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Abstract 

An algebraic basis gauge transformation is defined here as a transformation on the set of intrinsic Octonion 

Algebra basis elements. They are linear combinations of these structured such that a reversible bijection is 

produced between each indexed intrinsic basis element and the same index gauge basis element. The gauge 

transformation is required to map any orientation for original Octonion Algebra to a gauge basis with identical 

index matched orientation. Orientation is required to be a global and local gauge invariant. 

These gauge transformation matrices are found to be lower 7x7 block diagonal members of the group SO(7). 

Any global gauge transformed Octonion covariant derivative is form invariant with the intrinsic basis 

representation. Allowing local parametrization variation, fields in the physics sense are added to the still present 

form invariant content through addition of the covariant differentiation connection, whose general form 

derivation is provided. 

Subgroups of PSL(2,7) give two methods for creating Octonion algebraic basis gauge transformations. Both are 

shown to be expressible as circle group fibrations over the basic quad basis subspace defined for a choice of 

Quaternion subalgebra. The chosen subalgebra gauge basis components are then produced from the basic quad 

fibration by a process called basic quad algebraic completion. 

One method uses permutation subgroups of PSL(2,7) that leave one non-scalar basis element unchanged. This is 

shown to produce a gauge comparable to the direct product U(1)xU(1)xU(1). This method provides a smooth 

map between any of the four sets of Quaternion subalgebra basis triplets that exclude the unchanged basis 

element, and each of the other three. This gauges out a four-fold Octonion symmetry on basis element choices 

representing 3D axial (closed products) and polar (open products) vector types. 

The other method uses permutation subgroups of PSL(2,7) that leave the set of basis elements in one 

Quaternion subalgebra triplet intact. Here, half-angle 2-torus fibrations on the basic quad subspace embed a 

standard orthonormal whole-angle spherical-polar basis in the preserved subalgebra after algebraic completion. 

Half-angle 3-torus basic quad fibrations embed a whole angle Euler Angle basis in the preserved subalgebra 

after algebraic completion. 

A composition between any two algebraic basis gauge transformations is shown to produce a third, forming a 

group operation with closure on algebraic basis gauge types. A parallelism between this composition and fiber 

product structure is demonstrated. 

*** 
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Octonion Automorphisms as Algebraic Basis Gauge Transformations 

There are several types of gauge transformations. They typically leave some feature of the mathematical system 

and/or expressions invariant after application of either a structural or functional transformation. This screed is 

about transformations applied to the structural basis system of Octonion Algebra, which in turn can induce 

functional transformations if certain differential equations are desired to be invariant to the structural 

modifications.  

Octonion Algebra is commonly referred to as 𝕆. I refer to the transformations that follow as algebraic basis 

gauge transformations. The modifier algebraic basis is added to expressly point out that the basis 

transformations we seek here are not the simple linear algebra vector space basis coefficient modifications that 

are only required to continue spanning the space. We will be transforming 𝕆 algebra’s fundamental basis 

element system, whose member products define the operation of 8-dimensional algebraic element 

multiplication, specified as * here. The feature fundamentally required to remain invariant will be 

transformations to a new basis system which exhibits the same orientation structure of the original intrinsic 

algebra basis system en. This orientation structure is the full set of rules defining *, and different orientations for 

Octonion Algebras define different rule sets. 

Define this gauge transformed basis as gi = Mij ej where Mij is an 8x8 matrix of scalar values specifying the 

linear combination of the intrinsic Octonion basis element set ej for each resultant gauge basis element gi. To 

simplify identification and use of the isomorphism between the e and g bases, we will look to structure matrix 

M such that there is a reversable algebraic structure bijection relating same indexed e and g bases: en → gn. This 

means after choosing any of 16 Octonion Algebra orientations defining ea * eb = sabc ec where the sabc are its 

structure constants, we must also have ga * gb = sabc gc. The ex in each g of course multiply as usual within the g 

basis products. 

One requirement for the g basis to represent an 𝕆 algebra is the product ga * gb for a ≠ b ≠ 0 must anti-

commute. This forces all gn for n ≠ 0 to have no intrinsic basis scalar content. We must also have no intrinsic 

basis scalar content for every product ga * gb for a, b ≠ 0 unless a = b. We can write the scalar portion of the 

product ga * gb for a, b ≠ 0 as Maj ej * Mbj ej = –Maj Mbj. If a=b, this must equal –1 and if a ≠ b this must equal 0. 

Therefore, we require Maj Mbj = δab. This restricts M to be an orthonormal matrix.  

We must also have g0 * gn = gn * g0, and this forces g0 to have no non-scalar content, so we must have M00 = 1, 

as well as M0a = 0 and Ma0 = 0 for a ≠ 0. M then is restricted to a lower block diagonal 7x7 orthonormal matrix 

which we will restrict to a +1 determinant or Jacobian as the case may be. This block diagonal portion of T will 

then be a member of the group SO(7). It might be desirable to make M00 = c, the speed of light in order to cast 

the scalar basis with dimension length like the others. This will give the common and appropriate 1/c and 1/c2 

scalings for first and second order time partial derivatives respectively. With no loss of generality take it here as 

c = 1.  

Not every member of the group SO(7) for this M portion restriction will produce a desirable isomorphism. For 

instance, the SO(7) subgroup of all 7! 7x7 permutation matrices will include members that will violate my 

desire to use only one choice of the 30 possible ways to partition the Quaternion subalgebra triplet enumerations 

defined below. Pick one, then move on since the differences are basis element naming conventions, aliases 

which are structurally irrelevant. The meat on the structural bones begins with the Quaternion subalgebras and 

is fully disclosed using any single choice. The complexity of 480 different Octonion multiplication tables is 

unnecessary, only 480/30 = 16 are required. Each of the full complement of 7! = 5040 permutation matrices will 

however provide one of 480 legitimate Octonion representations, but if we want to stay within one way to 

partition the triplets, we must stay within the order 5040/30 = 168 subgroup of permutations that do this. This 

group is of course PSL(2,7), the automorphism group of the Fano Plane. A subset of SO(7), not any member of 

the full group, will therefore provide us all desirable isomorphic algebraic basis gauge transformations.  
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Beyond consideration of the simple required orthogonality conditions outlined above and living within a single 

Quaternion subalgebra triplet enumeration, we must complete the full set of gauge basis element product 

comparisons. We must step outside the domain of linear algebra, matrix manipulation and group theory of 

SO(7) to find such transformations. Methods to achieve this are presented below.  

When the algebraic basis defining the operation of algebraic element multiplication * is changed up through 

some transformation, we need to understand how to do calculus within the new basis. A proper general 

definition of differentiation should explicitly tell us how to do this in any basis. This form is called the covariant 

derivative. The proper covariant derivative definition for Octonion Algebra is the Ensemble Derivative E 

defined in references [1], [6] as: 

E(A(v)) = 1/J /vi [ Cij  Tkl  Ak ]  ej * el    

This definition is more general than our area of interest here. Tkl is the transformation matrix between the 

intrinsic Octonion Algebra e basis and the transformed basis we take here to be the gauge transformation g 

basis. The algebraic basis gauge transformation is then defined to be gk = Tkl el. Variable v is the position 

algebraic element within the transformed basis, defined as vi gi. Matrix Cij holds the cofactor of each Tij, and J is 

the Jacobian of T. Since we restrict g to an algebraic isomorphism, T is required to be as with M above, lower 

block diagonal limited member of SO(7).  

Limiting T to J = +1 orthonormal, matrix C will equal matrix T. The covariant derivative form may then be 

written as  

E(A(v)) = /vi [ Ak gi * gk ]  

If the g basis description is independent of the gauge transformation position algebraic element v, that is the 

gauge transformation is a global gauge, we can take gi and gk outside the differentiation. In this case, the 

differentiation over v can be written as a simple g system * product of the algebraic element del operator given 

by (v) = gi /vi acting on the g basis functional algebraic element Ak gk, and this may be written as (v) * A(v). 

The covariant Ensemble Derivative in the intrinsic e basis with position algebraic element ui ei defines u = v, Tkl 

= δkl, Cij = δij, J = +1 so we can write the intrinsic basis covariant derivative as  

E(A(u)) = /ui [ Ak ] ei * ek = (u) * A(u). 

This is seen to be form invariant with the g basis representation, and do remember that * in both are isomorphic 

definitions of basis element multiplication for each side of the reversable bijection e ↔ g. Since all Octonion 

covariant differential equations are required to be constructed from full applications of the Ensemble Derivative, 

any such equation will exhibit form invariance for any proper global algebraic basis gauge transformation. 

If we allow the parametrization of the SO(7) portion of T to vary with v position, we now have a local algebraic 

basis gauge transformation. The * isomorphism is still required to hold at each v position, but for the covariant 

derivative, we can no longer take gi and gk out of the differentiation, losing form invariance through the addition 

of new fields (fields in the physics sense) to the still present form invariant portions. Since the * isomorphism 

still holds at each v position, we can first resolve the g product, and then do the partial differentiation. 

E(A(v)) = /vi [ Ak gi * gk ] = /vi [ sikm Ak gm ] = sikm gm /vi [Ak] + sikm Ak /vi [gm] 

The first term on the right side is the form invariant content, the same result as if g was independent of v. The 

last term provides the added physics type fields by scaling the undifferentiated Ak with sikm /vi [gm]. 

