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摘要

According to Maxwell’s electromagnetic theory or classical electro-

magnetic theory, if there is a changing current on the antenna, an electro-

magnetic wave will be induced around the antenna, which can propagate

in space. When the electromagnetic wave propagates to the receiving an-

tenna, the electromagnetic wave transfers the electromagnetic energy and

momentum to the receiving antenna. The receiving antenna receives the

electromagnetic signal. The above discussion is the standard description

of electromagnetic wave in almost all electromagnetic field textbooks. The

author found this description wrong. According to Wheeler Feynman’s

absorber theory, the radiation generated by the transmitting antenna is

not only determined by the changing current of the transmitting antenna,

but also affected by the current changes of the remote receiving antenna,

the charge of the absorber and the environmental materials. The material

absorbing electromagnetic wave affects the transmitting antenna by radi-

ating the advanced wave. So that the transmitting antenna can release its

electromagnetic energy. The author supports Wheeler Feynman’s view.

Maxwell’s electromagnetic theory needs to satisfy the Sliver-Muller radi-

ation condition. This condition actually describes that a good absorber

material has been arranged at the far field of the transmitting antenna,

which can absorb all the radiated electromagnetic waves. Considering

these, the author establishes a new electromagnetic theory, in which all

transmitting antennas, receiving antennas, radiation materials and ab-

sorber materials are near the origin. It is assumed that no matter on the
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sphere with infinite radius can absorb electromagnetic waves, so electro-

magnetic waves cannot transmit electromagnetic energy to infinity. The

author adds this idea to Maxwell’s electromagnetic theory. That is to

add a boundary condition for Maxwell’s electromagnetic theory that ra-

diation does not overflow the universe. This boundary condition must be

in conflict with Maxwell’s electromagnetic theory. Because the far field

of Maxwell’s electromagnetic theory can only take the Sliver-Muller radi-

ation condition. None of the other conditions can be used. However, the

author finds that we can relax Maxwell’s equation appropriately. In fact,

the author relaxes the mutual energy principle equivalent to Maxwell’s

equation. The relaxed mutual energy principle can add the boundary

condition that radiation does not overflow the universe. This constitutes

a new electromagnetic theory. Using this new boundary condition, au-

thors can more easily describe their entire electromagnetic theory. Pre-

viously, the author described his new electromagnetic theory through the

viewpoint of energy conservation. By explaining that his electromagnetic

theory meets the law of conservation of energy, Maxwell’s electromag-

netic theory does not meet the law of conservation of energy to show that

his electromagnetic theory has a more reasonable side. However, it is

more complicated to do so, and it is not easy for readers to fully accept

the views of the author. Adding a new additional boundary condition to

Maxwell’s electromagnetic theory may make it easier for readers to accept

the author’s point of view. This new boundary condition is also a new

electromagnetic law.

关键词：Poynting theorem; Sliver-Muller； Boundary conditions;

Maxwell equation; Quasi static; Magnetic quasi-static; Transactional in-

terpretation; Absorber theory; Welch; Reciprocity theorem; conservation

of energy; Energy flow; Photon;

1 Introduction

The author put forward the mutual energy theorem in 1987 [11, 25, 24].

Later, the author found that the theorems similar to the mutual energy the-

orem are all called reciprocity theorems. Among them is the time-domain

reciprocity theorem [23] proposed by Welch in 1960. Rumsey proposed a

new reciprocity theorem in 1963 [20]. The correlation reciprocity theorem

proposed by de Hoop[7]. Since 2015, the author has found this problem,
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that is, the positioning of the same electromagnetic field formula is differ-

ent. Others call it the reciprocity theorem, while the author calls it the

mutual energy theorem. The reciprocity theorem is equivalent to some kind

of Green’s function, which is positioned as a mathematical formula to help

solve Maxwell’s equation, not a physical theorem. The mutual energy the-

orem is an energy theorem, so it is also a physical theorem. After finding

this problem, the author began to further study this problem. He hopes to

find out whether this formula is the energy theorem or the reciprocity theo-

rem. Through research, it is found that this theorem is not only the energy

theorem, but also the energy conservation law. It is not only the energy

conservation law, but also there is an energy flow theorem. Therefore, this

energy conservation law is actually a localized energy conservation law. It

is a strong law of conservation of energy.

Therefore, the author further proposed the mutual energy flow theo-

rem and interpreted quantum mechanics [12] with mutual energy flow. This

interpretation is close to the transactional interpretation of quantum me-

chanics proposed by Cramer [5, 6]. Both believe that the advanced wave is

an objective physical reality. The proposal of transactional interpretation

is based on Wheeler Feynman’s absorber theory [1, 2]. The absorber the-

ory is put forward based on the principle of a-action-at-distance [21, 22, 9].

The author agrees with many viewpoints of the absorber theory, that is,

the absorber material does not passively receive electromagnetic waves, but

receives electromagnetic waves by radiating advanced waves.

On the basis of absorber theory and transactional interpretation, the

author further improved his own theory on electromagnetic mutual energy

and mutual energy flow, put forward the Huygens principle based on the

mutual energy flow theorem [14, 15], the theory of macroscopic electromag-

netic waves composed of photons [13], The wave-particle duality theory of

mutual energy flow corresponding to Schrodinger equation [14]. The au-

thor further studies and proposes a new class of Green functions to solve

the electromagnetic problem [18]. The author also extends this theory to

electromagnetic stress flow and Newton’s Third Law at a long distance [16].

And some other applications [17, 19].
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This paper attempts to re-establish the electromagnetic theory of mu-

tual energy proposed by the author. This time, the author proposes a new

axiom that electromagnetic waves do not overflow the universe. This can

also be regarded as a new electromagnetic boundary condition. According

to Maxwell’s electromagnetic theory, if an antenna has a change in current,

the antenna will radiate electromagnetic waves. If we build a sphere with

an infinite radius around the antenna, the energy flow density or Poynting

vector of the electromagnetic wave will not be zero for the area of the whole

sphere. The author believes that electromagnetic waves should not overflow

the universe. There is a problem with Maxwell’s electromagnetic theory.

Correction required. After correction, The average of the Poynting vector

corresponding to the energy flow on the sphere with infinite radius must be

zero.

Of course, the author does not want to deny Maxwell’s electromagnetic

theory. The author finds that Maxwell’s electromagnetic theory actually im-

plies a condition, that is, an absorber material that can completely absorb

electromagnetic waves is uniformly arranged on a sphere with an infinite

radius. This is achieved by the Sliver-Muller radiation condition. But for

the real situation, the boundary of the universe is not always full of absorber

materials. Especially for photons, they are always absorbed by an absorber

charge. Photons are absorbed at one point when they radiate. Photons have

nothing to do with whether the cosmic boundary is full of absorber materi-

als. The new electromagnetic field theory established by the author is based

on the condition that there is no absorber on the spherical surface with in-

finite radius. Of course, this boundary condition is not consistent with the

Sliver-Muller radiation condition. Instead, offer a new boundary condition

that the radiation does not overflow of the universe. The boundary con-

dition of Maxwell’s electromagnetic theory can only take the Sliver-Muller

radiation condition. Maxwell’s electromagnetic theory conflicts with the

boundary condition that radiation does not overflow universe proposed by

author. In order to solve this conflict, the author adds a relaxation pro-

cess to Maxwell’s electromagnetic theory. Through this relaxation process,

the electromagnetic equation releases another degree of freedom, which just
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allow to add the boundary condition that radiation does not overflow the

universe.

In order to explain to the readers that the author is justified in do-

ing so, the author first explains that Maxwell’s electromagnetic theory and

magnetic quasi-static electromagnetic theory are completely different elec-

tromagnetic theories, so different symbols should be used to represent this

electromagnetic field. That is, the lower case letters e and h are used to

represent the radiated electromagnetic field satisfying Maxwell’s equation.

Use E, H to represent quasi-static electromagnetic field or magnetic quasi-

static electromagnetic field. The electromagnetic field theory proposed by

the author has made a relaxation process for Maxwell’s electromagnetic field

theory, and added the boundary condition that radiation does not overflow

the universe, so that the symbols of E and H electromagnetic fields can

be restored. This is because the electromagnetic field theory proposed by

the author is closer to the quasi-static electromagnetic field, or magnetic

quasi-static electromagnetic field.

Finally, this paper compares three kinds of electromagnetic fields, quasi-

static electromagnetic field, Maxwell’s radiation electromagnetic field, and

the radiation electromagnetic field proposed by the author. It shows that

although the electromagnetic field proposed by the author is also a radi-

ation electromagnetic field, it is closer to the quasi-static electromagnetic

field, and even meets the same basic laws. Therefore, the electromagnetic

field proposed by the author should be restored to use E and H.

Although the electromagnetic field proposed by the author has many

better properties than Maxwell’s electromagnetic field, especially this new

theory is suitable for explaining photons, photons are mutual energy flow

(electromagnetic wave energy flow to be accurate), and explaining the wave

particle duality problem. But at present, the author’s electromagnetic the-

ory can not completely solve its electromagnetic field like Maxwell’s elec-

tromagnetic theory. Fortunately, the author’s electromagnetic field theory

can draw on the calculation results of Maxwell’s electromagnetic theory. At

this time, however, Maxwell’s equation does not appear as a physical law,

but as an auxiliary mathematical tool. The laws of physics are still a new
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set of electromagnetic equations proposed by the author.

2 Radiation must not spill out of the

universe

2.1 Far field radiation conditions of Maxwell’s electro-

magnetic theory

According to Maxwell’s electromagnetic theory, the following Sliver-

Muller radiation boundary conditions [8] are available for radiated electro-

magnetic fields,

lim
r→∞

r|E| = q1 (1)

lim
r→∞

r|H| = q2 (2)

lim
r→∞

r(E − ηH × r̂) = 0 (3)

lim
r→∞

r(H − 1

η
r̂ ×H) = 0 (4)

According to this boundary condition, the electromagnetic wave emit-

ted from the source points in all directions. And the electric field and

magnetic field are both

lim
r→∞

|E| ∼ 1

r
(5)

lim
r→∞

|H| ∼ 1

r
(6)

"∼" means proportional.

In the far field, the electric field and magnetic field are in phase. We

know that the microwave antenna should be placed in the microwave ane-

choic chamber when measuring the pattern or other parameters of the mi-

crowave antenna. Very good electromagnetic wave absorbing materials must

be placed on the wall of the microwave anechoic chamber. Only in this way

can good measurement results be obtained. The wall with absorbing mate-

rial is placed to make the electromagnetic wave radiated by the antenna meet

the boundary conditions of the Sliver-Muller as much as possible. When we

solve the same electromagnetic problem with Helmholtz equation, there are
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图 1: The microwave antenna needs to be placed in the microwave anechoic

chamber for measurement.

similar radiation conditions Sommerfeld radiation conditions. This condi-

tion, like the boundary condition of the Sliver-Muller, requires that the

boundary of the universe be filled with absorbing materials, as shown in the

figure 1.

2.2 New boundary conditions

We know that nothing can overflow the universe, here the author says

that radiation cannot overflow the universe, that means,

ˆ ∞
t=−∞

dt

"
Γ

(E ×H) · dΓ = 0. (7)

Where Γ is an arbitrary surface surrounding all current elements. E is the

radiated electric field, and H is the radiated magnetic field. A special case

is that Γ is a sphere with radius R, and the radius R of the sphere tends to

infinity,

lim
R→∞

ˆ ∞
t=−∞

dt

"
Γ

(E ×H) · dΓ = 0. (8)
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The above formula is obviously valid for magnetic quasi-static electro-

magnetic fields, or quasi-static electromagnetic fields, because at this time,

lim
R→∞

E ∼ 1

R2
, (9)

lim
R→∞

H ∼ 1

R2
, (10)

lim
R→∞

E ×H ∼ 1

R4
, (11)

lim
R→∞

ˆ ∞
t=−∞

dt

"
Γ

(E ×H) · dΓ ∼ lim
R→∞

1

R4
R2 = lim

R→∞

1

R2
= 0. (12)

“∼”means proportional. We know that according to Maxwell’s electromag-

netic theory,

lim
R→∞

E ∼ 1

R
(13)

lim
R→∞

H ∼ 1

R
(14)

therefore

lim
R→∞

ˆ ∞
t=−∞

dt

"
Γ

(E ×H) · dΓ ∼ lim
R→∞

1

R2
R2 = lim

R→∞
1 6= 0 (15)

Therefore, according to Maxwell’s electromagnetic theory, the energy

flow of electromagnetic radiation field is bound to overflow the universe.

When the radiation satisfies the Sliver-Muller boundary condition, the above

equation also exists. This means that electromagnetic radiation can flow out

of the universe. However, the author believes that this is a misunderstand-

ing of Maxwell’s electromagnetic theory. Electromagnetic field radiation

can not overflow the universe. The author puts forward a new law of elec-

tromagnetic field and adds the rule that radiation does not overflow the

universe to the original classical electromagnetic theory as an axiom. We

know that Maxwell’s electromagnetic theory has just been solved. Now

there is a new constraint. The problem will definitely be "overreached".

Overdetermination will lead to unsolved problems. However, we can re-

lax the original computing system appropriately, so that Maxwell’s classical

electromagnetic theory can obtain a new degree of freedom through relax-

ation. In this way, our new axiom can be added. The new axiom can also

be regarded as a new boundary condition.
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It is worth mentioning that the corresponding boundary condition of

Maxwell’s electromagnetic radiation theory is the Sliver-Muller radiation

boundary condition. This boundary condition actually means that the

boundary of the universe is filled with materials that absorb electromag-

netic waves. This is not always the case for boundary conditions in practice.

Especially for photons of high-frequency radio waves, photons are always ab-

sorbed by an absorber charge, regardless of whether the cosmic boundary

is full of absorber materials. Photons are only related to two current ele-

ments, one is the source of light, that is, the light source of photons, and

the other is the sink, that is, the object that absorbs photons. Photons will

be generated from the source and annihilated at the sink. The absorbing

material on the boundary does not participate in the electromagnetic wave

process of photons. Therefore, the Sliver-Muller condition is not suitable

for electromagnetic systems containing a small number of photons.

