while none appear
in (7.5). Further differences concern the quartic terms in the fields. Indeed, the last term of the
second line and the last line in (7.3) are not present in (7.5). Moreover, none of the coefficients

of the remaining terms match.
The complete form of supergravity Lagrangian coupled to bare fermionic gauge fields is

e Ly =" XD + 2y - T DX+ 29 R(Q)eqy ROV Y + 27 Yeb R(Q) cai R(M )
— 29" R(S)ed T — €1ty VoalN D* DT + Lei iy DX EM™ + 24N DB
+ 79[ (Da P+ PDq + ~4D?) As] P? + 374" A; [DyDyP® + D*Fy| + 7 PA; Dy P*
— N B EY — W R(Q)i - T T — 6 v R(Q)y, - Ty T™9% + 4~y Ty T4
— EtmY Yaxd P 4 jpmy - T XN P — 250y R(Q)' - TVFP,
+ 3eiR(Q) - TP + L&/ My \ " B T — ™™ X" Epen T
— Ejrm VX i BT — LAty - R(VYA By — 2y 4" R(V)iAFEj,
+ 377 - RV Ejy + 367y R(Q); - T Brmi + 2R(Q)™7 Py By
+ N R(M) ™ Py + v R(Q) PPy — 2elfm A, DV 1T,
— 6™ DN Ty i T, + 3€8¥™ A, DT Ty j1, + 2 7™ A, T D The i,
— 26N D [T - Tii) — 2™ ae Dy AT 6T Gt + 567 Yae A Dy T 5T,
= 264 Ny TG DT 5 + € g A Dy T G T G0 + 3eijms A Ted " R(M )
+ 2 M D BT + 2 M B DT + 37" A D B Ty ji + 37" D A B Ty
- %'YbaAkEjchchji + %’YCAijDaTbcji + LfWCAjDaprbcji + %’YCDaAjprbcji
+ %’YcDbAjpraCji + lgo’YcAjpanTbcﬁ - %%AjprbTacji + %”YCDbAjpaTbcji
+ %’YcAijPbTacji + %’YcAijpaTbcji + %’YbAjprcTcaji - %?’YaAjprcchji
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+ 23—8’)/bAjPCDbTacji - %’yaDCAijchji + %’YbAijPcTacji + %’bebAchTacji

+ 11377 + 7" Yea) A R(V) Y Py — $9eay™ Ny R(V) Y Py = $70al\ R(V )Y, P°

— INR(V)" Py — 29\ jR(V) P — 4 ey N T R(V )™,

+ 5V NEEyEY — 2N Eg B BV + ¢\ Ejp E7* P + 1y N, Ej, B P,

+ 2N Ey EM Pt — 1 “”Ak B Py — 24N Ey; PP’ — 34°NE;; PP,

+ WA By PP — L6y N PP, Ej; + 17"\ P* PP, — 2~*\; P,P.P’

— 2y*\;P,P"P. — -A.PbePa + lA-PbP“Pb — Ty N T, PP P

+ 3eiunN T M PP P, + ey N T*M PP’ — 3,7 NV T, M P* P
Leiu "N T PP + dejyyp N TP PP — Loy’ A" Thd* By E™

+ 2Ty A" B Ea T — e iiim VoA Eng E" T + 24N BT T,0*

+ 2€50Emnpg Y N EP TP T % 4+ Leiiemmpgy A E™ TP - T
BV NEGT TS + 29N Eg T T + 5™ N By T30 Py

- geijklychmEmlTabjkPC 25jklm’ych Elea kPC + 61jkl’ybcA EmlT JkPa

4 %AkTabijbcjiPC + 23_8AiTabjkaCjkPC 34 ch Tabijbcgde

+ 5V INT O Ty, Py + By - T AT Py — 37y - TN T P

-2 gjklm’}/bAlTjk : TmnTabin + gijkl’ybAlTjk : TmnTabmn

+ 8 uum Va N T Ty T (7.6)

