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Abstract

We begin with a review of the basics of the Yang algebra of non-
commutative phase spaces and Born Reciprocal Relativity. A solution is
provided for the exact analytical mapping of the non-commuting xµ, pµ

operator variables (associated to an 8D curved phase space) to the canon-
ical Y A,ΠA operator variables of a flat 12D phase space. We explore the
geometrical implications of this mapping which provides, in the classical
limit, with the embedding functions Y A(x, p),ΠA(x, p) of an 8D curved
phase space into a flat 12D phase space background. The latter embed-
ding functions determine the functional forms of the base spacetime metric
gµν(x, p), the fiber metric of the vertical space hab(x, p), and the nonlin-
ear connection Naµ(x, p) associated with the 8D cotangent space of the
4D spacetime. A review of the mathematical tools behind curved phase
spaces, Lagrange-Finsler, and Hamilton-Cartan geometries follows. This
is necessary in order to answer the key question of whether or not the
solutions found for gµν , h

ab, Naµ as a result of the embedding, also solve
the generalized gravitational vacuum field equations in the 8D cotangent
space. We finalize with an Appendix with the key calculations involved
in solving the exact analytical mapping of the xµ, pµ operator variables
to the canonical Y A,ΠA operator ones.

Keywords : Yang algebra; Curved Phase Space; Born Reciprocal Relativity
Theory ; Finsler Geometry; Noncommutative Geometry.
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1 Introduction : The Yang Algebra and Born
Reciprocal Relativity Theory

The idea of a Quantum Spacetime where the spacetime coordinates do not com-
mute was proposed early on by Heisenberg and Ivanenko as a way to eliminate
infinities from Quantum Field Theory. Snyder published the first concrete ex-
ample [1] of a noncommutative algebra involving the spacetime coordinates, and
it was generalized shortly after by Yang [2], to include noncommuting momen-
tum variables as well. We learnt from General Relativity that the Poincare
algebra cannot be implemented on a curved spacetime, but only on its flat tan-
gent space (Minkowski spacetime). The momentum operators don’t commute
on a curved spacetime. And vice versa, by Born’s principle of reciprocity [3],
the coordinate operators do not commute on a curved momentum space. This
prompted the formulation of Quantum Mechanics and Quantum Field Theory
in Noncommutative spacetimes (also called Noncommutative QFT), and which
might cast some light in the formulation of Quantum Gravity by encoding both
key aspects of a curved and a noncommuting spacetime (a curved noncommuting
spacetime).

In [12] we suggested that Born’s Reciprocal Relativity Theory in Phase
spaces is the arena to implement a space-time-matter unification. More pre-
cisely : quantum matter curves noncommuting spacetime, and vice versa, non-
commuting spacetime curves quantum matter (quantum momentum space) as
a result of the back-reaction of quantum spacetime on quantum matter. We
believe that it is this Born’s reciprocity principle that holds important clues to
quantize gravity (geometry) in curved phase spaces within the context of Finsler
geometry.

Given a flat 6D spacetime with coordinates Y A = {Y 1, Y 2, Y 3, Y 4, Y 5, Y 6},
and a metric ηAB = diag(−1,+1,+1, . . . ,+1), the Yang algebra [2], which is
an extension of the Snyder algebra [1], can be derived in terms of the so(5, 1)
Lorentz algebra generators described by the angular momentum/boost opera-
tors

JAB = −(Y A ΠB − Y B ΠA) = i Y A ∂

∂YB
− i Y B ∂

∂YA
(1.1)

where ΠA = −i(∂/∂YA) is the canonical conjugate momentum variable to Y A.
Their commutators are

[Y A, Y B ] = 0, [ΠA,ΠB ] = 0, [Y A,ΠB ] = i ηAB , A,B = 1, 2, 3, 4, 5, 6 (1.2)

The coordinates Y A commute. The momenta ΠA also commute, and Y A,ΠB

obey the Weyl-Heisenberg algebra in 6D.
Adopting the units h̄ = c = 1, the correspondence among the noncommuting

4D spacetime coordinates xµ, the noncommuting momenta pµ, and the Lorentz
so(5, 1) algebra generators leading to the Yang algebra [2] is given by
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xµ ↔ LP Jµ5 = − LP (Y µ Π5 − Y 5 Πµ) (1.3a)

pµ ↔ 1

L
Jµ6 = − 1

L
(Y µ Π6 − Y 6 Πµ), µ, ν = 1, 2, 3, 4 (1.3b)

and which requires the introduction of an ultra-violet cutoff scale LP given
by the Planck scale, and an infra-red cutoff scale L that can be set equal to
the Hubble scale RH (which determines the cosmological constant). It is very
important to emphasize that despite the introduction of two length scales LP ,L
the Lorentz symmetry is not lost. This is one of the most salient features of the
Snyder [1] and Yang [2] algebras.