Expanding this scaling we have 
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/vi [gm] = /vi [Tmn] en = /vivm [un] en = /vivm [u]  

The shift to differentiation of u comes from the fact that Tmn = /vm [un]. For a local algebraic basis gauge 

transformation T, the Ensemble derivative is then 

E(A(v)) = (v) * A(v) + sikm Ak /vi [Tmn] en = (v) * A(v) + sikm Ak /vivm [u] 

Note the index m is not a free choice, it is determined by sikm in conjunction with summed indexes i and k. 

Below, we will define our one of 30 ways to enumerate Quaternion subalgebra triplet indexes such that the 

binary bit-wise exclusive-or (xor or the operator ^) of all three basis element indexes is zero. The scalar basis 

index is 0, and we can generally say for any indexes a and b, the product ea * eb is within sign e(a^b), so we have 

m = i^k.  

We can simplify the local gauge representation by defining a tensor like form expressing an Octonion 

differentiation “connection” Γ' specific to 𝕆 local orthonormal algebraic basis gauge transformations given by 

Γ'ik = /vi [g(i^k)]  

Γ'nik = /vi [T(i^k)n]  

E(A(v)) = sik(i^k) { g(i^k) /vi [Ak] + Γ'ik Ak }  or  

E(A(v)) = sik(i^k) { g(i^k) /vi [Ak] + Γ'nik Ak en } 

The first E form is a bit slippery, since it is unclear what g basis element(s) Γ'ik Ak scales. This is clear cut for 

the other part of that sum. The second form gives a scaling on the intrinsic e basis, which we know how to map 

to the g basis set. Since the transformation T is orthonormal, we can also write en = Tpn gp. Inserting this we will 

know how the connection scales the g basis elements: 

E(A(v)) = sik(i^k) { g(i^k) /vi [Ak] + gp Tpn Γ'nik Ak } 

This suggests an alternate connection form Γp
ik = Tpn Γ'nik. Substituting in we have finally 

E(A(v)) = sik(i^k) { g(i^k) /vi [Ak] + gp Γ
p
ik Ak } 

Octonion Algebra is not commutative, so we must define both right and left applications of the Ensemble 

Derivative. The forms above are the left-side application. We can write the general right-side application as 

 (A(v))E = 1/J /vi [ Cij  Tkl  Ak ]  el * ej  equivalently in the g basis = /vi [ Ak gk * gi ]  

Whether or not we do an algebraic basis gauge transformation, changing the Ensemble Derivative application 

side is equivalent to exchanging the order of intrinsic basis elements in the fundamental definition, e.g.:  ej * el 

→ el * ej. This carries forward to the isomorphic g basis giving gi * gk → gk * gi. We can implement this in the 

connection form for g basis results by simply exchanging i and k indexes in the structure constant only: 

(A(v))E = ski(i^k) { g(i^k) /vi [Ak] + gp Γ
p
ik Ak } 

Meaningful Octonion covariant mathematical physics will require multiple whole applications of the Ensemble 

Derivative. The second order forms will then differentiate the added zero order local gauge connection terms 

leading to a mix of first and second order partials on the functions of interest as well as undifferentiated 

functional components. Taking a path parallel to classical Electrodynamics, we could take A to be an 8D 

potential function algebraic element. Define (see ref. [1]) left and right (physics) fields as 
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FL = E(A(v)) and FR = (A(v))E 

The proper form for the Octonion 8-current is found to be 

j = ½ { E(FL) + (FR)E } 

The proper form for the Octonion 8-work-force is found to be the content of the following that does not change 

when the Octonion Algebra orientation is changed up 

wf = – ½ { j * FR + FL * j } 

Expressing the Octonion equivalent of complex conjugation e0 → e0 and en → –en for n ≠ 0 with an underscore 

we can write 

E(A(v)) = 1/J /vi [ Cij  Tkl  Ak ]  ej * el   equivalently in the g basis = /vi [ Ak gi * gk ] 

E(A(v)) = 1/J /vi [ Cij  Tkl  Ak ]  ej * el  equivalently in the g basis = /vi [ Ak gi * gk ]   

(A(v))E = 1/J /vi [ Cij  Tkl  Ak ]  el * ej  equivalently in the g basis = /vi [ Ak gk * gi ]   

(A(v))E = 1/J /vi [ Cij  Tkl  Ak ]  el * ej  equivalently in the g basis = /vi [ Ak gk * gi ]   

The proper form in any basis for the continuity equation expressing the conservation of 8-charge can be seen to 

be  

Scalar E(j) = 0 = scalar E(j) = scalar (j)E = scalar (j)E 

For E and j represented in the intrinsic basis, these equivalent continuity equations hold identically, independent 

of any particular choice for the potential functions. We must require the continuity equation holds in any basis, 

it therefore must be a local algebraic basis gauge invariant.  

In the intrinsic basis, the 8-current is seen to be form invariant for any and all Octonion Algebra orientation 

choices, it is an Octonion algebraic invariant. Since it is an observable, we must insist the 8-current is an 

algebraic invariant in any basis. It should be a local algebraic basis gauge invariant, at a minimum remaining an 

algebraic invariant if not fully a local algebraic basis gauge invariant.  

The local algebraic basis gauge transformation is not form invariant with its global form, but could be put into 

form invariance with proper modifications to the potential functions. The modification requirements are of 

course dependent on the particular differential equation in play, and how soon in the progression of multiple 

applications of the Ensemble Derivative form invariance is first enforced. Consider these induced functional 

gauge transformations, since they transform the functions operated on. 

It will be important now to establish some additional understanding and some motivations for such a process, to 

better understand it beyond the nice stuff just discussed. We will be required to cast our algebraic expressions in 

a way that is applicable to any and all orientations for the applied Octonion Algebra. Hopefully, the next few 

paragraphs will set the foundation. 

Mathematics tells us that we need a sufficient number of independent variables (read dimensions) to span the 

problem at hand. If the math tells us the count is greater than the four dimensions our primary senses give us, so 

be it. Theoretical and experimental physics is not restricted to simply match the expectations provided by our 

limited senses. Our senses were refined genetically through natural selection, only by improving our chance of 

survival long enough to procreate, nothing deeper. The math connection is there to help us develop a deeper 

understanding of things than our senses can possibly provide. When math says more structure is needed, we 

should pay attention. 

An early clue about the need for more than four dimensions was given by the mathematical treatment of 



© Richard Lockyer October 2022                     All Rights Reserved                       page 6 

Electrodynamics, where the disparate nature of the magnetic and electric fields was revealed. This was 

uncovered when the seemingly free and arbitrary choice of coordinate system orientation was explored. Without 

being given reasonable cause to pick one orientation over the other, the mathematics was telling us proper 

physical theories needed to be structured such that the same result, say the physical direction a charged particle 

moving through a magnetic field is deflected, is independent of the orientation choice for the coordinate system.  

This led to the more general notion of axial vectors (e.g., the magnetic field) and polar vectors (e.g., the electric 

field). The math was shouting to us that these are fundamentally different enough that they cannot simply be 

added or subtracted such that one type might be able to eliminate the other. They must be kept separate from 

each other at a fundamental level within any proper mathematical framework. The good and bad thing about 

mathematics is that it is robust enough to not always force us into a singular way to account for such intrinsic 

differences. Historically, the choice was made to stick with four fundamental dimensions (space-time) and place 

the six components for the magnetic and electric field in separate positions within the second rank combined 

field tensor. It is important to keep in mind this was a choice among alternatives, not a requirement. It works 

well, but issues consolidating Electrodynamics with Gravitation seem to be telling us not well enough. 

A different choice would of course be to increase the number of fundamental mathematical spatial dimensions, 

two-fold at least to separately cover both 3D axial and 3D polar types fundamentally within a physical xyz 

framework. We could then stick within the knitting of a suitable dimension base algebra, rather than achieving 

the required additional structure through tensor algebra rank increases or the like.  

This algebra must be true to the vector multiplication rules for axial like and polar like vectors. The vector 

product of two axial types is another axial type. In other words, the multiplication rules for the three basis 

elements partitioning axial type vectors must be closed. The vector product of two polar types is an axial type, 

so the multiplication rules for the three basis elements partitioning the polar types cannot be closed. We do 

however, find product order permutations on one axial and two polar components is closed. The open polar type 

product rules are seen then to be appropriately defined by three additional closed basis triplet product rules, one 

for each included axial component. Closed basis triplet product rules show up in the seven 𝕆 Quaternion 

subalgebras. 

The general concept of 3D polar and axial types charaterized by coordinate system orientation concerns should 

be supplanted with basis element triplet sets open and closed for multiplication respectively. When we shift to a 

higher dimension vector space and include a prescribed algebra defining multiplication of algebraic elements 

spanning this vector space, the simplistic right-handed/left-handed choice invariance to mathematical physics 

results must be supplanted by result invariance to any and all possible orientation choices defined by said 

algebra. For Octonion Algebra, I have called this The Law of Octonion Algebraic Invariance, (refs. [1], [2], [5]) 

stating the Octonion mathematical physics cover of any experimentally observable must be invariant across all 

possible 𝕆 algebra orientation changes.  

To this end, we must carry the impact of orientation alternatives within the structure of our mathematical 

physics expressions, for only then we will not fall into the trap of developing theoretical results that might 

adversely change if the orientation of the algebra is changed up, or perhaps worse remain oblivious to the 

impact of orientation changes. We will be required to carry this structure below when methods to produce 

algebraic basis gauge transformations are developed, so it is important to fully understand how to do this before 

jumping in. 