In addition, if the light source or transmitting antenna is not placed in

the microwave anechoic chamber, but in space, the boundary of the universe

in space is still considered to be translucent, so this does not conform to

Maxwell’s electromagnetic theory and the Sliver-Muller boundary condition.

Electromagnetic energy always overflows the universe this is not reasonable.

2.3 Mutual energy flow and self energy flow shall not over-

flow the universe

We assume that there are N current elements J i, i = 1, · · ·N . See 2.

The red arrow represents the source and the blue arrow represents the sink.

The radiation source outputs electromagnetic energy, and the sink absorbs

electromagnetic energy. Retarded wave radiated by the source, advanced

wave radiated by the sink.

J =
N∑
i=1

J i (16)

The superposition principle tells us

E =
N∑
i=1

Ei, · · ·H =
N∑
i=1

H i (17)
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图 2: There are N current sources in the space. The red one is the radiation

source, which radiates the retarded wave, and the blue one is the sink, which

radiates the advanced wave.

Substitute (16, 17) into (7) to get,

N∑
i=1

N∑
j=1

ˆ ∞
t=−∞

dt

"
Γ

(Ei ×Hj) · dΓ = 0 (18)

The above formula can be divided into two formulas

N∑
i=1

N∑
j=1,j 6=i

ˆ ∞
t=−∞

dt

"
Γ

(Ei ×Hj) · dΓ = 0 (19)

N∑
i=1

ˆ ∞
t=−∞

dt

"
Γ

(Ei ×H i) · dΓ = 0 (20)

The two formulas above add up to (18). (19) can be rewritten as

N∑
i=1

j<i∑
j=1

ˆ ∞
t=−∞

dt

"
Γ

(Ei ×Hj + Ej ×H i) · dΓ = 0 (21)

We define,

Sm =

"
Γ

(Ei ×Hj + Ej ×H i) · dΓ (22)
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图 3: Assume that the current on circuit C1,C2 are I1, I2.

is mutual current between J i and J j . Formula (21) means that the mutual

energy flow does not overflow the universe. Here Γ is a sphere with an

infinite radius. Define,

Si =

"
Γ

(Ei ×H i) · dΓ (23)

Si is the self energy flow corresponding to current element J i. (20) means

that the self energy flow cannot overflow the universe. Therefore, the bound-

ary condition that radiation does not overflow the universe has now become

two. Mutual energy flow does not overflow the universe and self energy flow

does not overflow the universe.

The figure 3 shows two cases. On the left is the self energy flow. If the

self energy flow has a outward (red) radiation energy flow, there must be a

time reversal energy flow, that is, a blue energy flow pointing to the current

element. Therefore, although there is an outward radiating energy flow, this

energy flow is offset by the inward energy flow. Maxwell’s electromagnetic

theory does not support electromagnetic waves with time reversal. But if

the electromagnetic wave is reactive power, it will transfer energy in the

positive direction and negative direction in one period, and the average
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energy transferred is zero. This view of point will be discussed in detail

later in this article. On the right side of the figure 3 is mutual energy flow.

In the case of mutual energy flow, there are at least two current elements.

The red one is the source, which radiates the retarded wave, and the blue

one is the sink, which generates the advanced wave. Green is the mutual

energy flow from the source to the sink. The mutual energy flow will be

further explained later in this paper. The radiation source includes the

primary coil of the transformer, the transmitting antenna, and the radiator

charge. The sink includes a secondary coil of the transformer, a receiving

antenna, and an absorber charge. The retarded wave and the advanced

wave will not reach the remote boundary at the same time, because the

retarded wave will reach the surface Γ at some time in the future, and the

advanced wave will reach the surface Γ at some time in the past, so the

retarded wave and the advanced wave will not reach the surface Γ at the

same time, so the mutual energy flow must be zero on the surface Γ. That

is, (21) must be true.

The reader may ask, what if both current elements are radiation sources

(or sink)? In this case, we can combine two sources into one source, and

the situation on the left of the figure 3 has been met.

3 Neumann’s law of electromagnetic

induction

Next, we will derive the electromagnetic field theory of quasi-static or

magnetic quasi-static. Starting from Neumann’s electromagnetic field the-

ory. From Neumann’s law of electromagnetic induction, we derive magnetic

quasi-static, quasi-static electromagnetic theory. Then see how Maxwell de-

veloped his own theory of radiated electromagnetic fields from quasi-static

electromagnetic fields. Here we say development, not derivation, because it

is impossible to derive Maxwell’s radiation electromagnetic field theory from

the quasi-static electromagnetic field theory. The transition from quasi-

static electromagnetic field to radiated electromagnetic field can only be

achieved through genius’s guess. The following is Faraday’s law of elec-
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C1

C2

r1

r2

r

图 4: Two circuits C1,C2 assume that the current on circuit 1 is I1 , the

current on circuit 2 is I2

tromagnetic induction proposed by Neumann. Quasi-static electromagnetic

field is usually obtained from this point. The electromagnetic induction

electromotive force is,

E2,1 = − d

dt

µ0

4π

˛
C2

˛
C1

I1dl1 · dl2
r

(24)

r =
√
||x2 − x1||

The two circuits are shown in 4,

Define magnetic vector,

A1 =
µ0

4π

˛
C1

I1dl1
r

(25)

The induced electromotive force (24) can be written as,

E2,1 = − d

dt

˛
C2

A1 · dl2 (26)

Consider the transformation from line current to body current˛
C1

· · · I1dl1 →
˚

V

· · ·J1dV (27)
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The vector potential can be rewritten as,

A1 =
µ0

4π

˛
C1

I1dl1
r
→ µ0

4π

˚
V1

J1

r
dV (28)

The definition of considering electromotive force is,

E2,1 ≡
˛
C2

E1 · dl2 (29)

Where E1 is the induced electric field generatedthe by the current J1.

(24) can be rewritten as,

˛
C2

E1 · dl2 = − d

dt

˛
C2

A1 · dl2 (30)

Assumption C2 is fixed. The order of the differential and integral can

be exchanged, ˛
C2

E1 · dl2 = −
˛
C2

∂

∂t
A1 · dl2 (31)

Or, ˛
C2

(E1 +
∂

∂t
A1) · dl2 = 0 (32)

Consider, ˛
C2

(∇ψ1) · dl2 = 0 (33)

ψ1 is a arbitory function, hence there is,

E1 +
∂

∂t
A1 = ∇ψ1 (34)

Assume,

ψ1 = −φ1 (35)

There is,

E1 = −∇φ1 −
∂

∂t
A1 (36)

Define,

E
(I)
1 ≡ − ∂

∂t
A1 (37)

as an induced electric field. The superscript "(I)" means induction. Define

E
(C)
1 ≡ −∇φ1 (38)
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as Coulomb electrostatic field. The superscript "(C)" means Coulomb. De-

fine the magnetic field,

B1 ≡ ∇×A1 (39)

as magnetic field. Thus

∇ ·B1 = 0 (40)

∇×E1 = ∇× (−∇φ1 −
∂

∂t
A1) = (−∇× ∂

∂t
A1) = (− ∂

∂t
∇×A1) (41)

The above equation considers the mathematical formula,

∇×∇φ1 = 0 (42)

Considering (39), we obtain,

∇×E1 = − ∂

∂t
B1 (43)

Find the divergence of the formula (38),

∇ ·E(C)
1 = −∇ · ∇φ1 = −∇2φ1 (44)

According to the electrostatic electromagnetic theory φ1 meet Poisson

equation,

∇2φ1 = −ρ1

ε0
(45)

Thus,

∇ · (ε0E(C)
1 ) = ρ1 (46)

Consider,

A1 =
µ0

4π

˚
V

J1

r
dV (47)

Take two curls to get,

∇×∇×A1 = ∇(∇ ·A1)−∇2A1 (48)

Consider,

∇ ·A1 =
µ0

4π
∇ ·

˚
V

J1

r
dV

=
µ0

4π

˚
V

∇1

r
· J1dV

= −µ0

4π

˚
V

∇′ 1
r
· J1dV (49)
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Among them, the following is considerred,

∇1

r
= −∇′ 1

r
(50)

˚
V

∇′ · (1

r
J1)dV =

˚
V

(∇′ 1
r
· J1)dV +

˚
V

(
1

r
∇′ · J1)dV (51)

The right side of the above equation,
˚

V

∇′ · (1

r
J1)dV =

"
Γ

(
1

r
J1) · n̂dΓ = 0

It is considered above that Γ is taken outside J , so the above formula

is 0. So we have,

−
˚

V

(∇′ 1
r
· J1)dV =

˚
V

(
1

r
∇′ · J1)dV (52)

Hence,

∇ ·A1 = −µ0

4π

˚
V

∇′ 1
r
· J1dV =

µ0

4π

˚
V

(
1

r
∇′ · J1)dV (53)

Considering the continuity equation of current,

∇′ · J1 = − ∂

∂t
ρ1 (54)

We get

∇ ·A1 = −µ0

4π

˚
V

(
1

r

∂

∂t
ρ1)dV (55)

Or,

∇ ·A1 = − ∂

∂t

µ0

4π

˚
V

(
1

r
ρ1)dV (56)

Or,

∇ ·A1 = −µ0ε0
∂

∂t
φ1 (57)

The above formula is the Lorenz gauge. Where it is considerred the

definition,

φ1 ≡
1

4πε0

˚
V

(
1

r
ρ1)dV (58)

Further consider,

∇2A1 = ∇2 µ0

4π

˚
V

J1

r
dV = µ0

˚
V

∇2(
1

4πr
)J1dV
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= µ0

˚
V

(−δ(x− x′))J1(x′)dV (59)

It has taken into account that,

∇2(
1

4πr
) = −δ(x− x′) (60)

Hence,

∇2A1 = −µ0J1 (61)

Since,

∇×∇×A1 = ∇(∇ ·A1)−∇2A1 (62)

Consider (57, 61),

∇×∇×A1 = ∇(−µ0ε0
∂

∂t
φ1) + µ0J1 (63)

Or,

∇×B1 = ∇(−µ0ε0
∂

∂t
φ1) + µ0J1 (64)

Or,

∇×H1 = J1 +
∂

∂t
(−ε0∇φ1) (65)

Or,

∇×H1 = J1 +
∂

∂t
ε0E

(C)
1 (66)

Where,

E
(C)
1 = −∇φ1 (67)

3.1 Quasi static electromagnetic field

From this we get the Gauss law (46),

∇ ·E(C)
1 =

ρ1

ε0
(68)

Faraday’s law (43),

∇×E1 = − ∂

∂t
B1 (69)

Magnetic Gauss law (40),

∇ ·B1 = 0 (70)
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Ampere’s circuital law (66)

∇×H1 = J1 +
∂

∂t
(ε0E

(C)
1 ) (71)

In fact, we can also get,

∇ ·E(C)
2 =

ρ2

ε0
(72)

Faraday’s law

∇×E2 = − ∂

∂t
B2 (73)

Magnetic Gauss law

∇ ·B2 = 0 (74)

Ampere’s circuital law

∇×H2 = J2 +
∂

∂t
(ε0E

(C)
2 ) (75)

subscript 1 and subscript 2 can be removed or kept in mind. In this

way, we can write as,

∇ ·E(C) =
ρ

ε0
(76)

Faraday’s law,

∇×E = − ∂

∂t
B (77)

Magnetic Gauss law,

∇ ·B = 0 (78)

Ampere’s circuital law,

∇×H = J +
∂

∂t
(ε0E

(C)) (79)

The above equation is the electromagnetic field equation under quasi-

static condition. Although the above four formulas have no subscript, we

should note that they actually have subscript 1 or subscript 2 in the deriva-

tion process. These subscripts are omitted. In fact, these subscrits always

exist. If subscript 1 is the primary coil, subscript 2 represents the secondary
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coil. The above four formulas are the equations that the primary coil and

the secondary coil meet respectively. These equations are very similar to

Maxwell’s equations, but they are not Maxwell’s equations, but quasi-static

equations of electromagnetic field. The quasi-static equation is suitable for

the circuit system with capacitors and inductors.

3.2 Magnetic quasistatic equation

In the magnetic quasi-static case, the above formula can be simplified

as,

E(C) = 0 (80)

Faraday’s Law:

∇×E = − ∂

∂t
B (81)

Gauss law of magnetic field:

∇ ·B = 0 (82)

Ampere circuital law:

∇×H = J (83)

Above is the equation of magnetic quasi-static electromagnetic field.

Magnetic quasi-static is suitable for circuit systems without capacitors and

only with inductors.

3.3 Maxwell’s Equation

Above are the electric and magnetic field equations under quasi-static

and magnetic quasi-static conditions. From the electromagnetic equation

under two static conditions to Maxwell’s equation is not a derivation process,

but a guessing process. We know that the earliest definition of electric field

is,

E = E(C) = −∇φ (84)

With Faraday’s Law, Maxwell defined a new electric field

E = E(C) + E(I) (85)
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Among them,

E(I) = − ∂

∂t
A (86)

E(I) is an induced electric field. So as far as the definition of electric

field is concerned,

E(C) → E = −∇φ− ∂

∂t
A (87)

We have transited from the Coulomb electric field to the total electric

field. For this reason, we made the transformation (87) as above (76, 79),

and obtain,

∇ ·E =
ρ

ε0
(88)

Faraday’s law remains unchanged

∇×E = − ∂

∂t
B (89)

Magnetic Gauss law remains unchanged

∇ ·B = 0 (90)

We obtain Maxwell-Ampere’s circuital law,

∇×H = J +
∂

∂t
E (91)

Note that in the above equation

E = −∇φ− ∂

∂t
A (92)

In this way, a new set of equations (88-91) is obtained after transformation.