The total Lagrangian of N = 4 conformal supergravity is constructed in the magical and
extremal form on current equation

e Ly =H [é(@);b R(S)® — 35, Dy;* — Lx,# DXy — 2T (DD* + DD — D) A,
— 1A, (DD* 4+ D*D — D*) A" — 1"y - DT N¥eiji, — X" 1y - DTij Ay €7
+ Iy - TIDN €1 + X 1y - Tiy DARe™™ — LEI M ™ i pgimn
— LB VX i € — LR(Q) DT N ey — SR(Q) DT iy Ay €M
— DR(Q)™ N Ty eijin — 2D.R(Q)1 Ve jTop 1 €7 + 2 D, A R(Q) ™ P
+ %Tij T AmX n gmn 4 %le : Tkl/_\kaln€ijmn + %Pa/_\k’Y : Tij’Yanij
+ %Pa/_\k’y : Tz‘j’YaXijk - %EijEkl/_\iank Ejlmn — %EijEkl/_vkan gltmn
- %Eijpa/_\k%xlmi Ejkim — £ Eij P Ny ya X ta gikim _ tE9D,Ej Ay AF
— E7D E;j A" N — 5By Do BV Ny " A* — & BV BNy Do A*

+ 5 EVEij Dol N + S EF B My DoN — LB BV Do Ay A"

+ 2D,EYP*NNj + D, E;; P°N'N — LEY PNy, Dy + LEY D, PN A,
+ 1E;; Do PON'N — ANy N Dy Py P* — SN N; Dy P, P* + 2Ny DyA; P, PP

— 2D, NP A PUPY + LAY N D P P’ — LA'AA;D,P*P* — 2D, N'v*A; P* P,
+ 2AYa Dy PPy — 2T 3 ;T Ajy* DN — 2T 355D T Ayy* N
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— 2T T DNy N — 2 DTy T Ny’ A* + P, T% A Dy M

+ AP, TN Dy ey — LP.DV Ty Ay ™ A — LDy T Koy Nl

— 1D PT? i Avac g™ — LD BT NoryooNeyju + LEY DT Nirya A e jrim

— %EiijTablm/_\k%Aiejklm — %EijTableb/_\mvaAisjklm + %EijTabkl/_\i’yanAmsjklm
— LDy EF T Ny  Neijim + DyEyn T3 Ao A e — L EIT 0T Ay A e
— 2 BT T ™ NN g — 5 B PO Toy™ A" N + § B9 PUT i Ay AF

— LP°PTW AN — LPCP.Toii Ny N — LT 9T M Ay A" Pleiju

+DH | X 17X 5 P = 5X kB — ixX Xk T eijin — 5B R(Q)uR(Q)™

T ”R(Q)abk lmkgijlm - %Dijkl/_\iXklj - lR(V)abjkAfyabXZk] 1EijEik/_\lXﬂk

2B N DX 1™ 4 2 BT Ay ™ X ™ i kimn + £ B9 Tap™ My X ™ i€ jtin

+ A0y TRDX i — SX ey - TP PA e + X1y - Ty PARe™ — 3Ny, DA, P
+ %EijTabklAiR<Q>abm5jklm + %TabijPCAkVCR(Q)abl€ijkl — %Tabijpcpt(@)abk%/\l&jkz
+5MR(Q)yp P P’ — FAR(Q)™ R(V)w'y — ST - R(S); + § A" R(Q)™' R(M ) aea
+ AN YN R(V ) i Pe ™ + LN N T R(V ) '™ + 8NP A PP, P,
— LNYD,DyN; P* — AN'DA; D, P* — LN'y*DyA; D, P° + - N7 *D*A' P,
+ 5 D’Ay* DyA' Py — 507" Do DyA' P* — 5N, DA’ D, P* — A;y*DyA D, P
— 1D,A;DN'P* + 1D, A'DAP* — IN'Y*A; D, Dy P* — YNy A; P, P* P,
+ %EijTabkl]\m’ybAiPagjklm + %EijTabkl]\fybAmP“a‘jklm + %EijTabikaf\k’y“Aj
+ 1D Ej T Ay  N* + LE; T * Ny * DN — LE; DVT 3™ Ay NV
— Tobij Ay D’ DN g™ + LDy DTy iy Ay A je ™ — 1T Do Ay Dy Aye™