One of three required and fundamental rules defining an algebra tells us we can only combine coefficients that 

are attached to the same basis element when algebraic elements are added. When we concern ourselves with 

Algebraic Variance/Invariance, we find this is not good enough. We must additionally only add coefficients 

scaling identical basis elements if they have identical variance/invariance classification.  

The set of orientation options for any order 2n chain of hypercomplex algebras of order four and up are fully and 
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exclusively specified by the free choice of two possible orientations for each Quaternion algebra/subalgebra. 

The non-Quaternion triplet basis products, effectively real and complex subalgebra limited products, are 

unmodified for any orientation change since real and complex algebras are singularly oriented. We can therefore 

minimally classify our 𝕆 orientation modified coefficients by attaching the algebraic structure constants 

defining the orientation choices for Quaternion subalgebra triplet product rules. The first step is to enumerate 

these seven Quaternion subalgebra non-scalar basis element triplet sets. 

The Quaternion subalgebra triplet enumeration scheme used here is the vastly superior one of 30 possible ways 

to do it, where the binary logic bit-wise exclusive-or (operator ^) of all three basis element indexes is zero (see 

ref [4]). Their set partitioning with optimal Q index enumeration is the following: 

Q1 = {e2 e4 e6} Q2 = {e1 e4 e5} Q3 = {e3 e4 e7}  

Q4 = {e1 e2 e3} Q5 = {e2 e5 e7} Q6 = {e1 e6 e7} Q7 = {e3 e5 e6}  

I call this enumeration index n on Qn optimal because the three Q triplets any single non-scalar basis element en 

will appear in are indexed by the indexes of the three basis element members of Qn. As an example, intrinsic 

basis element e4 is found within Q1, Q2 and Q3 and the content of Q4 is {e1 e2 e3}. Additionally, the single basis 

element intersection for Qn and Qm will also be found in Qn^m.  

The { } forms are simply set designations, not specifying product rules. The Quaternion products of different 

non-scalar basis elements were given to us by W. R. Hamilton. They are commonly expressed by what is called 

an ordered permutation triplet product rule (ea eb ec). 

The paired cyclic right gives all +results, and paired cyclic left gives all –results rule sets the orientation choice 

for any particular Quaternion subalgebra by defining its six non-scalar different basis element products as 

follows: 

(ea eb ec) implies 

ea*eb = +ec  

eb*ec = +ea  

ec*ea = +eb  

ec*eb = –ea  

eb*ea = –ec  

ea*ec = –eb  

From this, clearly (ea eb ec), (eb ec ea) and (ec ea eb) represent the same rule set. The orientation change for any 

ordered permutation triplet product rule is any odd count of transpositions of any two of three basis elements, 

each of which equivalently changes the resultant signs of all six products, thus negating the rule. This triplet 

negation clearly is an involution, and the two choices fully cover the orientation options for a given Quaternion 

algebra. If we include the real and complex subalgebra rules e0 * e0 = e0, e0 * en = en * e0 = en, and en * en = –e0 

for n≠0 with orientation selections for all seven Quaternion subalgebra triplets, we cover all 82 basis element 

product combinations, fully defining the Octonion Algebra through the orientation choices on the Quaternion 

subalgebras. 

For Octonion Algebra, the 128 possible orientation choices for its seven Qn Quaternion subalgebras result in 16 

proper Octonion Algebra orientations, and 112 that I have called Broctonion (Broken Octonion) forms, which 

are one Quaternion subalgebra orientation off of a proper Octonion form (see ref [7]). The 16 proper Octonion 

orientations partition chirally into two structurally different sets of eight: Right Octonion and Left Octonion.  

Two n dimensional algebras are considered isomorphic if and only if their basis element multiplication tables 

are equivalent. One may exchange rows and columns of any multiplication table without changing any product 

rule, and any names given to the basis elements have no fundamental structural importance, they just need to be 
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distinct. This tells us the map between any two isomorphic algebras is a permutation of basis elements. So we 

can rightfully call PSL(2,7) the automorphism group of any Octonion Algebra defined within a single 

enumeration of its seven Quaternion subalgebra triplets. It gives us the full group of consistent basis element 

permutations, hence the full complement of permutation maps between equivalent Octonion multiplication 

tables, hence the full set of Octonion Algebra orientation automorphisms.  

Every basis element permutation created by members of PSL(2,7) will map Right Octonion to Right Octonion, 

and Left Octonion to Left Octonion. No basis element permutation exists that will map between Right and Left, 

their basis element multiplication tables are not equivalent and hence they should not be strictly considered 

isomorphic algebras even though all 16 are proper Octonion normed composition division algebras.  

One could map between Right and Left Octonion by negating an odd number of basis elements, then absorbing 

these –1 values into the algebra structure constants, but it would be both foolish and incorrect to assume this 

does not change the structure of the Octonion Algebra fundamentally in an identifiable manner (see refs, 

[3],[5],[7]). In terms of our algebraic basis gauge transformation, the map between Right and Left would require 

the lower block diagonal portion of orthogonal matrix M to have determinant –1, not our +1 restriction that will 

keep things within the confines of the group PSL(2,7) which we will use below.  

This is not the case for Quaternion Algebra. Negating one or three non-scalar basis element yields a determinant 

–1 for this transformation, but it is equivalent to a permutation exchanging any two basis elements. All 

Quaternion multiplication tables are therefore equivalent. The difference might be because each non-scalar basis 

element appears in three separate Quaternion subalgebra triplets that partially define Octonion orientation, or 

perhaps because Octonion Algebra has an orientable subalgebra whereas Quaternion Algebra does not. 

Understand here that we seek an algebraic basis gauge transformation that has precisely the same multiplication 

table the intrinsic basis element basis set has been given, not simply an equivalent one. Our bijective 

transformation is en → gn, without index permutation. 

We can now define our 16 different Octonion orientations. Octonion Algebra R0 is defined by the following 

ordered triplet orientations: 

(e6 e4 e2), (e5 e4 e1), (e7 e4 e3), (e1 e2 e3), (e5 e7 e2), (e7 e6 e1), (e6 e5 e3) 

These set the +1 valued structure constants for R0 as 

s642 = s541 = s743 = s123 = s572 = s761 = s653 = +1 

The optimal enumeration (ref. [1] et. al.) for the remaining seven Right 𝕆 orientations Rn for n = 1 through 7 

negates the four R0 orientation triplets that do not include en. The anti-automorphism map between Right and 

Left 𝕆 Rm ↔ Lm negates all seven triplet orientations. 

It is optimal to pick a single proper Octonion Algebra orientation and always use it within any Octonion 

mathematical expression. There is no loss of generality doing this if we carry, when needed, Quaternion 

subalgebra triplet structure constants with indexes ordered in the +1 orientation for the chosen full algebra 

orientation. If we choose R0 as defined above, we would prefer to specify the product c e2 * d e1 as –s123 cd e3 

instead of c e2 * d e1 = +s213 cd e3 although both are correct as written and the latter is in line with the 

fundamental definition of the structure constants. This simplifies the task of evaluating products of structure 

constants. Clearly, if we simply wrote c e2 * d e1 = – cd e3, this would be incorrect for some other Octonion 

orientation. 

Since any 𝕆 sabc is either +1 or –1, we have sabc sabc = +1. When we form the product of two different ordered 

Quaternion subalgebra structure constants, they will always share a single common index, and their product 
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result will be within sign the third structure constant sharing that common index. Example for R0 defined +1 

index order we have s572 s653 = s541 (see ref [5]). Always using the structure constants in the +1 index order for a 

select Octonion orientation obviates the need to track four separate index order possibilities for a product of 

two. These sign changes are instead processed identically as non-oriented scalars are, through products of their 

attached signs. 

This is the essence of what I have called the in-place Octonion Variance Sieve. Each formed product term 

carries not just its resultant basis element and attached signed scalar (math field) coefficient, but also the 

orientation choice variance as a characteristic that is updated each subsequent product throughout the product 

history. The update is done at the time each successive product is processed (an in-place computation). 

Reductions like trig identities and cancellation by otherwise sum of equal but opposite sign coefficients scaling 

the same basis element, can only be performed if the variance characteristics are the same in all product terms 

used.  

This gives results that naturally partition into 16 different possible variance categories: odd/even parity times 

eight from seven triplet orientations plus one not defined by any triplet orientation (e.g., sabc sabc = +1, e0 * en, en 

* en). The two parity choices are an odd or even count of applied oriented basis element products throughout the 

product term’s full product history. This accounts for the anti-automorphism map between Right and Left 

Octonion Algebra orientations, where odd parity will yield a sign change and even parity will not.  

Separately maintaining the odd/even parity, a single numeric value of zero can represent no orientation, or the 

appropriate Q index can be used for oriented products. All products of variance classification are then 

represented by a simple exclusive-or of the two variance/invariance indexes involved. This is because our Q 

index enumeration tells us the basis element in common with Qa and Qb is also found in Qa^b. This is the rule 

above for Quaternion structure constant products. 

Any calculation can be performed this way within a single chosen Octonion orientation, and the final result can 

be mapped to what it would be if some other orientation was used, by simply negating product terms whose 

variance triplet changes sign from that of the chosen algebra, mindful of parity considerations.  

The set of product terms with even parity and no triplet designation are Octonion Algebraic Invariants, they will 

not change sign across all 16 possible Octonion orientation choices. The set of product terms with odd parity 

and no triplet designation will be invariant within every Right or within every Left Octonion, but will change 

sign with the anti-automorphism map between Right and Left. The remaining 14 sets of product terms may or 

may not change sign when specific Octonion orientation changes are made, but it is important to realize every 

product term within any variance set will change sign or not, in like fashion.  