This new set of equations is Maxwell’s equation. According to this new set

of equations, the theory of electromagnetic radiation is included. In classical

electromagnetic theory, the new set of equations and the electromagnetic

field obtained under quasi-static conditions are usually regarded as elec-

tromagnetic fields, so the same symbol is used. In fact, this has caused

confusion. No matter whether they are electromagnetic fields or not, they

use completely different forms of mathematical equations, so the solutions

are completely different in mathematics. In order to distinguish them, the
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author represents Maxwell’s radiated electromagnetic field with lowercase

letters, so (88-91) is rewritten as,

Gauss law for electric field,

∇ · e =
ρ

ε0
(93)

Faraday’s law,

∇× e = − ∂

∂t
b (94)

Magnetic Gauss law,

∇ · b = 0 (95)

Maxwell-Ampere’s circuital law,

∇× h = J +
∂

∂t
e (96)

The author uses capital letters

E,H (97)

to represents quasistatic and magnetic quasistatic electromagnetic fields.

Use lowercase letters

e,h (98)

to represent the radiated electromagnetic field that satisfies Maxwell’s equa-

tion. In the following chapter, the author will further explain that these two

electromagnetic fields are very different in nature. Indeed, they should not

be confused.

4 Poynting’s theorem and energy

4.1 For quasistatic electromagnetic fields

Considering (88-91),

∇ · (E ×H) = ∇×E ·H −E · ∇ ×H

= (− ∂

∂t
B) ·H −E · (J +

∂

∂t
ε0E

(C)) (99)
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Hence,

∇ · (E ×H) = −E · J −H · ∂
∂t

B −E · ε0
∂

∂t
E(C) (100)

Poynting’s theorem is,"
Γ

(E ×H) · n̂dΓ = −
˚

(E · J + H · ∂
∂t

B + E · ∂
∂t
ε0E

(C))dV (101)

The magnetic field energy term is,˚
(H · ∂

∂t
B)dV =

∂

∂t

˚
(
1

2
H ·B)dV (102)

Therefore, the energy of the magnetic field is

UM =

˚
(
1

2
H ·B)dV (103)

The subscript "M" indicates the magnetic field, and the electric field

energy is,˚
(E · ∂

∂t
ε0E

(C))dV =

˚
(E(I) + E(C)) · ∂

∂t
ε0E

(C))dV

=

˚
(E(I) ∂

∂t
ε0E

(C))dV +
∂

∂t

˚
(
1

2
E(C) · ε0E(C))dV (104)

The superscript "I" indicates inductive, "C" indicates coulomb electric

field, and the energy of coulomb electric field is

UE =

˚
(
1

2
E(C) · ε0E(C))dV (105)

For hybrid term, ˚
(E(I) ∂

∂t
ε0E

(C))dV (106)

This term may not generate energy. There are two possibilities, which

are not energy but orthogonal in mathematics,˚
(E(I) ∂

∂t
ε0E

(C))dV = 0. (107)

Another possibility is that although the above integral is not zero, in physics,

the above quantity does not constitute energy. Another possibility is that

the above quantities do constitute an energy, a mixed energy. However,

although the author did not understand this point, it is not the focus of

this article. We went on down.
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4.2 For magnetic quasi-static electromagnetic fields

Poynting’s theorem is,
"

Γ

(E ×H) · n̂dΓ = −
˚

(E · J + H · ∂
∂t

B)dV (108)

Under magnetic quasi-static conditions, there are only magnetic field

energy items,
˚

(H · ∂
∂t

B)dV =
∂

∂t

˚
1

2
(H ·B)dV

So the magnetic field energy is,

Um =

˚
1

2
(H ·B)dV

Note the induced electric field,

E(I) =
∂

∂t
A

Although ∂
∂t
A is not 0, no energy is generated under magnetic quasi-static

conditions. This is very important. The induced electric field does not

generate electric field energy under the magnetic quasi-static condition. If

you don’t understand this point, please refer to another paper of the author

[17].

4.3 Radiation electromagnetic field of Maxwell

∇ · (e× h) = ∇× e · h− e · ∇ × h (109)

= (− ∂

∂t
b) · b− e · (J +

∂

∂t
d) (110)

∇ · (e× h) = −e · J − h · ∂
∂t

b− e · ∂
∂t

d (111)

Poynting’s theorem is,
"

Γ

(e× h) · n̂dΓ = −
˚

(e · J + h · ∂
∂t

b + e · ∂
∂t

d)dV (112)

The magnetic field items are,
˚

(h · ∂
∂t

b)dV =
∂

∂t

˚
(
1

2
h · b)dV (113)
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So the magnetic field energy is,

Um =

˚
(
1

2
h · b)dV (114)

The electric field term is,
˚

(e · ∂
∂t

d)dV =
∂

∂t

˚
(
1

2
e · d)dV (115)

Ue =

˚
(
1

2
e · d)dV =

˚
(
1

2
(e(I) + e(C)) · ε0(e(I) + e(C)))dV

=
1

2
ε0

˚
(e(I) · e(I) + 2e(C) · e(I) + e(C) · e(C))dV (116)

In the case of Maxwell radiation electromagnetic field, the energy of

electric field is more than that of induction electric field,

1

2
ε0

˚
(e(I) · e(I))dV =

1

2
ε0

˚
(
∂

∂t
A · ∂

∂t
A)dV (117)

The above equation is the energy of the induced electric field, which is

stored in the electromagnetic wave. Another energy flow,

1

2
ε0

˚
(e(C) · e(C))dV (118)

It is stored in a capacitor. As for mixed energy,

ε0

˚
(e(C) · e(I))dV (119)

It may or may not be zero. The author is not clear about this part of

energy.

4.4 Energy of induced electric field

Earlier we found that for Maxwell’s radiation electromagnetic field the-

ory,
1

2
ε0

˚
(e(I) · e(I))dV =

1

2
ε0

˚
(
∂

∂t
A · ∂

∂t
A)dV (120)

It is the energy of induced electric field, but it can also be calculated

for quasi-static electric field,

1

2
ε0

˚
(E(I) ·E(I))dV =

1

2
ε0

˚
(
∂

∂t
A · ∂

∂t
A)dV (121)
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Although the above equation (121) is not zero in calculation, its energy

does not appear in the corresponding Poynting’s law (101, 108), so it does

not participate in the calculation of energy. But (120) appears in Poynting’s

theorem (112) corresponding to Maxwell’s equation. This means

e,h (122)

and

E,H (123)

They are really two different kinds of electromagnetic fields! They

have different energy expressions. Therefore, it is completely correct for

the author to distinguish them with two different symbols. In the classical

electromagnetic field theory, it is often considered that the Maxwell radi-

ation electromagnetic field equation is an "accurate" electromagnetic field

equation, and the magnetic quasi-static electromagnetic field equation is an

approximate electromagnetic field equation. Therefore, the energy of the in-

duced electric field appearing in the Maxwell electromagnetic theory is also

the energy of the magnetic quasi-static electromagnetic field. This leads to

the energy paradox of the induced electric field, and the author specifically

discusses this problem [17].

5 Whether can degenerate into quasistatic

field

For the solution of Maxwell equation, the magnetic vector potential

and scalar potential can be written in the form of retarded potential,

A =
µ0

4π

˚
V

J

r
exp(−jk · r)dV (124)

φ =
1

4πε0

˚
V

ρ

r
exp(−jk · r)dV (125)

A and φ have a time factor exp(jωt). This time factor is omitted in

the above formula. The induced electric field can be written as,

e(I) = − ∂

∂t
A = −jω µ0

4π

˚
V

J

r
exp(−jk · r)dV (126)
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The electrostatic Coulomb electric field can be written as,

e(C) = −∇φ = −∇ 1

4πε0

˚
V

ρ

r
exp(−jk · r)dV

= − 1

4πε0

˚
V

∇(
1

r
exp(−jk · r))ρdV

= − 1

4πε0

˚
V

(∇(
1

r
) exp(−jk · r)) +

1

r
∇ exp(−jk · r))ρdV

= − 1

4πε0

˚
V

(− r

r3
exp(−jk · r)) +

−jk
r

exp(−jk · r))ρdV (127)

The magnetic field is

b = ∇×A = ∇× µ0

4π

˚
V

J

r
exp(−jk · r)dV

=
µ0

4π

˚
V

∇(
1

r
exp(−jk · r))× JdV

=
µ0

4π

˚
V

(− r

r3
exp(−jk · r) +

−jk
r

exp(−jk · r))× JdV (128)

Consider a spatial scale l, l is the scale of this electromagnetic system,

and suppose lambda is the wavelength of electromagnetic wave. consider,

l� λ (129)

Or,
2πl

λ
� 1 (130)

Consider k = 2π
λ

, with

kl� 1 (131)

This shows that there are,

|k · r| � 1 (132)

Or,

k · r → 0 (133)

Or,

exp(−jk · r)→ 1 (134)
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Therefore, in this case (126-128),

e(I) = −jω µ0

4π

˚
V

J

r
exp(−jk · r)dV → −jω µ0

4π

˚
V

J

r
dV = E(I) (135)

e(C) = − 1

4πε0

˚
V

(− r

r3
ρ) +

−jk
r
ρ) exp(−jk · r)dV

→ − 1

4πε0

˚
V

(− r

r3
ρ) +

−jk
r
ρ)dV

= E(C) +
1

4πε0

˚
V

jk

r
ρdV

6= E(C) (136)

For magnetic fields,

b =
µ0

4π

˚
V

(− r

r3
× J +

−jk
r
× J) exp(−jk · r)dV

→ µ0

4π

˚
V

(− r

r3
× J +

−jk
r
× J)dV

= B +
µ0

4π

˚
V

−jk
r
× J)dV

6= B (137)

It can be seen from the above formula that the induced electromagnetic

field e(I) of Maxwell’s electromagnetic theory degenerates into a quasi-static

induced electric field E(I) when the wavelength is large. Maxwell’s Coulomb

electric field e(C) cannot degenerate into a quasi-static electric field E(C).

Maxwell’s radiated magnetic field b cannot be degenerated into a quasi-

static magnetic field B. Because Maxwell radiation electromagnetic field

can not degenerate into quasi-static electromagnetic field. Maxwell’s elec-

tromagnetic fields e, b and quasi-static electromagnetic fields E, B are in-

deed not the same electromagnetic fields. It is entirely correct for the author

to distinguish them by different symbols. It is wrong to confuse these two

kinds of electromagnetic fields in the text books of classical electromagnetic

field theory.
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图 5: There are N current elements in the space. The red one is the source,

and the blue one is the sink.

6 Test through the Law of Conservation of

Energy

We should test Maxwell radiated electromagnetic fields and quasi static

electromagnetic fields with the law of conservation of energy. Consider that

there are N current elements in figure 5, some of which are sources and

some are sinks. The red arrow in the figure shows the electromagnetic

energy released from the radiation source. The blue ones are sinks, which

receive electromagnetic energy. Suppose that N is huge, it has included all

current elements of the whole universe.

We know that the energy conservation law of electromagnetic field is

N∑
i=1

N∑
j=1,j 6=i

ˆ ∞
t=−∞

dt

˚
V

(Ei · J j)dV = 0 (138)

The above formula is the law of conservation of electromagnetic energy.

This law of conservation of energy is self explanatory. Its establishment

should be wordless. Because we can believe that there are only N charges

in space. Of course N is big. If the energy one of the current elements J j is
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lost, other charges will increase the same energy sooner or later, so the total

energy will not change. Therefore, there is the above formula. The above

law of conservation of energy can be proved from the quasi-static equa-

tion. However, it is impossible to prove the above formula by the radiating

electromagnetic field from Maxwell. This shows that the electromagnetic

theory represented by Maxwell’s equation is different from the quasi-static

electromagnetic theory. Let’s prove it.

6.1 Prove the law of conservation of energy from the mag-

netic quasi-static Poynting theorem

Poynting’s law of magnetic quasi-static electromagnetic field can be

derived from (81,83),

"
Γ

(E ×H) · n̂dΓ = −
˚

(J ·E + H · ∂
∂t

B)dV (139)

Considering the superposition principle (16, 17),

N∑
i=1

N∑
j=1

"
Γ

(Ei×Hj) · n̂dΓ = −
N∑
i=1

N∑
j=1

˚
(J i ·Ej +H i ·

∂

∂t
Bj)dV (140)

Split into two formulas

N∑
i=1

N∑
j=1,j 6=i

"
Γ

(Ei ×Hj) · n̂dΓ = −
N∑
i=1

N∑
j=1,j 6=i

˚
(J i ·Ej + H i ·

∂

∂t
Bj)dV

(141)
N∑
j=1

"
Γ

(Ei ×H i) · n̂dΓ = −
N∑
i=1

˚
(J i ·Ei + H i ·

∂

∂t
Bi)dV (142)

The sum of the above two formulas is (140). By integrating the above

two equations with time,

N∑
i=1

N∑
j=1,j 6=i

ˆ ∞
t=−∞

dt

"
Γ

(Ei×Hj)·n̂dΓ = −
N∑
i=1

N∑
j=1,j 6=i

ˆ ∞
t=−∞

dt

˚
(J i·Ej+H i·

∂

∂t
Bj)dV

(143)
N∑
j=1

ˆ ∞
t=−∞

dt

"
Γ

(Ei×H i)·n̂dΓ = −
N∑
i=1

ˆ ∞
t=−∞

dt

˚
(J i ·Ei+H i ·

∂

∂t
Bi)dV

(144)
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To prove the law of conservation of energy of formula (138), we need

to prove the following five formulas,

N∑
i=1

N∑
j=1,j 6=i

ˆ ∞
t=−∞

dt

"
Γ

(Ei ×Hj) · n̂dΓ = 0 (145)

N∑
j=1

ˆ ∞
t=−∞

dt

"
Γ

(Ei ×H i) · n̂dΓ = 0 (146)

N∑
i=1

ˆ ∞
t=−∞

dt

˚
(J i ·Ei)dV = 0 (147)

N∑
i=1

ˆ ∞
t=−∞

dt

˚
(H i ·

∂

∂t
Bi)dV = 0 (148)

N∑
i=1

N∑
j=1,j 6=i

ˆ ∞
t=−∞

dt

˚
(H i ·

∂

∂t
Bj)dV = 0 (149)

Proof (145), assuming r →∞,

"
Γ

(Ei ×Hj) · n̂dΓ ∼ 1

r4
r2 =

1

r2
→ 0 (150)

(145) proof finished.

