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Abstract
Derivative-matching approximations are constructed as power series

built from functions. The method assumes the knowledge of special values
of the Bell polynomials of the second kind, we refer to the literature where
such formulas can be found.

Introduction
Given a function f and a point of expansion x0, it is customary to say that the
Taylor polynomial of degree one is the best linear approximation of f at x0,
that the Taylor polynomial of degree two is the best quadratic approximation,
etc... In this spirit1, we present here several new approximations Ai of f such
that

dn

dxn
f (x) |x=0 =

dn

dxn
Ai (x) |x=0, n ∈ N0, (1)

where, without loss of generality, we assume that the expansion is done at x = 0
(the expansion can be shifted to arbitrary point x0 by shifting its argument).
We denote the equality (1) by f ≈ Ai.

1 Power series built from functions
We build Ai as a power series of some properly chosen function g following the
construction from Sec. 4.1.2 of [1]. We propose

Ai (x) =
∞∑
n=0

an [g (x)]
n ≈ f(x) with g (0) = 0 and g′ (0) 6= 0. (2)

The existence of a non-zero derivative at zero implies g can be inverted on some
neighborhood of zero x ≡ g−1 (y). We have

f
[
g−1 (y)

]
≈
∞∑
n=0

any
n,

∗andrej.liptaj@savba.sk, ORC iD 0000-0001-5898-6608
1We do not address questions of the convergence for x 6= 0.
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i.e. the expansion coefficients an are given by the power expansion coefficients
of f

(
g−1

)
an =

1

n!

dn

dxn
f
(
g−1 (x)

)
|x=0. (3)

This can be written in terms of the Faà di Bruno’s formula, where the Bell
polynomials of the second kind Bn,k appear

an =
1

n!

n∑
k=0

dfkBn,k(d
g−1

1 , dg
−1

2 , . . . , dg
−1

n−k+1); dhn ≡
dn

dxn
h (x) |x=0.

In [1] we presented only few expansions, here we systematically review the exist-
ing formulas for special values of the Bell polynomials [2] and propose a larger
number of them2.

With the aim to keep the text brief, we provide our results as a list where only
the necessary information is summarized. We present (when possible) explicit
forms of g and g−1 and also the formula for the Belle polynomial values3. We
use

Bn,k(
−→
d g

−1

) ≡ Bn,k(dg
−1

1 , dg
−1

2 , . . . , dg
−1

n−k+1),

〈α〉n =

n−1∏
k=0

(x− k) (falling factorial),

00 = 1,

W (x)→ principal branch of the Lambert W function,[
n
m

]
→ Stirling number of the first kind,

s
n
m

{
→ Stirling number of the seconf kind,

where a closed formula is available only for the latter Stirling numbers
s
n
m

{
=

1

m!

m∑
k=0

(−1)k
(
m

k

)
(m− k)n .

When it is necessary to extend the definition of f to x0 we use the notation

f(x0)
.
= h (x0)⇔ f(x0) = lim

y→x(±)
0

h (y) ,

where the exact version of the limit (left, right, both sides) depends on the
context.

2We include also those from [1], so that we provide a complete list of approximations of
this type.

3We want to provide the full information needed for an eventual implementation so that
the reader does not need to look into the literature we cite.
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2 List of expansions
We separate cases where an explicit formula for g is found and those where it
is not. The expansion is for all cases constructed as

Ai (x) =
∞∑
n=0

1

n!

[
n∑
k=0

dfkBn,k(
−→
d g

−1

)

]
[g (x)]

n
.

2.1 Formulas with explicit expression for g

1. Logarithm-based expansion

g (x) = ln (x+ 1) ; g−1 (x) = exp (x)− 1,

Bn,k(
−→
d g

−1

) = Bn,k(1, 1, 1, . . .) =

s
n
k

{
.