We could assign a value of zero to the sum of all signed product terms in each of the variance sets. Doing so 

would yield a result that is fully an Octonion algebraic invariant, since +0 = –0. I call these homogeneous 

equations of algebraic constraint. This methodology is important to an Octonion cover of physics, since 

observables must be algebraic invariants, and notions like confinement tell us some things may be arguably 

present but not directly observable. 

We can partition the eight Octonion basis elements into two equal size subspaces. One subspace holds the four 

basis elements of a Quaternion subalgebra. The remaining four basis elements do not form an algebra for 

numerous reasons, but their basis element product definitions can be used to generate the whole of the particular 

Octonion orientation. This set of four basis elements is commonly referred to as a “basic quad” for this reason. 

The product of any two basic quad elements will always be within sign a member of the Quaternion triplet 

defining it. 

It is possible to perform manipulations on a basic quad set only, then legitimately and consistently complete the 

full new isomorphic algebra using products between two modified basic quad set members. With a proper 
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automorphically transformed basic quad set in hand, we can complete the full algebra definition by forming 

three separate products of two transformed basic quad basis elements. These products will induce both algebraic 

variance and parity modifications to the results, since all are oriented products. The induced variance/parity 

modifications are not part of the fundamental definition for the resultant basis element. They must be backed 

out by appending the product’s variance triplet to the basic quad pair product to cancel it, then flipping the 

odd/even parity in all result product terms. Define this process as basic quad algebraic completion. We will 

make good use of this below. 

With just a little more background, we will finally be able to rip into the construction and utility of particular 

algebraic basis gauge transformations. The notion of time clearly has a dimensional home partitioned at least by 

e0, the Octonion scalar basis element. We need to double up on the three physical xyz dimensions, but have 

seven, not six non-scalar basis elements. This can be remedied by selecting one non-scalar basis element to be 

non-spatial in the physical 3D xyz sense. I submit that this is a free choice within a seven-fold symmetry, but 

once made, the die is cast so to speak. My choice is e4.  

Having arbitrarily chosen e4 to not be part of the spatial xyz scene, we set our four triplets required to cover 

axial and polar type product rules to be Q4, Q5, Q6 and Q7, none of which include e4. We cannot determine 

which one of the four to associate with axial types, any one will do. Just like the apparent free choice of non-

spatial non-scalar basis element, this remains a symmetry of the algebra. Maybe we need to do a little more 

work instead of simply picking one. If we can devise an algebraic basis gauge transformation that would map 

any single spatial triplet choice to any one of the other three, we might be able to “gauge out” this symmetry 

given to us by the fundamental structure of Octonion Algebra.  

We are given clues on how to do this within the group PSL(2,7), the automorphism group for the Fano Plane. 

The members of this group can be represented by 7x7 orthonormal permutation matrices where each row and 

column have a single +1 entry with remaining entries 0. Their determinants then are always +1. When we apply 

them to permute the set of seven non-scalar Octonion basis elements, this group gives us the full complement of 

basis element permutations that do not violate our triplet enumerations Qn, nor any attributes that qualify the 

algebra as proper Octonion. From the covariant derivative form invariance to global gauge transformations 

analyzed above, the ability to use any of these orthonormal +1 determinant constant permutation matrices as a 

global algebraic basis gauge transformation in the Ensemble Derivative matrix T helps to validate its proper 

covariance for any Octonion orientation, form invariance is maintained by any choice. 

PSL(2,7) has 14 order 24 subgroups which are isomorphic to the symmetric group S4, the group of  

permutations on four objects. Seven of these, label them Nx preserve basis element ex, one group for each of the 

seven non-scalar basis elements. The other seven, label them Tx preserve the set of basis elements within triplet 

Qx, one group for each of the seven triplets. For the moment we will focus on N4, the group of all basis element 

permutations that leave our selected non-spatial e4 alone.  

Both groups Nx and Tx have similar normal subgroups isomorphic to the Klein 4-group where non-identity 

members include two separate transpositions of basis elements. The product of transposed basis elements in one 

transposition is within sign the product of basis elements in the other paired transposition. This common basis 

element product is the same for all three double transpositions within each Nx definition and is the preserved ex. 

We have for group N4 the normal subgroup An defining the following permutation cycles where the product of 

each transposed element pair is ±e4: 

A0 = [I] (identity) A1 = [e1 e5] [e2 e6] A2 = [e1 e5] [e3 e7] A3 = [e2 e6] [e3 e7]  

These transform Q4, Q5, Q6 and Q7 paired with the set of remaining non-scalar basis elements excluding e4 as 

follows 
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A0          A1               A2         A3 

{e1 e2 e3} :: {e5 e6 e7} →  {e5 e6 e3} :: {e1 e2 e7}      {e5 e2 e7} :: {e1 e6 e3}       {e1 e6 e7} :: {e5 e2 e3}   

{e5 e6 e3} :: {e1 e2 e7} →  {e1 e2 e3} :: {e5 e6 e7}      {e1 e6 e7} :: {e5 e2 e3}       {e5 e2 e7} :: {e1 e6 e3}   

{e5 e2 e7} :: {e1 e6 e3} →  {e1 e6 e7} :: {e5 e2 e3}      {e1 e2 e3} :: {e5 e6 e7}       {e5 e6 e3} :: {e1 e2 e7}   

{e1 e6 e7} :: {e5 e2 e3} →  {e5 e2 e7} :: {e1 e6 e3}      {e5 e6 e3} :: {e1 e2 e7}       {e1 e2 e3} :: {e5 e6 e7}   

This normal subgroup of N4 is seen to map any of our four declared pure spatial Q triplets to each of the other 

three. We are also shown how to correlate the pairing of basis elements for x, y and z physical dimensions. The 

two basis elements excluding e4 within each of Q1, Q2 and Q3 define a pair of basis elements associated with one 

and the same physical x, y or z. In this way the product of e4 with any other non-scalar basis element reveals its 

pairing. Likewise, the indexes of any two basis elements paired to the same physical x, y or z will exclusive-or 

to 4, the index of the non-spatial choice. 

We seek not replacements as done with these transpositions, but smooth continuous transformations on the 

intrinsic Octonion e basis set for our algebraic basis gauge transformation. To accomplish this, we will do 

equivalent oriented angle rotations about e4 within both of the planes defined by the pair of transposed basis 

elements, a different angle for each of the three cycles shown.  

Start with the A1 smooth map, requiring rotations about e4 in the e1 e5 and e2 e6 planes by the same angle β3 with 

𝕆 algebra specific orientations as indicated, maintaining {e0 e3 e4 e7} 

e'1 = e1 cos(β3) – s541 e5 sin(β3) 

e'5 = e5 cos(β3) + s541 e1 sin(β3) 

e'2 = e2 cos(β3) + s642 e6 sin(β3) 

e'6 = e6 cos(β3) – s642 e2 sin(β3) 

e'0 = e0   

e'3 = e3   

e'4 = e4   

e'7 = e7   

Next do the A2 smooth map, rotations about e4 in the e1 e5 and e3 e7 planes by the same angle β2 but with 𝕆 

algebra specific orientations as indicated, maintaining {e'0 e'2 e'4 e'6} 

e''1 = e'1 cos(β2) + s541 e'5 sin(β2) 

e''5 = e'5 cos(β2) – s541 e'1 sin(β2) 

e''3 = e'3 cos(β2) – s743 e'7 sin(β2) 

e''7 = e'7 cos(β2) + s743 e'3 sin(β2) 

e''0 = e'0   

e''2 = e'2   

e''4 = e'4   

e''6 = e'6   

Writing all e'a in terms of the intrinsic e basis we have 

e''0 = e0  

e''1 = e1 {cos(β2) cos(β3) + sin(β2) sin(β3)} + s541 e5 {sin(β2) cos(β3) – cos(β2) sin(β3)} 

e''2 = e2 cos(β3) + s642 e6 sin(β3) 

e''3 = e3 cos(β2) – s743 e7 sin(β2) 

e''4 = e4 

e''5 = e5 {cos(β2) cos(β3) + sin(β2) sin(β3)} – s541 e1 {sin(β2) cos(β3) – cos(β2) sin(β3)} 

e''6 = e6 cos(β3) – s642 e2 sin(β3) 

e''7 = e7 cos(β2) + s743 e3 sin(β2) 



© Richard Lockyer October 2022                     All Rights Reserved                       page 12 

Finally, do the A3 smooth map, rotations about e4 in the e2 e6 and e3 e7 planes by the same angle β1 but with 𝕆 

algebra specific orientation as indicated, , maintaining {e''0 e''1 e''4 e''5} 

g2 = e''2 cos(β1) – s642 e''6 sin(β1) 

g6 = e''6 cos(β1) + s642 e''2 sin(β1) 

g3 = e''3 cos(β1) + s743 e''7 sin(β1) 

g7 = e''7 cos(β1) – s743 e''3 sin(β1) 

g0 = e''0  

g1 = e''1  

g4 = e''4  

g5 = e''5  

Write e''a in terms of the intrinsic basis eb to form the following definitions.  