Proof (146). We know that for magnetic quasi-static electromagnetic

fields, suppose r →∞,

Ei ∼
1

r2
(151)

Bi ∼
1

r2
(152)

"
Γ

(Ei ×H i) · n̂dΓ ∼ 1

r4
r2 =

1

r2
→ 0 (153)

(146) proof finished.

Prove (148),

ˆ ∞
t=−∞

dt

˚
(H i ·

∂

∂t
Bi)dV =

ˆ ∞
t=−∞

dt
∂

∂t

˚
(
1

2
H i ·Bi)dV

= energy

ˆ ∞
t=−∞

dt
∂

∂t
U

= U(∞)− U(−∞)
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= 0− 0 = 0 (154)

where,

U =

˚
(
1

2
H i ·Bi)dV

U(∞) The process we discussed has ended, so U(∞) = 0. U(−∞) The

process we discussed has not yet started, so U(−∞) = 0. The proof of (148)

is finished.

Prove (149)

N∑
i=1

N∑
j=1,j 6=i

ˆ ∞
t=−∞

dt

˚
(H i ·

∂

∂t
Bj)dV

=
N∑
i=1

j<i∑
j=1

ˆ ∞
t=−∞

dt

˚
(H i ·

∂

∂t
Bj + Hj ·

∂

∂t
Bi)dV

=

ˆ ∞
t=−∞

dt
∂

∂t

N∑
i=1

j<i∑
j=1

˚
(H i ·Bj)dV

=

ˆ ∞
t=−∞

dt
∂

∂t
U

= U(∞)− U(−∞) = 0 (155)

Where,

U =
N∑
i=1

j<i∑
j=1

˚
(H i ·Bj)dV (156)

The reasons for U(∞) and U(−∞) are the same as those above, both

of which are 0. The proof of (149) is finished.

The following is the proof of (147),

N∑
i=1

ˆ ∞
t=−∞

dt

˚
(J i ·Ei)dV

=
N∑
i=1

ˆ ∞
t=−∞

dt

˚
(J i ·Ei)dV

= −
N∑
i=1

µ0

4π

ˆ ∞
t=−∞

dt

˚
(J i ·

∂

∂t

˚
J i
r
dV )dV
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= −
N∑
i=1

µ0

4π

ˆ ∞
t=−∞

dt

˚ ˚
1

r
J i ·

∂

∂t
J idV

′dV

= −
ˆ ∞
t=−∞

dt
∂

∂t

N∑
i=1

µ0

4π

˚ ˚
1

2

1

r
J i · J idV ′dV

= −
ˆ ∞
t=−∞

dt
∂

∂t
U

= −[U(∞)− U(−∞)]

= 0 (157)

Where the following is considerred,

E = − ∂

∂t
A = − ∂

∂t

µ0

4π

˚
J

r
dV (158)

U =
N∑
i=1

µ0

4π

˚ ˚
1

2

1

r
J i · J idV ′dV (159)

The U(∞) process has ended, so there is, U(∞) = 0 The U(−∞)

process has not started yet, so there is a formula U(−∞) = 0. The proof of

(147) is finished.

Consider (145-149) in formula (143 and 144) and we get (138). There-

fore, the law of energy conservation (138) of magnetic quasi-static electro-

magnetic field is satisfied.

6.2 Failed to prove the law of conservation of energy from

Poynting theorem of Maxwell radiation electromag-

netic field

Use a similar approach. Poynting’s law of Maxwell radiated electro-

magnetic field is,

"
Γ

(e× h) · n̂dΓ = −
˚

(J · e + e · ∂
∂t

d+ h · ∂
∂t

b)dV (160)

Considering the superposition principle,

N∑
i=1

N∑
j=1

"
Γ

(ei ×hj) · n̂dΓ = −
N∑
i=1

N∑
j=1

˚
(J i · ej + ei ·

∂

∂t
dj +hi ·

∂

∂t
bj)dV

(161)
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The above formula can be divided into two formulas. After considering

the time integration,

ˆ ∞
t=−∞

dt
N∑
i=1

N∑
j=1,j 6=i

"
Γ

(ei×hj)·n̂dΓ = −
ˆ ∞
t=−∞

dt
N∑
i=1

N∑
j=1,j 6=i

˚
(J i·ej+ei·

∂

∂t
dj+hi·

∂

∂t
bj)dV

(162)ˆ ∞
t=−∞

dt
N∑
i=1

"
Γ

(ei×hi)·n̂dΓ = −
ˆ ∞
t=−∞

dt
N∑
i=1

˚
(J i·ei+ei·

∂

∂t
di+hi·

∂

∂t
bi)dV

(163)

To prove the law of conservation of energy, we need to prove that,

ˆ ∞
t=−∞

dt
N∑
i=1

"
Γ

(ei × hi) · n̂dΓ = 0 (164)

ˆ ∞
t=−∞

dt

N∑
i=1

˚
(J i · ei) = 0 (165)

ˆ ∞
t=−∞

dt
N∑
i=1

˚
(ei ·

∂

∂t
di + hi ·

∂

∂t
bi)dV = 0 (166)

ˆ ∞
t=−∞

dt
N∑
i=1

N∑
j=1,j 6=i

"
Γ

(ei × hj) · n̂dΓ = 0 (167)

N∑
i=1

N∑
j=1

˚
(ei ·

∂

∂t
dj + hi ·

∂

∂t
bj)dV = 0 (168)

But we know that the far-field characteristics of the radiated electro-

magnetic field satisfying Maxwell’s equation are,

ei ∼
1

r
(169)

bi ∼
1

r
(170)

"
Γ

(ei × hi) · n̂dΓ→ r2

r2
6= 0 (171)

Therefore ˆ ∞
t=−∞

dt
N∑
i=1

"
Γ

(ei × hi) · n̂dΓ 6= 0 (172)
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We know that for Maxwell’s radiated electromagnetic field, there is al-

ways a Poynting energy flow that is not zero. We know from the calculation

of any antenna that the above formula is not zero. In fact, the Sliver-Muller

radiation condition also tells us this. We will not continue to verify other

formulas. As long as (164) is not zero, we cannot prove the law of con-

servation of energy (138). But we should write this formula in lowercase

letters,
N∑
i=1

N∑
j=1,j 6=i

ˆ ∞
t=−∞

dt

˚
V

(ei · J j)dV = 0 (173)

The above proof shows that the above law of conservation of energy

does not hold true for Maxwell’s radiated electromagnetic field! It is worth

mentioning that the above formula is still valid, but it can only be used as

an energy theorem, not a law of conservation of energy. To prove the law

of conservation of energy, it must be proved that (164-168) are satisfied.

But if the above equation is proved to be the energy theorem, we only need

to prove (167-168). This is because if we want to proved that the above

equation is an energy theorem, we can get (162) by subtracting (163) from

(161). Since (161) is the Poynting energy theorem of N current elements,

(163) is the sum of N Poynting theorems of the ith, and is also the energy

theorem, their difference formula (162) is also the energy theorem. If (167-

168) is satisfied, the formula (173) is obtained. Therefore (173) can be

established as an energy theorem. So we proved it is a energy theorem.

The energy theorem is still much weaker than the law of conservation

of energy. When we say it is the law of conservation of energy, it must

contain all energy, but when
!

Γ
(ei × hi) · n̂dΓ 6= 0, there are other energy

items.
∑N

i=1

∑N
j=1,j 6=i

´∞
t=−∞ dt

˝
V

(ei · J j)dV does not contain all energy,

so (173) is not a law of conservation of energy. It is only an energy theorem

in Maxwell’s theoretical system. This is why the author called it the mutual

energy theorem in his 1987 paper [11, 25, 24].

We should understand that (138 and 173) are energy conservation laws.

In Maxwell’s electromagnetic theory, (173) is not energy conservation law,

which proves that Maxwell’s electromagnetic theory is missing.
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6.3 History of the law of conservation of energy

It is worth mentioning that the understanding of formulas (138,173)

has a history of development. Let (N = 2) in (138) get,

2∑
i=1

2∑
j=1,j 6=i

ˆ ∞
t=−∞

dt

˚
V

(Ei · J j)dV = 0 (174)

Or

−
ˆ ∞
t=−∞

dt

˚
V

(E2 · J1)dV =

ˆ ∞
t=−∞

dt

˚
V

(E2 · J1)dV (175)

The above is Welch’s time-domain reciprocity theorem (1960) [23].

Welch’s reciprocity theorem is a special case (τ = 0) of th de Hoop’s reci-

procity theorem (at the end of 1987) [7],

−
ˆ ∞
t=−∞

dt

˚
V

(E2(t) · J1(t+ τ)dV =

ˆ ∞
t=−∞

dt

˚
V

(E2(t) · J1(t+ τ))dV

(176)

the Fourier transform of de Hoop reciprocity theorem is,

−
˚

V

(E∗2 · J1)dV =

ˆ ∞
t=−∞

dt

˚
V

(E∗2 · J1)dV (177)

The above formula is Rumsey’s new reciprocity theorem (1963) [20],

which is also the mutual energy theorem proposed by the author in early

of 1987 [11, 25, 24]. The above formula can be obtained from the Lorentz

reciprocity theorem (1900-1930) [3, 4]

˚
V

(E2 · J1)dV =

˚
V

(E1 · J2)dV (178)

Through conjugate transformation. Conjugate transformation [10] is a

transformation preserving Maxwell’s equation. That is, if Maxwell equa-

tion is satisfied before transformation, Maxwell equation is still satisfied

after transformation. So this theorem was first discovered by Welch in 1960

as the reciprocity theorem. But in 1987, the author first redefined it as the

energy theorem. It was not until 2017 that the author discovered that this

mutual energy theorem is actually the law of conservation of energy [12].
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That is to say, the formula (138, 173) is actually the law of conservation of

energy. However, this law of conservation of energy cannot be proved from

Maxwell’s equation. The author thinks that Maxwell’s classical electromag-

netic theory is problematic on this point. In the past, the author always

hoped to persuade readers to accept the author’s point of view through the

law of conservation of energy. Maxwell’s electromagnetic theory has loop-

holes, but few readers agree with it. Now, the author continues to persuade

readers in another way.

7 Revision of Maxwell’s electromagnetic

theory

The author introduces a new electromagnetic field law that radiation

does not overflow the universe. This law can be regarded as a new axiom or

a new boundary condition. However, Maxwell’s electromagnetic radiation

theory only allows for the Sliver-Muller radiation condition. Therefore, we

need to properly revise Maxwell’s electromagnetic theory.

7.1 Relaxation process of Maxwell’s equation

We can see that Maxwell’s radiation electromagnetic field and quasi-

static electromagnetic field or magnetic quasi-static electromagnetic field are

not really same electromagnetic fields, so can we properly modify Maxwell’s

electromagnetic theory to make it a new electromagnetic field, which is

close to the original magnetic quasi-static electromagnetic field and quasi-

static electromagnetic field, but is there the electromagnetic wave radiation

property of Maxwell radiation electromagnetic field? In fact, it is possible.

Poynting’s law is,

"
Γ

(e× h) · n̂dΓ = −
˚

(J · e + e · ∂
∂t

d+ h · ∂
∂t

b)dV (179)

Consider the superposition principle,

J =
N∑
i=1

J i, e =
N∑
i=1

ei, h =
N∑
i=1

hi, (180)
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We have,

N∑
i=1

N∑
i=1

"
Γ

(ei ×hj) · n̂dΓ = −
˚

(J i · ej + ei ·
∂

∂t
dj +hi ·

∂

∂t
bj)dV (181)

Disassemble it into,

N∑
i=1

N∑
i=1,j 6=i

"
Γ

(ei×hj)·n̂dΓ = −
N∑
i=1

N∑
i=1,j 6=i

˚
(J i·ej+ei·

∂

∂t
dj+hi·

∂

∂t
bj)dV

(182)
N∑
i=1

"
Γ

(ei × hi) · n̂dΓ = −
N∑
i=1

˚
(J i · ei + ei ·

∂

∂t
di + hi ·

∂

∂t
bi)dV (183)

Time integration for the above

ˆ ∞
t=−∞

dt
N∑
i=1

N∑
i=1,j 6=i

"
Γ

(ei×hj)·n̂dΓ = −
ˆ ∞
t=−∞

dt
N∑
i=1

N∑
i=1,j 6=i

˚
(J i·ej+ei·

∂

∂t
dj+hi·

∂

∂t
bj)dV

(184)ˆ ∞
t=−∞

dt
N∑
i=1

"
Γ

(ei×hi)·n̂dΓ = −
ˆ ∞
t=−∞

dt
N∑
i=1

˚
(J i·ei+ei·

∂

∂t
di+hi·

∂

∂t
bi)dV

(185)

Consider,

ˆ ∞
t=−∞

dt
N∑
i=1

N∑
i=1,j 6=i

˚
(ei ·

∂

∂t
dj + hi ·

∂

∂t
bj)dV

=

ˆ ∞
t=−∞

dt
N∑
i=1

j<i∑
i=1

˚
(ei ·

∂

∂t
dj + ej ·

∂

∂t
di + hi ·

∂

∂t
bj + hj ·

∂

∂t
bi)dV

=

ˆ ∞
t=−∞

dt
∂

∂t

N∑
i=1

j<i∑
i=1

˚
(ei · dj + hi · bj)dV

=

ˆ ∞
t=−∞

dt
∂

∂t
U = U(∞)− U(−∞) = 0 (186)

Where,

U =
N∑
i=1

j<i∑
i=1

˚
(ei · dj + hi · bj)dV (187)
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The U(∞) process has ended, and all U(∞) = 0. U(−∞) process has

not started, U(−∞) = 0.