The other generators are

N ≡ J56 = −(Y 5 Π6 − Y 6 Π5), Jµν = −(Y µ Πν − Y ν Πµ), µ, ν = 1, 2, 3, 4
(1.4)

One can then verify that the Yang algebra is recovered after imposing the
above correspondence (1.3)

[xµ, xν ] = − i L2
P Jµν , [pµ, pν ] = − i (

1

L
)2 Jµν , η55 = η66 = 1 (1.5)

[xµ, Jνρ] = i (ηµρ xν − ηµν xρ) (1.6)

[pµ, Jνρ] = i (ηµρ pν − ηµν pρ ) (1.7)

[xµ, pν ] = − i ηµν
LP

L
N , [Jµν ,N ] = 0 (1.8)

[xµ, N ] = i LPL pµ, [pµ, N ] = − i
1

LPL
xµ (1.9)

and where the [Jµν , Jρσ] commutators are the same as in the so(3, 1) Lorentz
algebra in 4D. They are of the form

[ Jµ1µ2 , Jν1ν2 ] = − i ηµ1ν1 Jµ2ν2 + i ηµ1ν2 Jµ2ν1 +

i ηµ2ν1 Jµ1ν2 − i ηµ2ν2 Jµ1ν1 , h̄ = c = 1 (1.10)

The generators are assigned to be Hermitian so there are i factors in the right-
hand side of eq-(1.10) since the commutator of two Hermitian operators is anti-
Hermitian. The 4D spacetime metric is ηµν = diag(−1, 1, 1, 1).

Given the above correspondence (1.3), we were able to extend it further
to the higher grade polyvector-valued coordinates and momenta operators in
noncommutative Clifford phase spaces [11]. We found the corresponding com-
mutators among the antisymmetric tensors xµ1µ2 , xµ1µ2µ3 , · · ·; pµ1µ2 , pµ1µ2µ3 , · · ·
of different ranks. In addition, we found the spectrum of the quantum harmonic
oscillator in noncommutative spaces in terms of the eigenvalues of the gener-
alized angular momentum operators in higher dimensions, and discussed how

3



to extend these results to higher grade polyvector-valued coordinates and mo-
menta.

Instead of working with the above canonical coordinates Y A and momenta
ΠA in a flat 12D phase space (A = 1, 2, · · · , 5, 6), the authors [5] were interested
in finding Hermitian realizations of the above Yang algebra in an 8D phase
space, and given in terms of the canonical variables x̃µ, p̃µ satisfying [x̃µ, x̃ν ] =
[p̃µ, p̃ν ] = 0, and [x̃µ, p̃ν ] = iηµν , with µ, ν = 1, 2, 3, 4.

The Yang model studied by [5] was characterized by the choice of the com-
mutator [xµ, pν ] = iγµν(x, p), and where the rank-2 tensor γµν(x, p) is of the
form

γµν = h(x2, p2, x · p+ p · x) ηµν (1.11)

with h a judicious function of the Lorentz scalars x2, p2, x · p + p · x, and that
is determined from solving the Jacobi identities. The rank-2 tensor γµν(x, p) is
what leads to the generalized uncertainty relations. The Triple Special Rela-
tivity model [7] which was an extension of [6] was characterized by a different
choice of γµν(x, p). The Lorentz generators are represented as

Jµν =
1

2
(xµ pν − xν pµ + pν xµ − pµ xν) (1.12)

In particular, the authors [5] looked for representations where the generators
Jµν and the tensor γµν can be written in terms of the canonical variables
x̃µ and p̃ν . This required the arduous task of finding the nontrivial map
among the noncanonical variables xµ, pµ, and the canonical ones x̃µ, p̃µ : xµ =
xµ(x̃, p̃); pµ = pµ(x̃, p̃). The map was found iteratively in powers of x̃, p̃. The
explicit technical details of this map can be found in [5].