g0 = e0 

g1 = e1 {cos(β2) cos(β3) + sin(β2) sin(β3)} + s541 e5 {sin(β2) cos(β3) – cos(β2) sin(β3)} 

g2 = e2 {cos(β3) cos(β1) + sin(β3) sin(β1)} + s642 e6 {sin(β3) cos(β1) – cos(β3) sin(β1)} 

g3 = e3 {cos(β1) cos(β2) + sin(β1) sin(β2)} + s743 e7 {sin(β1) cos(β2) – cos(β1) sin(β2)} 

g4 = e4 

g5 = e5 {cos(β2) cos(β3) + sin(β2) sin(β3)} – s541 e1 {sin(β2) cos(β3) – cos(β2) sin(β3)} 

g6 = e6 {cos(β3) cos(β1) + sin(β3) sin(β1)} – s642 e2 {sin(β3) cos(β1) – cos(β3) sin(β1)} 

g7 = e7 {cos(β1) cos(β2) + sin(β1) sin(β2)} – s743 e3 {sin(β1) cos(β2) – cos(β1) sin(β2)} 

Make the angle assignments 

ζ1 = β2 – β3   

ζ2 = β3 – β1 

ζ3 = β1 – β2 

Our definitions for the N4 g basis algebraic gauge transformation may then be written as 

g0 = e0 

g1 = e1 cos(ζ1) + s541 e5 sin(ζ1) 

g2 = e2 cos(ζ2) + s642 e6 sin(ζ2) 

g3 = e3 cos(ζ3) + s743 e7 sin(ζ3) 

g4 = e4 

g5 = e5 cos(ζ1) – s541 e1 sin(ζ1) 

g6 = e6 cos(ζ2) – s642 e2 sin(ζ2) 

g7 = e7 cos(ζ3) – s743 e3 sin(ζ3) 

The transformation matrix defined here is seen to be orthonormal with +1 determinant, and given any Octonion 

orientation ea * eb  = sabc ec, our g results will show ga * gb  = sabc gc. The smooth map en → gm is a like index 

algebraic isomorphism. Note that from our definitions we have ζ1 + ζ2 + ζ3 = 0 identically, but actually 0 mod 

2π will do. This identity will be required for trigonometric reductions when demonstrating the g basis algebraic 

isomorphism with any initial intrinsic e basis Octonion Algebra orientation choice when using the ζ angle form 

of g in which the β angle difference is only implicit. The restriction is not required when using the β angle 

explicit form, simple trig reductions will do. We will find below each of the β angles parametrize a free choice 

of any three points on the unit circle within the e0 – e4 plane, and there is no unique β angle choice that could be 

called the identity map. 

If we choose ζ1 = ζ2 = ζ3 = 0, the map en → gm is the identity map en = gn. 
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For ζ1 = π  ζ2 =  –π/2  ζ3 =  –π/2 and 𝕆 algebra R0 

(g1 g2 g3) = (–e1 –e6 –e7) = (e7 e6 e1)   (g7 g6 g1) = (e3 e2 –e1) = (e1 e2 e3) 

(g5 g7 g2) = (–e5 e3 –e6) = (e6 e5 e3)   (g6 g5 g3) = (e2 –e5 –e7) = (e5 e7 e2) 

(g5 g4 g1) = (–e5 e4 –e1) = (e5 e4 e1)   (g6 g4 g2) = (e2 e4 –e6) = (e6 e4 e2) 

(g7 g4 g3) = (e3 e4 –e7) = (e7 e4 e3) 

For ζ1 = –π/2  ζ2 =  π  ζ3 =  –π/2 and 𝕆 algebra R0 

(g1 g2 g3) = (–e5 –e2 –e7) = (e5 e7 e2)   (g7 g6 g1) = (e3 –e6 –e5) = (e6 e5 e3) 

(g5 g7 g2) = (e1 e3 –e2) = (e1 e2 e3)   (g6 g5 g3) = (–e6 e1 –e7) = (e7 e6 e1) 

(g5 g4 g1) = (e1 e4 –e5) = (e5 e4 e1)   (g6 g4 g2) = (–e6 e4 –e2) = (e6 e4 e2) 

(g7 g4 g3) = (e3 e4 –e7) = (e7 e4 e3) 

For ζ1 =  –π/2  ζ2 = –π/2  ζ3 =  π and 𝕆 algebra R0 

(g1 g2 g3) = (–e5 –e6 –e3) = (e6 e5 e3)   (g7 g6 g1) = (–e7 e2 –e5) = (e5 e7 e2) 

(g5 g7 g2) = (e1 –e7 –e6) = (e7 e6 e1)   (g6 g5 g3) = (e2 e1 –e3) = (e1 e2 e3) 

(g5 g4 g1) = (e1 e4 –e5) = (e5 e4 e1)   (g6 g4 g2) = (e2 e4 –e6) = (e6 e4 e2) 

(g7 g4 g3) = (–e7 e4 –e3) = (e7 e4 e3) 

 

We can see for these particular angle selections meeting the sum to zero restriction, we map each of the three 

Quaternion subalgebra triplets that include e4 to themselves without orientation change, and map each of the 

four spatial only Quaternion subalgebra triplets excluding e4 to any one of the other three, and their resultant 

orientations stay within the R0 definition. Since this map e → g is an algebraic isomorphism, demonstrating 

that each of the four Quaternion subalgebra triplets not including e4 uniquely map to each of the other three one 

to one and onto for 𝕆 algebra R0, this mapping holds for every 𝕆 orientation.   

Holding ζ1, ζ2, and ζ3 fixed over all of 8-space makes this a global algebraic basis gauge transformation. The 

covariant derivative analysis above for any global algebraic gauge transformation assures this global g basis 

will be form invariant with the intrinsic e basis form. Additional usefulness of the gauge transformation will 

come into play when ζ1, ζ2, and ζ3 can vary over 8-space, becoming a local basis gauge transformation. 

With this algebraic basis gauge transformation creating an algebraic basis isomorphism, we are now free to 

assign without preference nor privilege {g1 g2 g3} to be the 3D physical space axial basis triplet where the 

magnetic field lives (part of a single Quaternion subalgebra), and {g5 g6 g7} to be the 3D physical space polar 

basis triplet where the electric field lives (not part a single Quaternion subalgebra).  

As it works out, there is an additional central force living in the same Quaternion subalgebra we placed the 

magnetic field in, the g basis subspace {g1 g2 g3}. This is algebraically distinct from the charge/electric field 

central force living in the open set polar type basis defined by the g basis subspace {g5 g6 g7}. This fact is 

independent of whether or not we even do a gauge transformation. My money is on this being Gravitation using 

the classical potential function approach instead of space-time curvature, cleanly integrated with 

Electrodynamics. One may claim the “magnetic monopole” is actually Gravitation. The fact that Gravitation 

lives in a closed basis set likely accounts for a lack of gravitational induction paralleling EM induction. The 8-

current mentioned above is a bit more than charge current, it would also include mass momentum. Just an aside. 

There is an alternate construction method that will simplify as well as illuminate things going forward.  

For N4, the appropriate Quaternion subalgebra partition is {e0 e1 e2 e3}. Its basic quad is {e4 e5 e6 e7}. 

We can recreate the N4 g basis gauge transformation just presented with the following three points on the circle 

group in the e0 e4 plane, noticing for this type of construction e4 is one member of our basic quad set. Because it 

is, we will have to exclude e4 from like modification just below since the result would include terms in basis 
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element e0. As shown above, having scalar content kills any chance of a basis automorphism. Define these three 

different parametrizations of the same unit circle as 

p5 = cos(ζ 1) e0 + sin(ζ 1) e4 odd variance parity on sine 

p6 = cos(ζ 2) e0 + sin(ζ 2) e4  odd variance parity on sine 

p7 = cos(ζ 3) e0 + sin(ζ 3) e4  odd variance parity on sine 

 

Once again, we require ζ1 + ζ2 + ζ3 = 0, and this notably gives us p5 * p6 * p7 = +1. The assignment of odd parity 

on the sine functions is required to match the non-product assigned rotations above now using the products 

below that will have algebraic variances inducing a parity change. This is analogous to the result parity flip used 

in the basic quad algebraic completion process, just done automatically by this pre-assignment. 

We can now map the remaining three basic quad Octonion intrinsic basis elements excluding e4 to the same 

index gauge basis gm using the pm by forming the product gm = pm * em, in a manner of speaking, “fibering” 

over individual basis subspaces with different but relational cross sections of the same circle group. The result 

is: 

g5 = p5 * e5 = cos(ζ1) e5 – s541 sin(ζ1) e1 

g6 = p6 * e6 = cos(ζ2) e6 – s642 sin(ζ2) e2 

g7 = p7 * e7 = cos(ζ3) e7 – s743 sin(ζ3) e3 

 

These are identical to the gauge basis mappings {g5 g6 g7} above using the first approach. We can now use basic 

quad algebraic completion to generate the proper automorphism forms for the non-scalar basis element set {g1 

g2 g3} using products of pairs in the set {g5 g6 g7} as follows undoing the induced parity changes and using the 

restriction ζ1 + ζ2 + ζ3 = 0: 

g1 = s761 g7 * g6 = cos(ζ1) e1 + s541 sin(ζ1) e5 

g2 = s572 g5 * g7 = cos(ζ2) e2 + s642 sin(ζ2) e6 

g3 = s653 g6 * g5 = cos(ζ3) e3 + s743 sin(ζ3) e7 

The process does not define g0 and g4 so leaving these equal to their same index intrinsic basis elements we 

reproduce the whole of our N4 group g algebraic basis gauge transformation developed above. 