ˆ ∞
t=−∞

dt
N∑
i=1

˚
(ei ·

∂

∂t
di + hi ·

∂

∂t
bi)dV

=

ˆ ∞
t=−∞

dt
∂

∂t

N∑
i=1

˚
1

2
(ei · di + hi · bi)dV

ˆ ∞
t=−∞

dt
∂

∂t
U = U(∞)− U(−∞) = 0 (188)

Where,

U =
N∑
i=1

˚
1

2
(ei · di + hi · bi)dV (189)

The U(∞) process has ended, and all U(∞) = 0. U(−∞) process has

not started, U(−∞) = 0. Thus there is,

ˆ ∞
t=−∞

dt
N∑
i=1

N∑
i=1,j 6=i

"
Γ

(ei×hj)·n̂dΓ = −
ˆ ∞
t=−∞

dt
N∑
i=1

N∑
i=1,j 6=i

˚
(J i ·ej)dV

(190)ˆ ∞
t=−∞

dt
N∑
i=1

"
Γ

(ei × hi) · n̂dΓ = −
ˆ ∞
t=−∞

dt
N∑
i=1

˚
(J i · ei)dV (191)

The above two equations are actually more relaxed than (182,183) be-

cause of the time integration. This relaxation allows us to replace e, h with

E, H In this way we obtain,

ˆ ∞
t=−∞

dt
N∑
i=1

N∑
i=1,j 6=i

"
Γ

(Ei×Hj)·n̂dΓ = −
ˆ ∞
t=−∞

dt
N∑
i=1

N∑
i=1,j 6=i

˚
(J i·Ej)dV

(192)ˆ ∞
t=−∞

dt
N∑
i=1

"
Γ

(Ei ×H i) · n̂dΓ = −
ˆ ∞
t=−∞

dt
N∑
i=1

˚
(J i ·Ei)dV (193)

The author believes that the above equation is already a "real" equation

of the radiation electromagnetic field, rather than Maxwell’s equation of the

radiation electromagnetic field. (192) is called the relaxed mutual energy

principle. The corresponding (182) is the principle of mutual energy. We
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can also call the formula (193) the relaxed self energy principle. (183) is the

principle of self energy.

7.2 Law of conservation of energy

Now we can add the electromagnetic field law that the author put

forward earlier to the above equation (192 and 193). i.e., the radiation does

not overflow the universe.

ˆ ∞
t=−∞

dt

N∑
i=1

"
Γ

(Ei ×H i) · n̂dΓ = 0 (194)

ˆ ∞
t=−∞

dt
N∑
i=1

N∑
i=1,j 6=i

"
Γ

(Ei ×Hj) · n̂dΓ

=

ˆ ∞
t=−∞

dt
N∑
i=1

j<i∑
i=1

"
Γ

(Ei ×Hj + Ej ×H i) · n̂dΓ = 0 (195)

Where (194) means that the self energy flow cannot overflow the uni-

verse, and (195) means that the mutual energy flow cannot overflow the

universe. If (194, 195) is substituted into (192, 193),

ˆ ∞
t=−∞

dt
N∑
i=1

N∑
i=1,j 6=i

˚
(J i ·Ej)dV = 0 (196)

and ˆ ∞
t=−∞

dt
N∑
i=1

˚
(J i ·Ei)dV = 0 (197)

The sum sign of the above equation can be omitted,

ˆ ∞
t=−∞

dt

˚
(J i ·Ei)dV = 0 (198)

(196) is the law of conservation of energy, and (198) is the law of self

energy and non radiation. Neither of these two laws can be derived from the

radiation electromagnetic theory of Maxwell’s equation. These two equa-

tions are obtained by first relaxing Maxwell’s equation, and then adding the

author’s law that radiation does not overflow the universe.
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It is worth mentioning that this relaxation process is very important.

This relaxation process allows a redundant degree of freedom to be released,

so that we can add the boundary condition that radiation does not overflow

the universe. If a new boundary condition is added to the original Maxwell

equation, it will definitely make the problem overdetermined, and there will

be no solution.

7.3 Mutual energy flow theorem or energy flow theorem

It can be proved that the following mutual energy flow theorem,

−
ˆ ∞
t=−∞

dt

˚
(J i · ej)dV =

ˆ ∞
t=−∞

dt(ξi, ξj) =

ˆ ∞
t=−∞

dt

˚
(J j · ei)dV

(199)

Where,

(ξi, ξj) ≡
"

Γ

(ei × hj + ej × hi) · n̂dΓ

Similarly, the relaxed mutual energy principle (192) can prove that the

following energy flow law theorem,

−
ˆ ∞
t=−∞

dt

˚
(J i ·Ej)dV =

ˆ ∞
t=−∞

dt(ξi, ξj) =

ˆ ∞
t=−∞

dt

˚
(J j ·Ei)dV

(200)

Where,

(ξi, ξj) ≡
"

Γ

(Ei ×Hj + Ej ×H i) · n̂dΓ (201)

is the electromagnetic energy flow. Corresponding to Maxwell equation,

since the self energy flow is not zero, (199) can only be an energy flow

theorem. The corresponding formula (200) is an energy flow law because

the self energy flow does not transfer energy. The formula (199) is used

together with the law of conservation of energy (196). The above mutual

energy flow theorem and energy flow law will not be proved here. This

theorem has been proved many times in other papers of the author, such

as [12]. Here we only emphasize that under the radiation electromagnetic

field condition of Maxwell’s equation, this formula is the mutual energy flow

theorem. In the author’s theoretical system, because Maxwell’s theory has

been modified, that is, the relaxation process, and after the relaxation, the

law that radiation does not overflow the universe has been introduced, so we
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get the law of energy flow. With this energy flow law, the formula (196) is

not only the law of energy conservation, but also the localized law of energy

conservation. This law of conservation of energy has reached another level!

8 Verify the principle of self energy

8.1 Verification under magnetic quasi-static conditions

Earlier we got (198)

ˆ ∞
t=−∞

dt

˚
(J i ·Ei)dV = 0 (202)

If in the system of Maxwell’s equations radiating electromagnetic fields,

we know that, ˆ ∞
t=−∞

dt

˚
(J i · ei)dV 6= 0 (203)

Then we still need to verify (202). In order to facilitate our work, we

first omitted the corner mark i,

ˆ ∞
t=−∞

dt

˚
(J ·E)dV = 0 (204)

In the frequency domain, the formula can be rewritten as,

<(

˚
(J∗ ·E)dV ) = 0 (205)

< is the real part. The superscript "∗" indicates complex conjugation.

If under magnetic quasi-static conditions,

E = − d

dt
A = −jωA = −jω µ0

4π

˚
V

J

r
dV

Hence,
˚

(J∗ ·E)dV =

˚
(J∗ · (−jω µ0

4π

˚
V

J

r
dV ′))dV

= −jω µ0

4π

˚
V

˚
V

J∗(x) · J(x′)

r
dV ′dV

= −jωLI∗I (206)
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Where,

L =
1

II∗
µ0

4π

˚
V

˚
V

J∗(x) · J(x′)

r
dV ′dV (207)

is the inductance of the system, which is a real number. Therefore,
˝

(J∗ ·
E)dV is a pure imaginary number. Therefore, there is (205) and there is

(202). Proof is finished.

8.2 For Maxwell radiated electromagnetic fields

Now let’s take a look at the situation under Maxwell’s electromagnetic

theory. In Maxwell’s electromagnetic theory, the vector potential becomes

the retarded potential. Therefore,

e = −jωA(r) = −jω µ0

4π

˚
V

J

r
exp(−jk · r)dV (208)

The superscript "(r)" means retardation. A(r) is the retarded potential.

˚
(J∗ · e)dV =

˚
(J∗ · (−jω µ0

4π

˚
V

J

r
exp(−jk · r)dV ′))dV

= −jω µ0

4π

˚
V

˚
V

J∗(x) · J(x′)

r
exp(−jk · r)dV ′dV

= −jωLI∗I (209)

Where,

L =
1

II∗
µ0

4π

˚
V

˚
V

J∗(x) · J(x′)

r
exp(−jk · r)dV ′dV (210)

We will find that with the addition of the retardation factor exp(−jk ·
r), the system inductance is no longer a pure real number, so we have,

<(

˚
(J∗ · e)dV ) 6= 0 (211)

Hence, ˆ ∞
t=−∞

dt

˚
(J i · ei)dV 6= 0 (212)

The formula (203) has been proved. The self energy principle in Maxwell’s

electromagnetic theory is not satisfied.
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I

图 6: An inductive coil. There are any two current elements above.

8.3 The author’s electromagnetic theory

How to ensure the following formula in the author’s radiation electro-

magnetic theory is true?
ˆ ∞
t=−∞

dt

˚
(J ·E)dV = 0 (213)

The author thinks that it is wrong to consider only the retarded wave in

Maxwell’s electromagnetic theory. In fact, the advanced wave always exists

with the retarded wave. We know that Neumann’s electromagnetic formula

is,

E2,1 = − d

dt

µ0

4π

ˆ
C2

ˆ
C1

I1dl1 · dl2
r

= −jω µ0

4π

ˆ
C2

ˆ
C1

I1dl1 · dl2
r

= −jωLI1 (214)

Where,

L =
µ0

4π

ˆ
C2

ˆ
C1

dl1 · dl2
r

(215)

Divide the inductance into small segments,

L =

N∑
i=1

N∑
j=1,j 6=i

µ0

4π

∆l1i ·∆l2j
r
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=
N∑
i=1

j<i∑
j=1

µ0

4π

∆l1i ·∆l2j + ∆l1j ·∆l2i
r

(216)

Consider ∆l1i (red line segment in figure 6) give ∆l2j (blue line in figure

6) a retarded wave. In fact, ∆l2j will definitely give ∆l1i an advanced wave,

so there must be

∆l1i ·∆l2j → ∆l1i ·∆l2j exp(−jk · rij) (217)

∆l1j ·∆l2i → ∆l1i ·∆l2j exp(+jk · rij) (218)

Of course, it may also be as follows:,

∆l1i ·∆l2j → ∆l1i ·∆l2j exp(+jk · rij) (219)

∆l1j ·∆l2i → ∆l1i ·∆l2j exp(−jk · rij) (220)

→ means the transition from the magnetic quasi-static electromagnetic

system to the author’s electromagnetic system. Hence there is,

L =
N∑
i=1

j<i∑
j=1

µ0

4π

∆l1i ·∆l2j + ∆l1j ·∆l2i
r

→
N∑
i=1

j<i∑
j=1

µ0

4π

∆l1i ·∆l2j exp(−jk · rij) + ∆l1j ·∆l2i exp(+jk · rij)
r

=
N∑
i=1

j<i∑
j=1

µ0

4π

∆l1i ·∆l2j exp(+jk · rij) + ∆l1j ·∆l2i exp(−jk · rij)
r

=
N∑
i=1

j<i∑
j=1

µ0

4π

2<(∆l1i ·∆l2j exp(−jk · rij))
r

= 2<
N∑
i=1

j<i∑
j=1

µ0

4π

(∆l1i ·∆l2j exp(−jk · rij))
r

= <
N∑
i=1

N∑
j=1,j 6=i

µ0

4π

(∆l1i ·∆l2j exp(−jk · rij))
r

(221)

It can be seen that the system inductance L is still a real number, and

we still have it,



8 VERIFY THE PRINCIPLE OF SELF ENERGY 45

˚
(J∗ ·E)dV →

ˆ
C

E · dlI∗ = EI = −jωLII∗

is a pure imaginary number, and hence,

<
˚

(J∗ ·E)dV = 0 (222)

Thus we get (204). The proof is finished.

Although we have proved the above formula, some people may still be

dissatisfied with our proof, so we provide a second proof.

˚
(J∗ ·E)dV =

N∑
i=1

I∗i ∆li ·E(i) (223)

E(i) =
N∑

j=1,j 6=i

Ej (224)

E(i) is the electric field of current elements other than current element

i. Ej Is current element Ij∆lj Electric field of.

˚
(J∗ ·E)dV =

N∑
i=1

I∗i ∆li ·
N∑

j=1,j 6=i

Ej =
N∑
i=1

N∑
j=1,j 6=i

I∗i ∆li ·Ej (225)

Considering the frequency domain formula of the law of conservation

of energy (138),

<(
N∑
i=1

N∑
j=1,j 6=i

˚
V

(Ei · J∗j )dV ) = 0 (226)

there is,

<
˚

(J∗ ·E)dV = <(
N∑
i=1

N∑
j=1,j 6=i

I∗i ∆li ·Ej) = 0 (227)

The formula (204) has been proved. In the formula (138), the current

element is N separated current elements. In (225), the current elements are

connected together, but they can still be regarded as N separate current

elements. Therefore, the law of conservation of energy of formula (138) can

be applied.
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The formula (204) can be regarded as the principle of self energy, which

has also been proved in the author’s theoretical system.

In Maxwell’s electromagnetic field theory system, the principle of self

energy

ˆ ∞
t=−∞

dt

˚
(J · e)dV = 0

is not true, which shows that Maxwell’s electromagnetic theory is flawed.

9 Electromagnetic wave of plate current of

Maxwell’s theory

In this section, we solve the electromagnetic wave of infinite plane cur-

rent according to Maxwell’s classical electromagnetic theory. Many previous

theories have been given, but readers may still not really understand the

problem. Especially that mysterious relaxation process, is it really amaz-

ing that the original Maxwell electromagnetic theory can be relaxed, and

just release a degree of freedom, and allow the addition of a new boundary

condition? All this must be clearly shown to the reader in the following

examples. The electromagnetic field of plate current, finite plate or infinite

plate are good examples. Finally, the author will explain the mutual energy

theory of electromagnetic field proposed by the author with double plate

current.

9.1 Calculation of retarded wave according to Maxwell

radiation electromagnetic field

As shown in 7, the current is an infinite plate current. Retarded waves

are generated on both sides of the plate current.