2. Exponential-based expansion

g (x) = 1− e−x; g−1 (x) = − ln (1− x) ,

Bn,k(
−→
d g

−1

) = Bn,k(0!, 1!, 2!, . . .) = (−1)n−k
[
n
k

]
.

3. Expansion with inverse hyperbolic sine

g (x) = asinh(x); g−1 (x) = sinh(x),

Bn,k(
−→
d g

−1

) = Bn,k(1, 0, 1, 0, 1 . . .) =
1

2kk!

k∑
l=0

(−1)l
(
k

l

)
(k − 2l)

n
.

4. Arcus-sine-based expansion

g (x) = arcsin(x); g−1 (x) = sin(x),

Bn,k(
−→
d g

−1

) = Bn,k(1, 0,−1, 0, 1 . . .),

=
(−1)k

2kk!
cos

[
(n− k)π

2

] k∑
q=0

(−1)q
(
k

q

)
(2q − k)n .

5. Expansion in powers of α
√
x+ 1− 1

g (x) = α
√
x+ 1− 1; g−1 (x) = (1 + x)α − 1; α ∈ R\ {0}

Bn,k(
−→
d g

−1

) = Bn,k (〈α〉1 , 〈α〉2 , 〈α〉3 , . . .) ,

=
(−1)k

k!

k∑
l=0

(−1)l
(
k

l

)
〈αl〉n .

Notable spacial cases (polynomial and rational) happen for α = ±1/n,
n ∈ N.
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6. Square-root-based expansion

g (x) =
√
2x+ w2 − w; g−1 (x) =

1

2
x2 + wx; w ∈ R\ {0} ,

Bn,k(
−→
d g

−1

) = Bn,k (w, 1, 0, 0, 0, . . .) ,

=
1

2n−k
n!

k!

(
k

n− k

)
w2k−n.

7. Polynomial expansion

g (x) =
x2 − 2

√
αx

β
; g−1 (x) =

√
α+ βx−

√
α; α, β ∈ R\ {0} ,

Bn,k(
−→
d g

−1

) = Bn,k

(
dg

−1

1 , dg
−1

2 , . . . , dg
−1

n−k+1

)
,

= (−1)n+k [2 (n− k)− 1]!!

(
β

2

)n(
2n− k − 1

2 (n− k)

)
1

αn−k/2
,

where

dg
−1

n = α
1
2−nβn

n∏
k=1

(
k +

1

2
− n

)
.

8. Expansion with the square root in the denominator

g (x) = 1− 1√
x+ 1

; g−1 (x) =
1

(x− 1)
2 − 1,

Bn,k(
−→
d g

−1

) = Bn,k(2!, 3!, 4!, . . .) =
n!

k!

k∑
l=0

(−1)k−l
(
k

l

)(
n+ 2l − 1

n

)
.

9. Expansion with fraction including square root

g (x) =
−1 +

√
4x2 + 1

2x
; g−1 (x) =

x

1− x2
,

Bn,k(
−→
d g

−1

) = Bn,k(1!, 0, 3!, 0, 5!, 0 . . .) =
1 + (−1)n+k

2

n!

k!

(n+k
2 − 1

k − 1

)
.

10. Expansion with the Lambert function

g (x) =W
[
ew−1 (w + x− 1)

]
+ 1− w, w ∈ R\ {0} ,

g−1 (x) = (w + x− 1) ex + 1− w,

Bn,k(
−→
d g

−1

) = Bn,k(w,w + 1, w + 2, . . .),

= kn−k
(
n

k

) k∑
l=0

(
k

l

)n−k∑
q=0

(−1)q

kq

(
n− k
q

)s
l + q
l

{

(
l+q
l

)
 (w − 1)

l
.
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11. Second expansion with the Lambert function

g (x)
.
=
W
[
−e−(x+1)(x+ 1)

]
x+ 1

+ 1; g−1 (x)
.
= − ln (1− x)

x
− 1,

Bn,k(
−→
d g

−1

) = Bn,k

(
1!