We finish up now on Nx type automorphisms with their general requirements. We have found these types take 

three different parametrizations of the same circle group using the complex subalgebra including one of the four 

basic quads, then scales the other three basic quad elements uniquely pairing one circle group with each. Taking 

the three simply as different complex numbers instead, working again with N4, define U = u0 e0 + u4 e4, V = v0 

e0 + v4 e4, and W = w0 e0 + w4 e4. Next form the general automorphic forms as above: g5 = U * e5, g6 = V * e6 

and g7 = W * e7. Using basic quad algebraic completion, form g1, g2 and g3 leaving g0 = e0 and g4 = e4. We can 

then form equations of constraint on U, V and W in order to have a proper automorphism from all unique 

solutions to equations given by 

ga * gb – sabc gc = 0 the null Octonion. 

All are satisfied by the following restrictions on the u, v and w coefficients: 

u0
2 + u4

2 = 1 v0
2 + v4

2 = 1 w0
2 + w4

2 = 1 

–u4 = v0 w4 + v4 w0 –v4 = u0 w4 + u4 w0 –w4 = u0 v4 + u4 v0  

u0 = v0 w0 – v4 w4 v0 = u0 w0 – u4 w4 w0 = u0 v0 – u4 v4  

The first row is satisfied with  
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U = cos(θ) e0 + sin(θ) e4,  V = cos(φ) e0 + sin(φ) e4  W = cos(γ) e0 + sin(γ) e4  

Inserting into the next two rows we have the two groupings 

–sin(θ) = cos(φ) sin(γ) + sin(φ) cos(γ) = sin(φ + γ) → (φ + γ) = –(θ) 

–sin(φ) = cos(γ) sin(θ) + sin(γ) cos(θ) = sin(γ + θ) → (γ + θ) = –(φ) 

–sin(γ) = cos(θ) sin(φ) + sin(θ) cos(φ) = sin(θ + φ) → (θ + φ) = –(γ) 

cos(θ) = cos(φ) cos(γ) – sin(φ) sin(γ) = cos(φ + γ) → (φ + γ) = ±(θ) 

cos(φ) = cos(γ) cos(θ) – sin(γ) sin(θ) = cos(γ + θ) → (γ + θ) = ±(φ) 

cos(γ) = cos(θ) cos(φ) – sin(θ) sin(φ) = cos(θ + φ) → (θ + φ) = ±(γ) 

These last two groupings are satisfied by the restriction (θ + φ + γ) = 0. This is comparable to what we found 

above. The extensive nature of the restrictions might make it difficult to form a different style of N4 solution for 

the u, v and w coefficients. We perhaps only have flexibility in angle choices within the restriction that they sum 

to 0 mod 2π.  

The N4 identity algebraic basis gauge transformation requires ζ1 = ζ2 = ζ3 = 0. Replaying their source 

ζ1 = β2 – β3   

ζ2 = β3 – β1 

ζ3 = β1 – β2 

We see there is no preferred identity transformation choice for βn, they are only required to be equal. 

Let’s move on now to the other seven order 24 subgroups of PSL(2,7) which preserve Quaternion subalgebra 

triplet sets. Their order 4 normal subgroup non-identity members are also characterized by two basis element 

transpositions, now exclusively utilizing pairs of the basic quad set associated with the preserved Quaternion 

triplet. The group Tn is enumerated by the index n associated with the preserved triplet Qn as defined above. The 

product of the two basis elements in each of the paired transpositions is bijectively within sign one of the basis 

elements in the preserved triplet. T4 is intimately related to N4 just covered in some detail, so we will proceed 

with it. Group T4 preserves the triplet set Q4 = {e1 e2 e3}. Its basic quad set is {e4 e5 e6 e7}. Its Klein 4-group 

normal subgroup is: 

A0 = [I] (identity) A1 = [e4 e5] [e6 e7] A2 = [e4 e6] [e5 e7] A3 = [e4 e7] [e5 e6]  

To generate smooth maps instead of basis element exchanges we now follow the same path of rotations about 

the basis element given by the product of the two transposed basis elements, in the planes defined by them. For 

these An, n not 0 the product of transposed basis elements in each paired transposition is within sign en. Unlike 

Nx these rotation circle groups will lie exclusively within the Quaternion subalgebra of the preserved triplet 

rather than using any member of the basic quad partition. We can again fiber over the basic quad subspace, but 

now since the fibers are external to the basic quad, we can take the whole basic quad set as the subspace fibered 

over, since we will not produce any content scaling an e0 basis preventing an automorphism result. Rather than 

follow the laborious path of different circle group scalings, we can cut to the chase so to speak by examining the 

general requirements to create this type of algebraic basis gauge automorphism similar to the general 

considerations above with the group N4. 

Since our fiber fully resides within the Q4 triplet Quaternion subalgebra, specify a generic simple Quaternion 

for it. Let F = f0 e0 + f1 e1 + f2 e2 + f3 e3. Fiber over the basic quad subspace with F to form the automorphic 

products gn = F*en for n: 4 to 7. Next do the basic quad algebraic completion to generate g1, g2 and g3 while 

leaving g0 = e0 as required. We require F to generate an algebraic automorphism so we must once again insist 

on the following which will generate equations of constraint on F: 
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ga * gb – sabc gc = 0 the null Octonion. 

Doing the math, we will find all equations are satisfied by simply requiring the norm of F := |F| =1. Any, but 

clearly not all of the f coefficients may be zero.  

All four basic quad elements appear in each of our three normal subgroup dual transpositions, and the three dual 

transpositions indicate using smooth maps about each of the three basis elements of Q4. This suggests scaling all 

four basic quads by three circle groups defined in separate {e0  en} complex subalgebras for n: 1 to 3, which we 

will define as rotations that are oriented as the preserved Quaternion subalgebra is: 

c1 = cos(α1/2) e0 – s123 sin(α1/2) e1  all sine functions are also odd variance parity 

c2 = cos(α2/2) e0 – s123 sin(α2/2) e2  

c3 = cos(α3/2) e0 – s123 sin(α3/2) e3  

The use of half angles will be justified shortly. We actually could fiber over the basic quad subspace with any of 

these individually, any product of two of them, or products of all three since each of these will be unity norm. 

The resultant basic quad gauge transformation basis set {g4 g5 g6 g7} is then used within basic quad algebraic 

completion to form the Quaternion subalgebra set {g1 g2 g3}. Form the product of all three as R4 = c1 * c2 * c3 

and force all non-scalar results to odd parity to undo the parity flip induced by its fiber product. This is a 

convenient choice, not a requirement. The result is: 

R4 = 

+cos(α1/2) cos(α2/2) cos(α3/2) e0  

+sin(α1/2) sin(α2/2) sin(α3/2) e0  

–s123 sin(α1/2) cos(α2/2) cos(α3/2) e1   all non-scalar terms forced to odd variance parity 

+s123 cos(α1/2) sin(α2/2) sin(α3/2) e1  

–s123 cos(α1/2) sin(α2/2) cos(α3/2) e2  

–s123 sin(α1/2) cos(α2/2) sin(α3/2) e2  

–s123 cos(α1/2) cos(α2/2) sin(α3/2) e3  

+s123 sin(α1/2) sin(α2/2) cos(α3/2) e3  

Unrestricted, R4 can be seen to be an 8-fold cover of the 3-sphere. This can easily be seen by examination of the 

antipodal points on the 3-sphere ±e0, ±e1, ±e2, ±e3, where each will have multiple {α1/2 α1/2 α1/2} solution sets. 

This multiple cover cannot be fully reduced, since the 3-sphere is topologically distinct from the product 

(Quaternion or cartesian product) of three circles. R4 is instead a Quaternion 3-torus. Set this aside for now. 

Fibering over the {e4 e5 e6 e7} basic quad subspace with R4 creates the basic quad gauge transformation basis set 

{g4 g5 g6 g7} given by 

g4 = 

+cos(α1/2) cos(α2/2) cos(α3/2) e4  

+sin(α1/2) sin(α2/2) sin(α3/2) e4  

+s761 sin(α1/2) cos(α2/2) cos(α3/2) e5  

–s761 cos(α1/2) sin(α2/2) sin(α3/2) e5  

+s572 cos(α1/2) sin(α2/2) cos(α3/2) e6  

+s572 sin(α1/2) cos(α2/2) sin(α3/2) e6  

+s653 cos(α1/2) cos(α2/2) sin(α3/2) e7  

–s653 sin(α1/2) sin(α2/2) cos(α3/2) e7  

 

g5 = 

–s761 sin(α1/2) cos(α2/2) cos(α3/2) e4  

+s761 cos(α1/2) sin(α2/2) sin(α3/2) e4  

+cos(α1/2) cos(α2/2) cos(α3/2) e5  
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+sin(α1/2) sin(α2/2) sin(α3/2) e5  