According to Maxwell’s radiation electromagnetic theory, the current

density is assumed to be,

J = J0ẑ (228)
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图 7: The electromagnetic retarded wave of a flat plate current.

The time factor of current is exp(jωt), which has been omitted. The

magnetic field can follow Ampere’s circuital law˛
C

h · dl = I (229)

Obtain,

h(x = 0+) =
J0

2
ŷ (230)

The above equation x = 0+ is on the right side of the current. There-

fore, considering that the electromagnetic wave propagates in the x direc-

tion, the magnetic field of the electromagnetic wave should be,

h =
J0

2
exp(−jkx)ŷ (231)

Where k = ω
√
ε0µ0. The electric field can be calculated according to

the differential equation of Ampere-Maxwell’s circuital law, considering that

the current J in the area where x > 0 is zero,

∇× h =
∂

∂t
d = jωε0e (232)

Or,

(−jkx̂)× h = jωε0e (233)

Or,

e =
1

jωε0
(−jkx̂)× h
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=
1

jωε0
(−jkx̂)× J0

2
exp(−jkx)ŷ

=
k

ωε0

J0

2
exp(−jkx)(−ẑ)

=
ω
√
µ0ε0

ωε0

J0

2
exp(−jkx)(−ẑ)

=

√
µ0

ε0

J0

2
exp(−jkx)(−ẑ)

=
η0J0

2
exp(−jkx)(−ẑ) (234)

Where the following is considerred,

η0 =

√
µ0

ε0
(235)

k = ω
√
µ0ε0 (236)

The Poynting vector to the right of the current is,

sr = e× h∗

= (
η0J0

2
exp(−jkx)(−ẑ))× (

J0

2
exp(−jkx)ŷ)∗

= (
η0J0

2
)(
J∗0
2

)x̂

=
η0J0J

∗
0

4
x̂ (237)

Similarly, we can calculate that on the left side of the current,

sl =
η0J0J

∗
0

4
(−x̂) (238)

In addition,

e(x = 0) · J∗ = (
η0J0

2
(−ẑ)) · (J0ẑ)

∗

= −η0J0J0
∗

2
(239)

So we verified,

sr · x̂+ sl · (−x̂) = −e(x = 0) · J∗ (240)
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图 8: The electromagnetic advanced wave of a flat plate current.

The equivalence of the above formula and Poynting’s theorem,"
Γ

s · n̂dΓ = −
˚

e · J∗dV (241)

Where,

s = e× h∗ (242)

Therefore, we can obtain the electromagnetic radiation of the infinite

plane current according to Maxwell’s electromagnetic theory.

9.2 Advanced wave

First, consider the right side of the current. If it is the advanced wave,

the magnetic field, it is obtained in the same way as the previous method,

h =
J0

2
ŷ (243)

However, because it is an advanced wave, there should be a factor

exp(+jkx), so it is,

h =
J0

2
exp(+jkx)ŷ (244)

The electric field is obtained from the Ampere’s circuital law of maxwell’s

equation as before,

∇× h =
∂

∂t
d = jωε0e (245)
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Or,

(+jkx̂)× h = jωε0e (246)

Or,

e =
1

jωε0
(+jkx̂)× h

=
1

jωε0
(+jkx̂)× J0

2
exp(−jkx)ŷ

=
k

ωε0

J0

2
exp(+jkx)(+ẑ)

=
η0J0

2
exp(−jkx)(+ẑ) (247)

The Poynting vector to the right of the current is,

sr = e× h∗

= (
η0J0

2
exp(+jkx)(+ẑ))× (

J0

2
exp(+jkx)ŷ)∗

= −(
η0J0

2
)(
J∗0
2

)x̂

= −η0J0J
∗
0

4
x̂ (248)

The energy flow of the advanced wave is directed to the current plate.

That is correct.

Similarly, we can calculate that it is on the left side of the current,

sl =
η0J0J

∗
0

4
(x̂) (249)

In addition,

e(x = 0) · J∗ = (
η0J0

2
(+ẑ)) · (J0ẑ)

∗

= +
η0J0J0

∗

2
(250)

We can still have,

sr · x̂+ sl · (−x̂) = −η0J0J
∗
0

4
− η0J0J

∗
0

4

−e(x = 0) · J∗ = −η0J0J0
∗

2
(251)
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Poynting’s theorem is verified,

sr · x̂+ sl · (−x̂) = −e(x = 0) · J∗ (252)

The above formula is,

"
Γ

s · n̂dΓ = −
˚

e · J∗dV (253)

Therefore, Poynting’s theorem is also verified for the advanced wave.

9.3 The Problems

We find that according to Maxwell’s electromagnetic theory, although

Poynting’s theorem is satisfied, on the right side of the current, the initial

directions of the electric field of the retarded wave and the advanced wave

are exactly opposite. According to Wheeler Feynman’s absorber theory, any

current generates half retarded wave and half advanced wave. If the current

does produce half the retarded wave and half the advanced wave, the total

electric field of the retarded wave and the advanced wave at x = 0 is just

zero, because the electric field of the retarded wave and the advanced wave

is zero on the current surface. We know that near the current plate,

kx→ 0 (254)

exp(kx)→ 1 (255)

At this time, the radiated electromagnetic field should degenerate into

a magnetic quasi-static electromagnetic field. According to our experi-

ence, the magnetic quasi-static electric field near the current plate is not

zero. This shows that Maxwell’s electromagnetic theory cannot support

Wheeler Feynman’s absorber theory. This is why many people think that

the Wheeler Feynman absorber theory is correct, but the Wheeler Feyn-

man absorber theory still cannot be recognized by most people. Because

Maxwell’s electromagnetic theory cannot support it!

The author supports Wheeler Feynman’s point of view and thinks that

Wheeler Feynman’s point of view is correct. If Maxwell’s electromagnetic

field theory cannot support Wheeler Feynman’s point of view, it should be

that Maxwell’s electromagnetic field theory has a problem.
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10 Electromagnetic wave of plate current

according to author’s theory

To solve the electromagnetic wave of infinite plane current according

to the author’s electromagnetic theory, in this chapter, the reader should

pay attention to how the author adds the mysterious relaxation process to

the system theory and how to add new boundary conditions. In addition,

we should also pay attention to the difference between the author’s elec-

tromagnetic theory and Maxwell’s electromagnetic theory in the previous

chapter.

10.1 Retarded wave

First, consider the right side of the plane current. For this problem,

the magnetic field is calculated as above in section 9,

H = h =
J0

2
exp(−jkx)ŷ (256)

The factor exp(−jkx) above represents the retarded wave, and the

electric field is calculated according to the principle of self energy

<(

"
(E ×H∗) · x̂ = 0 (257)

Or,

<(E ×H∗) · x̂ = 0 (258)

The above equation requires the phase difference of E and H to have

±90 degrees. We know that the direction of the electric field should be

perpendicular to the magnetic field, and there should be,

||E|| = ||e|| (259)

That is to say, the electric field of the author’s theory should be equal

to that of Maxwell’s electromagnetic theory. Therefore, according to the

author’s electromagnetic theory,

E ∼ (±j)η0x̂×H (260)
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= (±j)η0J0

2
exp(−jkx)(−ẑ) (261)

There are still signs to be determined in the above formula. This sign

can be determined according to the electric field of the magnetic quasi-static

electromagnetic field. Because the author’s electromagnetic field method

should be able to degenerate into a magnetic quasi-static electromagnetic

field. Therefore, it can be considered that,

E = − ∂

∂t
A = −jω

¨
Jẑ

r
∼ j(−ẑ) (262)

In the formula, ∼ means proportional, and this symbol is phase pre-

serving but not value preserving. Comparing the above equation (262) with

(261), we can see that,

E = j
η0J0

2
exp(−jkx)(−ẑ) (263)

We can calculate Poynting vector

Sr = E ×H∗

= j
η0J0

2
exp(−jkx)(−ẑ)× (

J0

2
exp(−jkx)ŷ)∗

= j
η0J0J

∗
0

4
x̂ (264)

The subscript "r" indicates that it is on the right side of the current,

<(Sr · x̂) = <(j
η0J0J

∗
0

4
) = 0 (265)

It can be seen from the above that according to the author’s electro-

magnetic field theory, Poynting vector is a pure imaginary number, that is,

it is reactive power. The author calls this wave of reactive power the reactive

power wave. Reactive power waves propagate energy in the forward and in

the opposite directions at the same cycle. The reactive power wave has two

quarter cycles that propagate power in the forward and two quarter cycles

that propagate power backward. Therefore, the average forward propaga-

tion power is zero. This kind of wave does not lose electromagnetic energy

in the process of propagation. All radiated electromagnetic wave energy

flow will eventually return to the transmitting antenna or light source.
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10.2 Advanced wave

First, consider the right side of the plane current. For this problem,

the magnetic field is calculated as above 9, but the advanced wave factor

exp(jkx) must be considered,

H = h =
J0

2
exp(jkx)ŷ (266)

The electric field is calculated according to the principle of self energy,

<(

"
(E ×H∗) · x̂ = 0 (267)

<(E ×H∗) · x̂ = 0 (268)

The above equation requires the phase difference of E and H to have

±90 degrees. We know that the direction of the electric field should be

perpendicular to the magnetic field, and,

||E|| = ||e|| (269)

That is to say, the electric field of the author’s theory should be equal

to that of Maxwell’s electromagnetic theory. So according to the author’s

electromagnetic theory,

E ∼ (±j)η0x̂×H

= (±j)η0J0

2
exp(+jkx)(−ẑ) (270)

There are still signs to be determined in the above formula. This sign

can be determined according to the electric field of the magnetic quasi-static

electromagnetic field. Because the author’s electromagnetic field method

should be able to degenerate into a magnetic quasi-static electromagnetic

field. Therefore, it can be considered that,

E = − ∂

∂t
A = −jω

¨
Jẑ

r
∼ j(−ẑ) (271)

In the formula, ∼ means proportional, and this symbol is phase pre-

serving but not value preserving. From this we know that,

E = j
η0J0

2
exp(+jkx)(−ẑ) (272)
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We can calculate Poynting vector

Sr = E ×H∗

= j
η0J0

2
exp(+jkx)(−ẑ)× (

J0

2
exp(+jkx)ŷ)∗

= j
η0J0J

∗
0

4
x̂ (273)

<(Sr · x̂) = <(j
η0J0J

∗
0

4
) = 0 (274)

It can be seen from the above that according to the author’s electro-

magnetic field theory, Poynting vector is a pure imaginary number, that

is, it is reactive power. The author calls this wave of reactive power the

reactive power wave. Reactive power waves propagate energy forward and

in the opposite direction at the same cycle. Reactive power wave has two

quarter cycles of forward propagation power and two quarter cycles of back-

ward propagation power. Therefore, the average propagation power is zero.

This wave does not lose electromagnetic energy.

10.3 Supporting Wheeler Feynman absorber theory

In the author’s electromagnetic theory, the initial values of the electric

field and magnetic field of the retarded wave and the advanced wave are

identical. Therefore, the current can radiate the retarded wave and the ad-

vanced wave at the same time, that is, it radiates half of the retarded wave

and half of the advanced wave. The electric fields of the retarded wave and

the advanced wave are superimposed on the current boundary and do not

offset. Therefore, the author’s electromagnetic field theory provides sup-

port for Wheeler Feynman absorber theory. In addition, when x = 0, that

is, near the current plate, the author’s electromagnetic theory can degener-

ate into a magnetic quasi-static electromagnetic field. Maxwell’s radiation

electromagnetic theory does not support Wheeler Feynman’s absorber the-

ory, nor can it degenerate into magnetic quasi-static electromagnetic field!

For the degenerated magnetic quasi-static electromagnetic field, we can also

consider a finite plate current. The electric field of a finite plate current does

not tend to infinity under the magnetic quasistatic condition. In this case,

we can see the significance of the author’s electromagnetic theory.
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图 9: The plate current can generate electromagnetic waves that propagate

to the right.

10.4 Electromagnetic wave propagating to the right

According to the author’s electromagnetic field theory, any current el-

ement can radiate the retarded wave and the advanced wave at the same

time, which is consistent with Wheeler’s and Feynman’s absorber theory

[1, 2]. In absorber theory, current element can radiate half retarded wave

and half advanced wave. In the author’s electromagnetic field theory, be-

cause electromagnetic wave is reactive power wave, this wave does not lose

energy. This wave is a self energy flow. In the author’s electromagnetic

theory, the self energy flow is reactive power, so the propagation does not

lose energy. So this kind of wave may or may not have! We will deal with

mutual energy flow later in this example. In the author’s electromagnetic

theory, energy is transferred by mutual energy flow. The mutual energy

flow is generated by the retarded wave from the source and the advanced

wave from the sink. Therefore, if the retarded wave does not encounter

the advanced wave after it is sent from the source, it is an invalid electro-

magnetic wave, because it does not lose energy anyway. It is the effective

electromagnetic wave if it encounters the advanced wave.

We assume that the retarded wave on the right side of the current in our

discussion is an effective electromagnetic wave, because in the next section,
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we will place a new current plate on the right side of this current plate.

This new current plate is a sink, which is used to receive electromagnetic

waves (and emit advanced waves).

We assume that the advanced wave on the left side of the current plate

is an effective electromagnetic wave. The advanced wave on the left side of

the current plate has a space factor exp(−jkx). The retarded wave on the

left side is invalid. Now let’s calculate the electromagnetic field on the left

side of the current plate. The magnetic field can be obtained from Ampere’s

circuital law,

H = −J0

2
exp(−jkx)ŷ (275)

The electric field is the same as the previous calculation

E = j
η0J0

2
exp(−jkx)(−ẑ) (276)

Of course, considering various combinations, the plate current can gen-

erate retarded waves on both sides, advanced waves on both sides, waves

propagating to the right on both sides, and electromagnetic waves propa-

gating to the left on both sides. However, in the following example, we only

need to consider the wave to the right on both sides. This means that the

right side of the plate current is the retarded wave, and the left side of the

plate current is the advanced wave.