2
,
2!

3
,
3!

4
, . . .

)
,

=
(−1)n−k

k!

k∑
m=0

(−1)m
(
k

m

)[ n+m
m

]
(
n+m
m

) .

As readily seen form the argument of the function W (which is defined
from −1/e to ∞), this approximation is valid in the right neighborhood
of zero.

12. Third expansion with the Lambert function

g (x)
.
= −

W

(
− exp(− 1

1+x )
1+x

)
+ xW

(
− exp(− 1

1+x )
1+x

)
+ 1

1 + x
,

g−1 (x)
.
=
ex − 1

x
− 1,

Bn,k(
−→
d g

−1

) = Bn,k

(
1

2
,
1

3
,
1

4
, . . .

)
,

=
n!

(n+ k)!

k∑
l=0

(−1)k−l
(
n+ k

k − l

)s
n+ l
l

{
.

As readily seen form the argument of the function W (which is defined
from −1/e to ∞), this approximation is valid in the left neighborhood of
zero.

2.2 Formulas without explicit expression for g

With the function g−1 known, one can use numerical or approximation methods
to get g in the proximity of zero.

1. g−1 (x) = (w − 1 + ex)x; w 6= 0

Bn,k(
−→
d g

−1

) = Bn,k(w, 2, 3, 4, . . .) =

(
n

k

) k∑
r=0

(
k

r

)
(k − r)n−k (w − 1)

r
.

2. g−1(x) = ex(x− 2)− x+ 2

Bn,k(
−→
d g

−1

) = Bn,k(−2, 0, 1, 2, 3, . . .),

=

k∑
r=0

r!

(
n

r

)(
k

r

)
(−2)k−r

s
n− r
k

{
.
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3. g−1(x) =
(
2ex − x2 − 2x− 2

)
/
(
2x2
)

Bn,k(
−→
d g

−1

) = Bn,k(
1

2.3
,
1

3.4
, . . .),

=
(−1)k

[2 (n+ k)]!!

(
n

k

) n−k∑
m=0

m! 〈−2k〉n−k−m

(
n− k
m

)(
n+ k

m

)

×
k∑
l=0

(−1)l
(
k

l

) n+k∑
q=0

2q 〈k − l〉n+k−q

(
n+ k

q

)s
l + q
l

{

(
l+q
l

) .

4.
(
6xex − 12ex − x3 + 6x+ 12

)
/
(
6x3
)

Bn,k(
−→
d g

−1

) = Bn,k(
1

3.4
,
1

4.5
, . . .),

=
(−1)k

(
n
k

)
(n+ 2k)!6k

n−k∑
q=0

〈−3k〉q (n− k − q)!
(
n− k
q

)(
n+ 2k

n− k − q

)

×
k∑
l=0

12l
(
k

l

) n+2k∑
p=0

(n+ 2k − p)!
(
n+ 2k

p

)s
p+ l
l

{

(
p+l
l

)
×

k−l∑
s=0

(
k − l
s

)
(−6)s

(n− p+ 2l + 2s)!

s∑
β=1

(
s

β

)
βn−p+2l+2s.

5. g−1(x) = α+ (α+ a1 − 1)x+ 1
2 (α+ a2 − 2)x2 + (x− α)ex; a1 6= 0

Bn,k(
−→
d g

−1

) = Bn,k(a1, a2, 3− α, 4− α, 5− α, . . .),

=
n!

k!

k∑
m=0

(
k

m

) k∑
p+q+r=n−k

(−α)m−q (a1 + α)
k−m−p

×
(
a2 + α

2
− 1

)p 〈k −m〉p 〈m〉q
p!q!r!

s
r +m
m

{

(
r+m
m

) .

Function g can be expressed in terms of the Lambert W for a1 = 1 − α,
a2 = 2 − α, which however corresponds to the case 11 from the previous
section.
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