–s743 sin(α1/2) sin(α2/2) cos(α3/2) e6  

+s743 cos(α1/2) cos(α2/2) sin(α3/2) e6  

–s642 sin(α1/2) cos(α2/2) sin(α3/2) e7  

–s642 cos(α1/2) sin(α2/2) cos(α3/2) e7  

 

g6 = 

–s572 cos(α1/2) sin(α2/2) cos(α3/2) e4  

–s572 sin(α1/2) cos(α2/2) sin(α3/2) e4  

+s743 sin(α1/2) sin(α2/2) cos(α3/2) e5  

–s743 cos(α1/2) cos(α2/2) sin(α3/2) e5  

+cos(α1/2) cos(α2/2) cos(α3/2) e6  

+sin(α1/2) sin(α2/2) sin(α3/2) e6  

–s541 cos(α1/2) sin(α2/2) sin(α3/2) e7  

+s541 sin(α1/2) cos(α2/2) cos(α3/2) e7  

 

g7 = 

–s653 cos(α1/2) cos(α2/2) sin(α3/2) e4  

+s653 sin(α1/2) sin(α2/2) cos(α3/2) e4  

+s642 sin(α1/2) cos(α2/2) sin(α3/2) e5  

+s642 cos(α1/2) sin(α2/2) cos(α3/2) e5  

+s541 cos(α1/2) sin(α2/2) sin(α3/2) e6  

–s541 sin(α1/2) cos(α2/2) cos(α3/2) e6  

+cos(α1/2) cos(α2/2) cos(α3/2) e7  

+sin(α1/2) sin(α2/2) sin(α3/2) e7  

 

All results above have even parity due to the odd parity force on R4. Next use these four basic quads within the 

basic quad algebraic completion to form the Quaternion gauge transformation subalgebra set {g1 g2 g3}. The 

results including the trivial g0 map are: 

 

g0 = e0 

g1 = 

+cos(α2) cos(α3) e1  

+cos(α2) sin(α3) e2  

–sin(α2) e3   

 

g2 = 

+sin(α1) sin(α2) cos(α3) e1  

–sin(α3) cos(α1) e1  

+cos(α1) cos(α3) e2  

+sin(α1) sin(α2) sin(α3) e2  

+sin(α1) cos(α2) e3  

g3 = 

+sin(α1) sin(α3) e1  

+sin(α2) cos(α1) cos(α3) e1  

+cos(α1) sin(α2) sin(α3) e2  

–sin(α1) cos(α3) e2  

+cos(α1) cos(α2) e3  
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Notice for the set {g1 g2 g3}, we have converted all half angles to full angles. These forms are a representation 

of an algebraic invariant Euler Angle basis for the Quaternion subalgebra defined by the preserved triplet. If our 

initial definitions for c1, c2 and c3 were not oriented by the structure constant s123 this would not be the case, 

particular portions of the Euler Angles would indicate orientations. Either way, the transformation matrix for 

this g basis is seen to be orthonormal as required. 

If we used a different product order for the creation of R4 = c1 * c2 * c3, the basic quad g forms will have some 

sign changes and we will shuffle the representations of Euler Angles. All basic quads will remain in terms of 

half-angles, and all Euler Angle bases will remain in terms of full angles. Every full gauge basis transformation 

representation will be an isomorphism with the chosen intrinsic e basis Octonion orientation. The different 

Euler Angle representations are the Octonion equivalent of the three-dimensional fact that three rotations 

performed on an ordinary vector will not result in the same outcome if the order of rotation is changed. This is 

the genesis of the different known forms for common cartesian Euler Angle transformations. Different 

generating rotation order and directions lead to different forms, but all should be generally considered proper 

Euler Angle representations. 

Our algebraic basis gauge transformations have been presented as transformations directly on the intrinsic basis 

set e producing algebraic automorphisms/isomorphisms. As such, call them primary algebraic automorphisms. 

If we have two primary algebraic automorphisms defined as ai = Aij ej and bi = Bij ej we can form a composition 

of these by either replacing all en in am with bn or by replacing all en in bm with an. We can see both will result in 

another algebraic automorphism by writing out each replacement: 

a'i = Aij Bjk ek = Cik ek where C is the matrix product AB 

b'i = Bij Ajk ek = Dik ek where D is the matrix product BA 

One requirement on A, B, C and D forming an algebraic automorphism is they must be orthonormal matrices. 

Matrices A and B are given to be orthonormal, and C and D will also be orthonormal since the matrix product of 

two orthonormal matrices will always be orthonormal. We must additionally prove we still have a basis 

isomorphism. 

From our fundamental gauge transformation gr = Trs es we have both 

gu * gv = Tur er * Tvs es = srs(r^s) Tur Tvs e(r^s)  

gu * gv = suvw gw = suvw Twy ey  

Like basis index y scalings for these two must be an equality. Equate them by limiting the otherwise free sums 

over r and s to r^s = y for each y individually. Remove ey from both sides. This fixes y in addition to fixed u,v. 

and w 

Σr^s=y srsy Tur Tvs = suvw Twy   

Restricting to r^s=y gives r^s^y= 0. Since y is fixed, we can replace s with r^y. Summation convention returns 

to operational status, specifying fixed u,v,w,y and summed r. Replace dependent w with w = u^v 

suv(u^v) T(u^v)y = sr(r^y)y Tur Tv(r^y)  (eq. 1) 

Individually for fixed u, v, and y summing r (eq. 1) is another requirement on any T for it to produce an 

algebraic basis gauge transformation.  

Assume our matrix product C = AB is a proper algebraic basis gauge transformation. Replace T with C in (eq. 

1).  
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suv(u^v) C(u^v)y = sr(r^y)y Cur Cv(r^y)  

Insert the representative matrix products: 

C(u^v)y = A(u^v)i Biy  

Cur = Auj Bjr     

Cv(r^y) = Avk Bk(r^y)    

This gives for summed r,i,j,k and fixed u,v,y 

suv(u^v) A(u^v)i Biy = sr(r^y)y Auj Bjr  Avk Bk(r^y)   (eq. 2) 

Our new transformation requirement (eq. 1) on given proper B is suv(u^v) B(u^v)y = sr(r^y)y Bur Bv(r^y). Replace 

dummy fixed indexes u,v with u→j and v→k. 

suv(u^v) B(u^v)y = sr(r^y)y Bur Bv(r^y) → sjk(j^k) B(j^k)y = sr(r^y)y Bjr Bk(r^y)  (eq. 3) 

The right side of (eq. 3) is found in (eq. 2). Substitute in: 

suv(u^v) A(u^v)i Biy = Auj Avk sjk(j^k) B(j^k)y   (eq. 4) 

Multiply both sides of (eq. 4) by Byp sum over y 

suv(u^v) A(u^v)i Biy Byp = Auj Avk sjk(j^k) B(j^k)y Byp → suv(u^v) A(u^v)i δip = Auj Avk sjk(j^k) δ(j^k)p  This yields 

suv(u^v) A(u^v)p = sjkp Auj Avk    (eq. 5) 

Rename dummy indexes in (eq.5): p→y, j→r, k→r^y.  

suv(u^v) A(u^v)y = sr(r^y)y Aur Av(r^y)  This our general requirement (eq. 1) replacing T with A, given proper. 

This proves our composition or equivalently the matrix product of two algebraic basis gauge transformation 

matrices will always produce another algebraic basis gauge transformation. 

The two composition replacement directions will not generally have the same result since matrix products 

generally do not commute. Call the composition of two primary algebraic automorphisms a secondary 

algebraic automorphism. For completeness defining terms used below, take the next step and define a tertiary 

algebraic automorphism as the composition of a primary and a secondary algebraic automorphism. Clearly this 

composition process can be repeated ad nauseum without any limitation on the two being composed other than 

both representing proper algebraic automorphisms.  

Algebraic basis gauge transformation matrices form a group with goup operation matrix multiplication. 

Equivalently algebraic basis gauge transformations form an isomorphic group under composition. Algebraic 

basis gauge transformation group closure is assured by the proof above. This group is the automorphism group 

of all Octonion algebraic basis gauge transformations. 

Applying this composition on our N4 algebraic basis gauge transformation, define two such gauge 

transformations, g as above, and a new one called h where the angle set maintains index but changes the base 

angle as follows: 

g0 = e0 

g1 = e1 cos(ζ1) + s541 e5 sin(ζ1) 

g2 = e2 cos(ζ2) + s642 e6 sin(ζ2) 

g3 = e3 cos(ζ3) + s743 e7 sin(ζ3) 

g4 = e4 
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g5 = e5 cos(ζ1) – s541 e1 sin(ζ1) 

g6 = e6 cos(ζ2) – s642 e2 sin(ζ2) 

g7 = e7 cos(ζ3) – s743 e3 sin(ζ3) 

h0 = e0 

h1 = e1 cos(φ1) + s541 e5 sin(φ1) 

h2 = e2 cos(φ2) + s642 e6 sin(φ2) 

h3 = e3 cos(φ3) + s743 e7 sin(φ3) 

h4 = e4 

h5 = e5 cos(φ1) – s541 e1 sin(φ1) 

h6 = e6 cos(φ2) – s642 e2 sin(φ2) 

h7 = e7 cos(φ3) – s743 e3 sin(φ3) 

If we now form the composition of these by replacing the en in g with hn the result, call gh is the following: 

gh0 = e0 

gh1 = e1 cos(φ1 + ζ1) + s541 e5 sin(φ1 + ζ1) 

gh2 = e2 cos(φ2 + ζ2) + s642 e6 sin(φ2 + ζ2) 

gh3 = e3 cos(φ3 + ζ3) + s743 e7 sin(φ3 + ζ3) 

gh4 = e4 

gh5 = e5 cos(φ1 + ζ1) – s541 e1 sin(φ1 + ζ1) 

gh6 = e6 cos(φ2 + ζ2) – s642 e2 sin(φ2 + ζ2) 

gh7 = e7 cos(φ3 + ζ3) – s743 e3 sin(φ3 + ζ3) 

We find the composition of two different Nx gauge transformations, same x, yields a result that is 

sine/cosine/variance form invariant, with angular results the sum of respective angles for the two composed 

transformations. The composition of two Nx algebraic basis gauge transformations will commute; it does not 

matter which is inserted into the other. Nx algebraic basis gauge transformations form an abelian group for each 

x. Clearly the sum to zero mod 2π angle restriction is maintained by the composition. This gives the Nx 

composition the look of the direct product U(1)xU(1)xU(1), but within the angle sum restriction. 