11 Electromagnetic wave of double-plate

current with author’s theory

11.1 Field to the right of the first current

The first current plate has been calculated in front (266,272), but the

electric field and magnetic field add a subscript 1, which is easy to distin-

guish. It is indicated by the subscript "r" to the right of the current.

H1r =
J10

2
exp(−jkx)ŷ (277)

E1r = j
η0J10

2
exp(−jkx))(−ẑ) (278)
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图 10: Double plate currents. Each current produces an electromagnetic

wave that travels to the right.

The field on the left side of the current plate is in accordance with (275,

276)

H1l = −J10

2
exp(−jkx)ŷ (279)

E1l = j
η0J10

2
exp(−jkx)(−ẑ) (280)

See figure 10. The author has previously calculated the electromagnetic

wave generated by a single current plate according to the author’s electro-

magnetic theory, and this electromagnetic wave propagates to the right. Of

course, this current can also generate electromagnetic waves propagating to

the left. However, the second current plate is on the right of the first one,

as shown in the figure 10. We assume that the direction of electromagnetic

energy flow is from the first current plate to the second current plate, so it

is an electromagnetic wave propagating to the right. Therefore, we assume

that both current plates generate electromagnetic waves propagating to the

right. Then the electromagnetic wave propagating to the left is invalid.

Refer to figure 10.
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11.2 Electromagnetic field of the second current plate

We assume that

x = l (281)

There is a second current plate at, and there is an electromagnetic field on

the right of the current,

H2r = h =
J20

2
exp(−jk(x− l))ŷ (282)

E2r = j
η0J20

2
exp(−jk(x− l))(−ẑ) (283)

On the left side of the current plate

H2l = −J20

2
exp(−jk(x− l))ŷ (284)

The electric field is the same as the previous calculation

E2l = j
η0J20

2
exp(−jk(x− l))(−ẑ) (285)

11.3 Calculation of mutual energy flow between two plates

Sm = E1r ×H∗2l + E∗2l ×H1r

= (j
η0J10

2
exp(−jkx))(−ẑ))× (−J20

2
exp(−jk(x− l))ŷ)∗

+(j
η0J20

2
exp(−jk(x− l))(−ẑ))∗ × (

J10

2
exp(−jkx)ŷ)

= [(j
η0J10

2
exp(−jkx)))(−J20

2
exp(−jk(x− L)))∗

+(j
η0J20

2
exp(−jk(x− L)))∗(

J10

2
exp(−jkx))]x̂

=
1

2
η0J10J

∗
20j
∗ exp(−jk(−l))∗x̂ (286)

Now let’s calculate the induced potential on the current of the second

plate. At this time, we assume that the length of the current plate is llength,

width is lwidth.

E2,1 =

ˆ
E1r · dl = llengthE1r(x = l) · ẑ
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= llength(j
η0J10

2
exp(−jkl))(−ẑ)) · ẑ

= −jllength
η0J10

2
exp(−jkl) (287)

The impedance of the second current plate is,

Z2 = jωL2 +R2

The induced current of the second current plate is,

I2 =
E2,1

Z2

=
E2,1

jωL2 +R2

→ E2,1

R2

= −jllength
η0J10

2R2

exp(−jkl) (288)

Assumption in the above formula,

R2 � ωL2 (289)

Hence,

jωL2 +R2 → R2 (290)

llength is the length of the current plate from top to bottom. We previ-

ously assumed that the current plate is infinite, but to calculate the induced

electromotive force, we have to assume the length of a current plate. The

current density of the second current plate is,

J20 =
I2

lwidth
= −jllength

η0J10

2R2lwidth
exp(−jkl) (291)

lwidth is the width of the current plate. Calculate mutual energy flow,

Sm =
1

2
η0J10J

∗
20j
∗ exp(−jk(−l))∗x̂

=
1

2
η0J10(−jllength

η0J10

2R2lwidth
exp(−jkl))∗j∗ exp(−jk(−l))∗x̂

=
1

2
η0J10llength

η0J
∗
10

2R2lwidth
x̂

=
η2

0J10J
∗
10llength

4R2lwidth
x̂ (292)

It can be seen that the mutual energy flow points to the x̂ direction.

Sm ∼ x̂ (293)
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11.4 Mutual energy flow at x < 0, x > l

Consider the mutual energy flow as,

Sm = S12 + S21

= E1r ×H∗2l + E∗2l ×H1r (294)

S12 , E1r ×H∗2l (295)

S21 , E∗2l ×H1r (296)

In the range of 0 < x < l S12 and S21 is superimposed. But when

x < 0, because the direction of H1l suddenly changes (just opposite to the

direction of H1r), S12 and S21 becomes offset. In x > l the direction of

magnetic field of H2r changes (just opposite to the direction of H2l), so

S12 and S21 becomes offset. So there is,

Sm = 0, x /∈ [0, l] (297)

Merge (292 and 297), so we have

Sm =
η2

0J10J
∗
10llength

4R2lwidth
x̂


0 x < 0

1 0 < x < l

0 x > l

(298)

11.5 Verify that the energy flow law meets

We need to verify the law of energy flow and energy conservation (200).

Considering that in the frequency domain and N = 2,

−
˚

(J1 ·E∗2)dV = (ξ1, ξ2) =

˚
(J∗2 ·E1)dV (299)

Where,

(ξ1, ξ2) ≡
"

Γ

(E1 ×H∗2 + E∗2 ×H1) · n̂dΓ (300)

The energy flow formula we need to verify corresponding to the plate

current is,

−J1 ·E∗2l = S · x̂ = J∗2 ·E1r (301)
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−J1 ·E∗2l|x=0 = −J10ẑ · (j
η0J20

2
exp(−jk(x− l))(−ẑ))∗

= J10(j
η0J20

2
exp(−jk(x− l)))∗

= J10(j
η0J20

2
exp(jkl))∗

= J10(j
η0(−jllength η0J10

2R2lwidth
exp(−jkl))

2
exp(jkl))∗

= J10J
∗
10η

2
0(

llength
4R2lwidth

) (302)

J∗2 ·E1r|x=l = (−jllength
η0J10

2R2lwidth
exp(−jkl)ẑ)∗ · (j η0J10

2
exp(−jkl))(−ẑ))

= (jllength
η0J10

2R2lwidth
exp(−jkl))∗(j η0J10

2
exp(−jkl)))

= (llength
η0J10

2R2lwidth
)∗(

η0J10

2
))

= J10J
∗
10η

2
0

llength
4R2lwidth

(303)

it is known that the formula (301) is verified, which shows that the formula

of the energy flow law (299) is verified. Note that there is no set of differen-

tial equations similar to Maxwell’s equation in the author’s electromagnetic

theory. To verify whether this solution is correct is to pass this energy flow

law, which is also the law of energy conservation. Of course, we also require

that,

<(S1r · x̂) = <(S1l · x̂) = 0 (304)

<(S2r · x̂) = <(S2l · x̂) = 0 (305)

where

S1r = E1r ×H∗1r

S1l = E1l ×H∗1l

S2r = E2r ×H∗2r

S2l = E2l ×H∗2l
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图 11: Cramer’s particle model in the transactional interpretation of quan-

tum mechanics.

These two formulas (304, 305) have been verified previously. As long as the

law of energy flow, the law of conservation of energy 299, and the principle

of self energy flow (304, 305) are satisfied, this solution satisfies the author’s

electromagnetic theory.

11.6 Comparison of particle models in transactional in-

terpretation of quantum mechanics with Cramer

The surface mutual energy current of the above equation (298) is gen-

erated on the first current plate and annihilated on the second current plate.

Keep the same value between the two current plates, and point from the

first plate to the second plate. The mutual energy flow has the property of

photons. This is the reason why the author interprets photons with mutual

energy flow. The classical electromagnetic theory uses self energy current

as electromagnetic wave, that is, Poynting vector e1 × h1 or e2 × h2 as

the energy flow of electromagnetic wave, the energy flow will not annihilate
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since its generation and will continue to move. Therefore, self energy flow

can not be used to describe photons.

Figure 11 describes the particle model in Cramer’s transactional in-

terpretation of quantum mechanical [5, 6]. In this model, there are source

(shown by red dots) and sink (shown by blue dots). Cramer developed

the current model of Wheeler and Feynman absorber theory. In Wheeler

and Feynman absorber theory, any current element can emit half retarded

wave and half advanced wave. In Cramer’s model, the source and sink also

emit half retarded wave and half advanced wave, but the retarded wave and

advanced wave can be in different directions of the source and sink. For

example, the retarded wave is sent to the right and the advanced wave is

sent to the left. In addition, the starting phase of the retarded wave and

the advanced wave in Cramer model can also be adjusted at will. Fur-

ther, the source sends a retarded wave to the right, and the sink sends an

advanced wave to the left. It is assumed that the retarded wave and the

advanced wave have exactly the same phase between the source and the

sink, so they are superposed. The retarded wave from the sink on the right

side of the sink exactly keeps a 180 degree phase angle with the retarded

wave from the source, so they cancel each other. On the left side of the

source, the advanced wave from the source and the advanced wave from the

sink maintain a phase difference of 180 degrees, so it is just offset. Cramer’s

particle model is very sophisticated. Its papers [5, 6] have been cited by

thousands of people. However, this model is only a qualitative theory and

a guess. There are still many problems. For example, the 180 degree phase

difference mentioned above is very difficult to understand. Why is there

a 180 degree phase difference? In addition, why does the current source

send retarded wave to the right and advanced wave to the left, instead of

sending retarded wave and advanced wave to the left and right at the same

time? In the original model of Wheeler and Feynman, the retarded wave

and advanced wave are also omnidirectional, rather than the directivity of

Cramer.

The formula (298) is basically consistent with Cramer’s quantum me-

chanical particle model, but the retarded wave and advanced wave are not
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superimposed between the source and sink. It is a mutual energy flow com-

posed of retarded wave and advanced wave S12 and S21. Because the sign

of one of the magnetic fields changes outside the range of the source and

sink, the superposition becomes cancellation. This change in magnetic field

completely explains the cause of 180 degrees. In addition, in the author’s

theory, the retarded wave from the source is a reactive power wave, which

does not lose energy. Therefore, if it does not form a mutual energy flow

with other advanced waves, it can be completely ignored. Or it is consid-

ered as invalid electromagnetic wave. We can assume that the retarded

wave on the right side of the source is an effective wave and the advanced

wave on the right side is an invalid wave. The retarded wave on the left

side of the source is an invalid wave, and the advanced wave on the left side

is an effective wave. In this way, the source can form a wave propagating

to the right. Similarly, we can assume that the wave from the sink also

propagates to the right. In this way, we also fully explain Cramer’s further

development of Wheeler and Feynman’s absorber theory. In Wheeler Feyn-

man’s model, both the retarded wave and the advanced wave are omnidirec-

tional radiation. In Cramer’s model, the wave has directivity. Although the

electromagnetic wave in our model is omnidirectional like that in Wheeler

Feynman’s model, it can also propagate to the right, so it is consistent with

Cramer’s model too.

11.7 The interval l between two plates is very small

Let’s assume that the distance between the two current plates is very

close,

l→ 0 (306)

kx→ 0 (307)

exp(−jkx)→ 1 (308)

In this case, the author’s electromagnetic field degenerates into a mag-

netic quasi-static electromagnetic field
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H1r =
J10

2
ŷ (309)

E1r = j
η0J10

2
(−ẑ) (310)

On the left side of the current plate

H1l = −J10

2
ŷ (311)

E1l = j
η0J10

2
(−ẑ) (312)

For the electromagnetic field of the second current plate

H2r =
J20

2
ŷ (313)

E2r = j
η0J20

2
(−ẑ) (314)

H2l = −J20

2
ŷ (315)

E2l = j
η0J20

2
(−ẑ) (316)

Consider,

Sm = E1r ×H∗2l + E∗2l ×H1r

= (j
η0J10

2
(−ẑ))× (−J20

2
ŷ)∗ + (j

η0J20

2
(−ẑ))∗ × (

J10

2
ŷ)

= [(j
η0J10

2
)(−J20

2
)∗ + (j

η0J20

2
)∗(

J10

2
)]x̂

=
η0J10

4
[(j)(−J20)∗ + (jJ20)∗]x̂ (317)

Consider,

J20 =
I2

lwidth
= −jllength

η0J10

2R2lwidth
(318)

Sm =
η0J10

4
[(j)(−J20)∗ + (jJ20)∗]x̂

=
η0J10

4
[(j)(−(−jllength

η0J10

2R2lwidth
))∗ + (j(−jllength

η0J10

2R2lwidth
))∗]x̂
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=
η2

0J10J
∗
10llength

8R2lwidth
[(j)(j)∗ + (j(−j))∗]x̂

In this case, the author’s electromagnetic fields are degenerated into

magnetic quasi-static electromagnetic fields. The reader can verify that the

calculation in the magnetic quasi-static case is completely similar to the

above. The mutual energy flow finally has a factor similar to that above

[(j)(j)∗ + (j(−j))∗]x̂ = 2x̂ (319)

Sm =
η2

0J10J
∗
10llength

4R2lwidth
x̂ (320)

Similary we can have,

Sm =
η2

0J10J
∗
10llength

4R2lwidth
x̂


0 x < 0

1 0 < x < l

0 x > l

(321)

Therefore, the radiation electromagnetic field defined by the author

can indeed degenerate into a magnetic quasi-static electromagnetic field.

However, in the magnetic quasi-static case, we cannot generally assume

that the current plate is infinite. Then the electric field will tend to infinity.

Therefore, we generally take a finite current plate.