DT A DyN g™ + LD Ty i Ay DN g™ — L DT 45 Ay* DyAjg™

5Tubiy DMy D™ + 2P, T A Dy — § DTy PaAiy™ A

31 P DT Ay Ay + 3P Th? Ay DA + 5 P T A" Do A,

3T P*PyN* Y Neijuy + 55 Tapiy PP PNy Iy swkl s Ei B Arya N P
+ 5B BN AN B, — 2T, M T Ny DN i + §T™ - TV Ay DA™
+ %Tac’“lT“b” DN A Eijim — 97T - TN DApeijer — 3T DyTM Ay " A e i
+ % Tacij DbTabkl ]\m ~EA™ Eiin + % Tabz’j DCTabkl ]\k ~EA™ Eiitm + % Tabij DCTablcl /_\m FEA™ €
+ 1D?EYNA; + PP EGN'N — LPYP,EYA A — LAy - R(V)* ;A EY
+ L EEVEM NN — L EGE BN — 52 EY BT Ay ™ Ak jimn

+ %T bz]TablechAmﬁ)/CdA gklmn 4 TaleT lecdklAm’YCdA gl]mn
+ D*H [iEijTabik[\l’VabXﬂk - gEijTabik]\kR(Q)abj - %EijEkl[\mXiknEﬂmn

+ LA™ T TR+ 8 X T T M e jran + SNy R(Q) o T T i1
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+ 2A2R<Q)ZZ TabijTaCkl&?jklm - %AiWGDbAiPan - %]\iDAiPaPa — %Ai’yaAiPanPb
— ANV N P D, Py + SAA DN Py P* — LA, DN PP, — LE; PP Ay N'T "

- %TabijPaAkaAléijkl + & PuDTyei i Ay Nyg™ — LT3 PNy D Njg™

— éTabichPb/_\wacAﬁijkl + %Tbcijpapaf_\ﬂbcf\j + zlgTabijTabkch/_\mWCAm%kl

- %/_\i'VbCAkR(V)acijabij + %AiAkR(V)abijabij + Tlfi/_\klyabAlR(V)abimEijejklm

+ %ANCdAjR(M)abchabij - l—lfi/_\wab/\jTableijm + %AjAnEimDijklgklmn

— i By BT Ay My + 53 By BV T My ™y — g BV T M T ™ AiAjeimn
+D*H [%Tabijpapc]\k’chAlgijkl - &EijEszabik/_\mVab/\nﬁjlmn — TN jtan

+ G%Tab ijTablecdmn/_xifYCdAjgklmn - %T’abijjmC lecdmn/_\i’}/bdAjgklmn

+ L By By B Ay A g™ el — 3Ny N P, P*P*| + h.c. (7.7)

The Lagrangians derived above can be directly incorporated into Poincaré supergravity as a
four-derivative coupling following the same construction carried out originally, by including the
superconformal Lagrangian of this Letter before proceeding to the standard gauge choices. The
SU(1,1) symmetry will then become entangled with an electric-magnetic duality transformation
in the vector-multiplet sector. Alternatively this Lagrangian can be obtained in one step by
applying the superform method directly based on an extended field configuration consisting of at
least six (on-shell) vector supermultiplets and the Weyl supermultiplet, where one must bear in
mind that the supersymmetry algebra for this field representation will no longer close off shell.
It is then possible to compare the corresponding expressions with the R2-couplings for N = 4
Poincaré supergravity, which may also depend non-trivially on the coset fields. In the context of
Poincaré supergravity the higher-derivative couplings are primarily studied as potential counter-
terms that could render the theory finite. At this moment there is agreement that this theory is
not finite at the four-loop level. The presence of a U(1) anomaly and the non-trivial dependence
on the coset fields plays an important role in this discussion, as was extensively discussed. As
should be clear from the iterative procedure that was used in this paper, the consistency of each
term in our result relies on the consistency of many other terms. Therefore, our computation
passes a multitude of crosschecks. It should also be noted that all the terms in our result
correspond to possible Feynman diagrams of the gauge theory with divergent contributions.