The flexibility afforded by the norm +1 Tn type subgroups also bolts up nicely to the composition process just 

outlined. To see this, let’s take the T4 group consideration one circle group at a time rather than subspace 

fibering with the triple product R4 = c1 * c2 * c3. Repeating the definitions for our three unit circles we have: 

c1 = cos(α1/2) e0 – s123 sin(α1/2) e1  all sine coefficients are odd variance parity 

c2 = cos(α2/2) e0 – s123 sin(α2/2) e2  

c3 = cos(α3/2) e0 – s123 sin(α3/2) e3  

Taking these one at a time, fibering with each over the full intrinsic basis basic quad subspace then doing the 

basic quad algebraic completion, the results are as follows: 

c1g0 = e0   

c1g1 = e1   

c1g2 = cos(α1) e2 + sin(α1) e3      

c1g3 = cos(α1) e3 – sin(α1) e2   

c1g4 = cos(α1/2) e4 + s761 sin(α1/2) e5   

c1g5 = cos(α1/2) e5 – s761 sin(α1/2) e4   

c1g6 = cos(α1/2) e6 + s541 sin(α1/2) e7   

c1g7 = cos(α1/2) e7 – s541 sin(α1/2) e6   

c2g0 = e0   
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c2g1 = cos(α2) e1 – sin(α2) e3      

c2g2 = e2   

c2g3 = cos(α2) e3 + sin(α2) e1   

c2g4 = cos(α2/2) e4 + s572 sin(α2/2) e6   

c2g5 = cos(α2/2) e5 – s642 sin(α2/2) e7   

c2g6 = cos(α2/2) e6 – s572 sin(α2/2) e4   

c2g7 = cos(α2/2) e7 + s642 sin(α2/2) e5   

c3g0 = e0   

c3g1 = cos(α3) e1 + sin(α3) e2      

c3g2 = cos(α3) e2 – sin(α3) e1   

c3g3 = e3   

c3g4 = cos(α3/2) e4 + s653 sin(α3/2) e7   

c3g5 = cos(α3/2) e5 + s743 sin(α3/2) e6   

c3g6 = cos(α3/2) e6 – s743 sin(α3/2) e5   

c3g7 = cos(α3/2) e7 – s653 sin(α3/2) e4   

Just as with the subspace fibration using R4 we see the basic quad half angles are converted to whole angles in 

the algebraic invariant preserved Quaternion subalgebra components. All three can be seen to be algebraic 

isomorphisms with any chosen intrinsic basis element algebra. Algebraic basis gauge transformation cng is seen 

to be a rotation by full angle about en within the plane defined by the other two triplet members of the preserved 

Quaternion subalgebra Q4. This gauge transformation also includes two rotations by half angle about en in the 

two planes orthogonal to en defined by the pairs of basic quad members for Q4 whose products are both within 

sign en. 

Now create a secondary automorphism by replacing each en in c2g with c3gn. Call the result c23g which follows: 

c23g0 = e0   

c23g1 = +cos(α2) cos(α3) e1 + cos(α2) sin(α3) e2 – sin(α2) e3      

c23g2 = –sin(α3) e1 + cos(α3) e2  

c23g3 = +sin(α2) cos(α3) e1 + sin(α2) sin(α3) e2 + cos(α2) e3     

c23g4 =  

+cos(α2/2)cos(α3/2) e4 – s761 sin(α2/2)sin(α3/2) e5 + s572 sin(α2/2)cos(α3/2) e6 + s653 cos(α2/2)sin(α3/2) e7   

c23g5 =  

+s761 sin(α2/2)sin(α3/2) e4 + cos(α2/2)cos(α3/2) e5 + s743 cos(α2/2)sin(α3/2) e6 – s642 sin(α2/2)cos(α3/2) e7   

c23g6 =  

–s572 sin(α2/2)cos(α3/2) e4 – s743 cos(α2/2)sin(α3/2) e5 + cos(α2/2)cos(α3/2) e6 – s541 sin(α2/2)sin(α3/2) e7   

c23g7 =  

–s653 cos(α2/2)sin(α3/2) e4 + s642 sin(α2/2)cos(α3/2) e5 + s541 sin(α2/2)sin(α3/2) e6 + cos(α2/2)cos(α3/2) e7   

Now form the product of these two circle groups c2 * c3, call = c23, we have the following: 

c23 = (odd variance parity forced on non-scalar terms for the usual reason) 

+cos(α2/2)cos(α3/2) e0 + s123 sin(α2/2)sin(α3/2) e1 – s123 sin(α2/2)cos(α3/2) e2 – s123 cos(α2/2)sin(α3/2) e3   

If we now fiber over the subspace (e4 + e5 + e6 + e7) with c23 we will find c23 * en = c23gn above for n: 4,5,6,7. 

As we did for fibering with R4, do the basic quad algebraic completion for n: 1,2,3. Doing so reproduces the 

totality of c23g we originally derived as a secondary algebraic automorphism composition. c23 can be seen to be 

a Quaternion 2-torus, the Quaternion product of two circles.  

Notice that c23g1, c23g2 and c23g3 are an algebraic invariant representation of a classical spherical-polar 

orthonormal (θ, φ, r) basis respectively, indeed a standard 3D basis representation of the 2-sphere for r = 1. 
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Thus, we have an algebraic method to embed the Quaternion 2-torus in 4D to the 2-sphere in a 3D 

representation, all within an Octonion Algebra framework. Keep in mind the use of half angles in the circle 

groups. If we use the full circles in both circles of the 2-torus, αn ranges from 0 to 4π which does more than a 

double cover of the 2-sphere. 

This Octonion representation of a spherical-polar orthonormal (θ, φ, r) basis embedded in the Quaternion 

subalgebra is extremely interesting and important. When a 3D cartesian xyz basis is mapped to a spherical-polar 

basis, or equivalently restricting the covariant Ensemble Derivative to a Quaternion subalgebra with a similar 

transformation, the Jacobian of the transformation is r2 sin(θ) which is obviously zero for r=0 or sin(θ)=0. This 

is problematic, and the typical approach is to simply turn a blind eye to it. When we cast classical spherical-

polar coordinates as a Quaternion subalgebra of an Octonion Algebra algebraic basis gauge transformation, the 

Jacobian is identically +1 or c = the speed of light, independent of any angle or radius. 20-20 vision eyes wide 

open, no problem in sight. 

If we now multiply c23 on the left by c1 the result will be R4 from above. We might expect, and indeed it is true 

that forming a circle group tertiary automorphism by the composition replacing all en in c1g with the secondary 

automorphism c23gn reproduces the T4 group algebraic basis gauge transformation g above. So, we see this g is 

reduceable, it is the composition of three circle group automorphisms just as R4 is the Quaternion triple product 

of the same circle group representations.  

Following the logic above for an algebraic method for embedding the Quaternion 4D 2-torus into the 3D 2-

sphere, we can say that the T4 group basis gauge transformation g1, g2 and g3 are also an algebraic embedding. 

As mentioned above, R4 appears Quaternion 3-torus. This is embedded into a 3D representation as a doubled 

angle Euler Angle representation. Again, with the use of half angles in the three circle groups, using the full 

circle causes αn to range from 0 to 4π, which does more than a double cover of the Euler angle representation. 

The prudent thing to do is probably limiting the range of the angles meaningful for single covers of spherical-

polar or Euler Angle bases, and thus restricting the range of the circle group parametrizations whose products 

source the fibers over the basic quad g subspace. 

Setting α1 = 0 in this particular Euler angle representation clearly will reproduce the c23g algebraic basis element 

gauge transformation appropriately covering a spherical-polar orthonormal basis within the preserved 

Quaternion subalgebra triplet. One could say these Euler Angle and spherical-polar forms are compatible or 

mutually appropriate. 

In conclusion, the basic quad subspace fibration with basic quad algebraic completion method provides a 

beautiful and general method to create algebraic basis gauge transformations. The composition presented is a 

simple method to meaningfully combine two known algebraic basis gauge transformations to form another. 

The Nx group gauge transformations can either be explicitly carried in the Octonion mathematical physics, or 

more simply its ability to gauge out the symmetries that give four equivalent choices to place 3D physical entity 

types within closed set multiplication rules, justifies this assignment being a free choice along with the free 

choice of non-spatial basis element. Inclusion is obviously required if this gauge is desired to be a local gauge, 

and not required in the case of a global gauge where form invariance makes it a moot point. 

The T4 group gauge transformations do not require a non-spatial basis element choice. Instead, the physical 

spatial-temporal space is a Quaternion subalgebra, and its basic quad set in its entirety may be considered 

required extra-spatial. The common 3D Euler Angle and spherical-polar basis representations are perhaps more 

meaningful when embedded within the direct physical Quaternion subalgebra of a full Octonion Algebra 

mathematical physics representation. Pathological issues caused by zero valued transformation Jacobians 

leading to x/0 coefficients are avoided since being a proper algebraic basis gauge transformation, the full 

Octonion transformation has a Jacobian that is always an extremely nice non-zero +constant value, +1 or +c. 
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