11.8 Calculate the energy flow of the author’s electromag-

netic theory with Maxwell’s electromagnetic theory

According to Maxwell’s electromagnetic field theory, we have,

h1r =
J10

2
exp(−jkx)ŷ (322)

e1r =
η0J10

2
exp(−jkx)(−ẑ) (323)

h2l =
J20

2
exp(+jk(l − x))(−ŷ) (324)

e2l =
η0J20

2
exp(+jk(l − x))ẑ (325)
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We can calculate the mutual energy flow,

sm = e1r × h∗2l + e∗2l × h1

= (
η0J10

2
exp(−jkx)(−ẑ))× (

J20

2
exp(+jk(l − x))(−ŷ))∗

+(
η0J20

2
exp(+jk(l − x))ẑ)∗ × (

J10

2
exp(−jkx)ŷ)

=
η0J10

4
J∗20 exp(+jkl)∗2(−x̂)

=
η0J10

2
J∗20 exp(+jkl)∗(−x̂) (326)

Calculate the electromotive force,

E2,1 =

ˆ
e1r · dl = llengthe1r(x = l) · ẑ

= llength(
η0J10

2
exp(−jkl))(−ẑ)) · ẑ

= −llength
η0J10

2
exp(−jkl) (327)

The impedance of the second current plate is,

Z2 = jωL2 +R2 (328)

The induced current of the second current plate is,

I2 =
E2,1

Z2

=
E2,1

jωL2 +R2

→ E2,1

R2

= −llength
η0J10

2R2

exp(−jkl) (329)

Assumption in the above formula,

R2 � ωL2 (330)

Hence,

jωL2 +R2 → R2 (331)

llength is the length of the current plate from top to bottom. We previously

assumed that the current plate is infinite, but to calculate the induced

electromotive force, we have to assume the length of a current plate. The

current density of the second current plate is,

J20 =
I2

lwidth
= −llength

η0J10

2R2lwidth
exp(−jkl) (332)
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lwidth is the width of the current plate.

sm =
η0J10

2
J∗20 exp(+jkl)∗(−x̂)

=
η0J10

2
(−llength

η0J10

2R2lwidth
exp(−jkl))∗ exp(+jkl)∗(−x̂)

=
η0J10

2
(−llength

η0J
∗
10

2R2lwidth
)(−x̂)

=
η2

0J10J
∗
10llength

2R2lwidth
x̂ (333)

Therefore, we conclude that the interval of 0 ≤ x ≤ L has

Sm = sm (334)

Or,

E1r ×H∗2l + E∗2l ×H1r = e1r × h∗2l + e∗2l × h1r (335)

In this way, we can directly use Maxwell’s electromagnetic theory to

calculate the mutual energy flow of the author’s electromagnetic field. It

is worth mentioning that we can only calculate the electromagnetic energy

flow (mutual energy flow) in the interval of 0 ≤ x ≤ l. Using Maxwell’s

electromagnetic theory, we can’t get the formula like (298). This is because

according to Maxwell’s electromagnetic theory, the advanced wave on the

left side of the current changes not only the sign of the magnetic field, but

also the sign of the electric field. See the field on the right of the current

in figure 7 and the field on the left in figure 7. This shows that Maxwell’s

radiation electromagnetic field theory fail to support the photon model in

Cramer’s transactional interpretation of quantum mechanics.

11.9 A problem of the Maxwell’s theory

We have known from Maxwell’s theory that a single plate current can

produce retarded wave radiation. It has been calculated in Chapter 9 that

Poynting vectors on both sides of the plate current satisfy,

sr · x̂+ sl · (−x̂) = −e(x = 0) · J∗ (336)
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For the solution satisfying Maxwell’s equation, the author said that it

actually means that the solution satisfies the boundary radiation bound-

ary condition, the Sliver-Muller radiation boundary condition. For our case

of infinite plate current, of course, the direct Sliver-Muller boundary condi-

tion is incorrect, but there are always similar radiation boundary conditions.

This boundary condition actually means that there is a very good absorp-

tion condition outside the plate current. The infinity is filled with good

absorbing materials, which can absorb all the electromagnetic wave energy

radiated from the current J . In the previous section, we found that if we

placed another current plate on the right side of the current plate under

the above conditions, a mutual energy flow sm was established between the

first current plate and the second current plate, see the formula (333). This

makes Maxwell’s electromagnetic theory contradict his field theory (aether).

Here, the field theory refers to Maxwell’s theory that the change of current

source can cause electromagnetic radiation. When the electromagnetic field

radiates from the source, it moves independently from the source. That is,

the movement has its own independent degree of freedom. When the elec-

tromagnetic wave moves to the receiving antenna, it transfers energy to the

receiving antenna. Therefore, the electromagnetic wave should move away

from the radiation source, so that when we add the second current plate to

the system, it should not react on the original current source. The problem

is that the addition of the second board will indeed affect the radiation of

the first board! The total radiation energy is increased. This is contrary to

the original assumption that there is the best absorbing material at infinity

that can absorb all the waves emitted from the radiation source.

Of course, the reader can also argue that the second current plate ra-

diates the advanced wave. In classical electromagnetic theory, there is no

advanced wave. The classical electromagnetic theory denies the existence of

advanced waves. Indeed, if Maxwell’s theory is to conform to the aforemen-

tioned field theory or aether theory, the advanced wave must be removed

from the theory. Otherwise, a mixing theory is formed. Here, mixing means

that part of the energy flow is field theory, which is composed of Poynting

vector sr. One part is action and reaction, and this part of energy flow con-
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sists of mutual energy flow sm. These two kinds of thoughts are opposite

and cannot be allowed to mix together.

Therefore, in Maxwell’s theory, it is better not to have advanced waves,

but only retarded waves. Only the transmitting antenna is the source of the

electromagnetic field. In Maxwell’s electromagnetic theory, the sink should

not be introduced, although Maxwell’s equation allows the existence of ad-

vanced waves. Sink is also allowed. In this way, Maxwell’s electromagnetic

theory, as a complete theory of radiation electromagnetic field, is still good.

The radiation electromagnetic field here refers to an environment where

only radiation sources exist and perfect electromagnetic absorption mate-

rials are arranged in the distance. In this case, Maxwell’s electromagnetic

theory holds.

Of course, this situation does not include all situations. If there are

conductors in the system, these conductors will consume electromagnetic

energy. Maxwell’s electromagnetic theory is not suitable for the existence

of substances that consume electromagnetic wave energy. The substance

that consumes electromagnetic energy, that is, the substance that absorbs

electromagnetic waves, can only appear on the boundary of the infinite

element, and must also be uniformly arranged on the remote boundary,

which conforms to the Sliver-Muller boundary condition. But in reality,

there is always conductor and resistance in the electromagnetic system,

which will consume electromagnetic wave energy. Maxwell’s electromagnetic

radiation theory does not allow this kind of material to appear, which is

obviously not a complete electromagnetic theory!

The author’s electromagnetic theory has made a correction on Maxwell’s

electromagnetic theory. Because of this correction, the essence of the au-

thor’s electromagnetic theory is the electromagnetic theory of action and

reaction (action-at-a-distance). The radiation of the antenna itself, that is,

Poynting vector, is reactive power. This wave can spread to any place in

space, but does not consume electromagnetic energy. The energy transmit-

ted by electromagnetic wave only occurs when the retarded wave (action)

from the transmitting antenna happens to be synchronized with the ad-

vanced wave (reaction) from a receiving antenna. In this case, mutual en-
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ergy flow is generated. Mutual energy is photons. This photon carries the

energy flow composed of the retarded wave and the advanced wave from

the transmitting antenna to the receiving antenna. This electromagnetic

energy is generated on the transmitting antenna and annihilated on the

receiving antenna, which perfectly explains the problem of wave particle

duality, which is very magical.

12 Comparison of three electromagnetic

fields

Below we list the comparison of three electromagnetic theories in the

table. The three cases are 1) quasi-static electromagnetic field theory, in-

cluding magnetic quasi-static electromagnetic field theory. 2) Maxwell’s ra-

diation electromagnetic field theory refers to the electromagnetic theory that

satisfies Maxwell’s equation. Here, the Ampere circuital law of Maxwell’s

equation includes displacement current (93-96). In this paper, the electro-

magnetic field in Maxwell’s electromagnetic theory is represented by the

lowercase letters e and h. The author’s electromagnetic field theory refers

to the electromagnetic field that satisfies the electromagnetic field equation

(194-200). In this paper, the author’s electromagnetic field is represented

by E and H.
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Quasistatic field Maxwell’s theory author’s theory

Energy conservation law Y N Y

does not overflow the universe Y N Y

Sliver-Mueller boundary condition N Y N

Degenerate into quasi-static field Y N Y

Self energy principle Y N Y

Calculation ease Y Y N

Wheeler Feynman absorber theory N Y

Cramer’s interpretation N Y

90 degree phase difference Y N Y

action-at-a-distance Y N Y

field theory (aether theory) N Y N

Presence of depleting substances Y N Y

The law of conservation of energy in the above table refers to (138,173).

The boundary condition that radiation does not overflow the universe refers

to (20,21). The Sliver-Mueller radiation boundary condition refers to (1-4).

Self energy principle refers to (202).

It can be seen from the above table that the author’s electromagnetic

radiation theory is very close to the quasi-static electromagnetic field the-

ory. On contrary, Maxwell’s electromagnetic theory is incompatible with

the quasi-static electromagnetic field. This is also the author’s suggestion

not to use the same symbol for the radiated electromagnetic field derived

from Maxwell’s theory and the quasi-static electromagnetic field, which may

cause misunderstanding. For the author’s electromagnetic field theory, the

author can only solve relatively simple cases, such as the case of infinite

plate current. Or even for the electromagnetic field far away from the trans-

mitting antenna. Although a set of equations proposed by the author can

determine the electromagnetic field solution of the author in principle, there

is still no very effective method to solve the complex situation. However, the

method provided by Maxwell’s electromagnetic theory can provide a refer-

ence. For radiation problems, it is often only necessary to know the far field.

The far field of the author’s electromagnetic theory can be obtained from

Maxwell’s electromagnetic theory, and then the 90 degree phase difference
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between electromagnetic field and magnetic field in the author’s electro-

magnetic theory can be considered. Therefore, Maxwell’s electromagnetic

theory cannot be abandoned. There are some electromagnetic problems,

such as solving the radiation pattern of the transmitting antenna. Such

problems actually assume that there is a good absorbing material at the

cosmic boundary, which means that the Sliver-Muller radiation boundary

condition is valid. In this case, Maxwell’s electromagnetic theory is still very

effective. Therefore, the author’s electromagnetic theory can be regarded as

the electromagnetic theory under different boundary conditions, that is, the

electromagnetic theory under the condition that radiation does not overflow

the universe.

13 Conclusion

The author has proposed the mutual energy theorem of electromag-

netic field since 1987. In 2017, he found that this theorem is actually the

law of conservation of electromagnetic field energy, and proposed the mutual

energy flow theorem and mutual energy principle. Based on these, a com-

plete new set of radiation electromagnetic field theory is developed by the

author, which is different from Maxwell’s. In the past, the author mainly

emphasized that compared with Maxwell’s electromagnetic field theory, the

electromagnetic field theory proposed by the author is an electromagnetic

field theory that satisfies the law of conservation of energy. Although this is

not wrong, it is not easy to persuade readers to accept the author’s views.

In order to further clarify the author’s point of view and persuade readers

to accept the author’s point of view as much as possible, the author chooses

another approach in this paper. This paper presents a new law that radi-

ation does not overflow the universe. This law can also be used as a new

boundary condition. This boundary condition is different from the Sliver

Muller boundary condition satisfied by Maxwell equation. The Sliver-Muller

boundary condition actually requires that the cosmic boundary be filled with

absorber materials. The author makes no such assumption. It is assumed

that there is nothing on the boundary of the universe. Thus Maxwell’s equa-
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tion must be in conflict with the new boundary conditions proposed by the

author. The author has carried out a relaxation process for Maxwell’s equa-

tion. Maxwell’s equation cannot be relaxed. In fact, the author relaxes the

mutual energy principle, which is equivalent to Maxwell’s equation. Relaxed

mutual energy principle can add the boundary condition that radiation does

not overflow the universe. In this way, the author’s electromagnetic theory

can be fully deduced. As an example, the electromagnetic field of plate

current is discussed. The electromagnetic field and energy flow of double

plate current are also discussed. The author hopes that readers can see

the rationality of the electromagnetic field theory proposed by the author

from these examples. On the contrary, Maxwell’s electromagnetic theory is

flawed. In other words, Maxwell’s electromagnetic theory is only suitable

for the Sliver-Muller boundary condition. The electromagnetic field theory

of the author is suitable for the boundary condition that radiation does not

overflow the universe. In this way, the author’s electromagnetic theory is

completely contained in a new boundary condition. The author hopes that

readers can more easily accept the author’s new electromagnetic theory.

In the author’s electromagnetic theory, there is an energy flow theorem

from the source to the sink. This energy flow is also called mutual energy

flow, which has the property of photons. The mutual energy flow is gener-

ated from the radiation source and annihilated at the sink. This is very close

to the particle model in Cramer’s transactional interpretation of quantum

mechanics. It can be said that the author’s electromagnetic theory supports

Cramer’s quantum mechanical model. It also supports Wheeler Feynman’s

absorber theory. The author’s electromagnetic theory provides a good so-

lution to the problem of wave particle duality.

In Maxwell’s electromagnetic theory, the phase of electromagnetic wave

is in phase. When we were in middle school, our teacher told us that

electromagnetic waves in space are transmitted in the way that electric field

is converted into magnetic field and magnetic field is converted into electric

field. But according to Maxwell’s electromagnetic field theory, the electric

field and magnetic field are in phase, and the magnetic field also decreases

when the electric field decreases, so the electric field cannot be converted
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into a magnetic field. Magnetic fields cannot be converted into electric

fields. In the author’s electromagnetic field theory, the electric field and

magnetic field of electromagnetic wave keep 90 degree phase difference to

overcome this contradiction. As the electric field and magnetic field have 90

degree phase difference, the magnetic field increases when the electric field

decreases, and the electric field increases when the magnetic field decreases.

In this way, the propagation of electromagnetic wave in space becomes more

reasonable.
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