8 Conclusions and outlook

In this paper, we have explicitly constructed an N/ = 4 density formula using the superform
method. Invariance under the local N = 4 superconformal symmetries is ensured provided the
lowest Weyl weight fields satisfy the set of constraints, and that the remaining fields are defined
via the supersymmetry transformation rules. We then showed that, by expressing these fields in
terms of those of the N' = 4 Weyl multiplet such that the constraints are satisfied, the density
formula leads to a class of AV = 4 conformal supergravity actions parametrized by a holomorphic
function of the coset scalars. Based on the uniqueness of the N' = 4 supercurrent, we further
argued that this must correspond to the most general class of maximal conformal supergravity
actions. We presented its expression up to terms which are quadratic in the covariant fermion
fields. A stringent check of this result is that when the function is set to a constant, it recovers. For
ergonomic considerations, the complete action is given explicitly in an addendum file. As a second
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application of the density formula, we also re-derived an on-shell sector of the action constructed
for a vector multiplet in a background of conformal supergravity. An intriguing feature of the
density formula we employed is that it seems it could be derived from a single superfield %,
and a constant ¢®?. The properties of this superfield resemble those of a G-analytic superfield in
(4,2,2) superspace, but it cannot be a Lagrangian in that superspace because it has the wrong
dimension. Perhaps it can be used to build an action principle in (4,2, 2) superspace along the
lines. The construction of the full class of N/ = 4 conformal supergravity actions opens up
various perspectives on the higher-derivative structure of the Poincaré theory. As was shown
already long ago in the research literature, N' = 4 Poincaré supergravity at the two-derivative
level can be described as a system of six vector multiplets coupled to conformal supergravity.
The standard Poincaré action is recovered after gauge fixing the conformal symmetries and
integrating out the various auxiliary fields of the Weyl multiplet. It is now possible to consider
the class of actions constructed in this paper as a deformation of the two-derivative conformal
setup. In this case the transition to the Poincaré theory is non-trivial as the field equations of
the auxiliary fields have now become non-linear. This requires to integrate out the fields through
an iterative procedure, which will result in an infinite power series of the spin-1 field strengths
and their derivatives. We will show in an upcoming paper that this procedure can be carried
out consistently and leads to a class of supersymmetric higher-derivative Poincaré invariants
which depends on the holomorphic function of the coset scalars. The procedure can also be
applied to describe Poincaré supergravity coupled to vector multiplets. These higher-derivative
Poincaré couplings are relevant from several point views. When considered on-shell, they could
be directly compared with the results obtained. It would also be interesting to see if they could
be embedded in the formalism where higher-derivative corrections are described as deformations
of the twisted self-duality constraint relating the spin-1 field strengths to their magnetic duals.
Another application concerns the matching of subleading corrections to the microscopic entropy
of N' = 4 black holes obtained via state counting. From the supergravity point of view, some
of these corrections are known to originate from the class of couplings considered in this paper,
and could be calculated by considering the induced modifications to the area law, or perhaps by
using more recent localization techniques along the lines. These approaches have so far relied on
a truncated N = 2 setting and it should be interesting to reconsider these results in a fully N' = 4
supersymmetric formalism. Finally, these invariants might clarify the ultraviolet properties of
the Poincaré theory. Explicit loop computations have revealed a divergence at four loops which
is believed to be connected to the presence of a potential anomaly in the duality symmetry of
the theory. It was however shown recently that there exists a finite counterterm, whose leading
term includes the square of the Riemann tensor multiplied by a holomorphic function of the
coset scalars, and which cancels the anomalous contribution of the graphs up to two loops.
The consequences of this counterterm for the finiteness of the Poincaré theory at four loops
however remain to be explored. While these amplitude computations rely on a description of
the counterterm via the double copy construction, its explicit supersymmetric expression should
follow from the class of invariants constructed in this paper, provided the correct holomorphic
function is chosen. In the context of Poincaré supergravity the higher-derivative couplings are
primarily studied as potential counterterms that could render the theory finite. At this moment
there is agreement that this theory is not finite at the four-loop level . The presence of a
U(1) anomaly and the non-trivial dependence on the coset fields plays an important role in this
discussion, as was extensively discussed. As we mentioned earlier, another possible application of
the result of this Letter concerns the calculation of the corrections to N =4 supersymmetric black
hole entropy that are known to originate from precisely this class of Lagrangians. Both these
approaches have only been applied so far to N =2 supersymmetric truncations. It should be very
interesting to understand these results in the context of N =4 supersymmetric formulation.
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