In this work we shall follow a very different approach and such that one
is able to find exact analytical solutions. Instead of finding the maps xµ =
xµ(x̃, p̃); pµ = pµ(x̃, p̃), iteratively and consistent with the Yang algebra and the
Jacobi identities, we shall follow a much simpler procedure by finding the exact
analytical expression for the embedding maps Y A = Y A(x, p),ΠA = ΠA(x, p)
expressing the 12D flat phase space coordinates Y A and momenta ΠA in terms
of the 8D curved phase space variables xµ, pµ. Not unlike in string theory where
one has the embedding of the string’s world sheet into a D-dim target spacetime
background Xµ(σ1, σ2), where σ1, σ2 are the world sheet string coordinates.

Most of the work devoted to Quantum Gravity has been focused on the
geometry of spacetime rather than phase space per se. The first indication
that phase space should play a role in Quantum Gravity was raised by [3]. The
principle behind Born’s reciprocal relativity theory [8], [9] was based on the idea
proposed long ago by [3] that coordinates and momenta should be unified on the
same footing. Consequently, if there is a limiting speed (temporal derivative of
the position coordinates) in Nature there should be a maximal force as well, since
force is the temporal derivative of the momentum. The principle of maximal
acceleration was advocated earlier on by [4]. A maximal speed limit (speed
of light) must be accompanied with a maximal proper force (which is also
compatible with a maximal and minimal length duality) [9].
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We explored in [9] some novel consequences of Born’s reciprocal Relativity
theory in flat phase-space and generalized the theory to the curved spacetime
scenario. We provided, in particular, some specific results resulting from Born’s
reciprocal Relativity and which are not present in Special Relativity. These are
: momentum-dependent time delay in the emission and detection of photons;
relativity of chronology; energy-dependent notion of locality; superluminal be-
havior; relative rotation of photon trajectories due to the aberration of light;
invariance of areas-cells in phase-space and modified dispersion relations.

The generalized velocity and force (acceleration) boosts (rotations) transfor-
mations of the flat 8D Phase space coordinates , where Xi, T, E, P i; i = 1, 2, 3
are c -valued (classical) variables which are all boosted (rotated) into each-other,
were given by [8] based on the group U(1, 3) and which is the Born version of the
Lorentz group SO(1, 3). The U(1, 3) = SU(1, 3)× U(1) group transformations
leave invariant the symplectic 2-form Ω = − dT ∧dE+δijdX

i∧dP j ; i, j = 1, 2, 3
and also the following Born-Green line interval in the flat 8D phase-space

(dω)2 = c2(dT )2 − (dX)2 − (dY )2 − (dZ)2 +

1

b2
(
(dE)2 − c2(dPx)

2 − c2(dPy)
2 − c2(dPz)

2
)

(1.13)

The maximal proper force is set to be given by b. The rotations, velocity and
force (acceleration) boosts leaving invariant the symplectic 2-form and the line
interval in the 8D phase-space are rather elaborate, see [8] for details.

These transformations can be simplified drastically when the velocity and
force (acceleration) boosts are both parallel to the x-direction and leave the
transverse directions Y, Z, Py, Pz intact. There is now a subgroup U(1, 1) =
SU(1, 1)× U(1) ⊂ U(1, 3) which leaves invariant the following line interval

(dω)2 = c2(dT )2 − (dX)2 +
(dE)2 − c2(dP )2

b2
=

(dτ)2
(

1 +
(dE/dτ)2 − c2(dP/dτ)2

b2

)
= (dτ)2

(
1 − F 2

F 2
max

)
, P = Px

(1.14)
where one has factored out the proper time infinitesimal (dτ)2 = c2dT 2 − dX2

in (1.14). The proper force interval (dE/dτ)2 − c2(dP/dτ)2 = −F 2 < 0 is
“spacelike” when the proper velocity interval c2(dT/dτ)2 − (dX/dτ)2 > 0 is
timelike. The analog of the Lorentz relativistic factor in eq-(1.14) involves the
ratios of two proper forces.

One may set the maximal proper-force acting on a fundamental particle of
Planck mass to be given by Fmax = b ≡ mP c

2/LP , wheremP is the Planck mass
and LP is the postulated minimal Planck length. Invoking a minimal/maximal
length duality one can also set b = MUc

2/RH , where RH is the Hubble scale
and MU is the observable mass of the universe. Equating both expressions for
b leads to MU/mP = RH/LP ∼ 1060. The value of b may also be interpreted
as the maximal string tension. In the most general case there are four scales
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of time, energy, momentum and length that can be constructed from the three
constants b, c, h̄ as follows

λt =

√
h̄

bc
; λl =

√
h̄ c

b
; λp =

√
h̄ b

c
; λe =

√
h̄ b c (1.15)

The gravitational constant can be written as G = αG c4/b where αG is a di-
mensionless parameter to be determined experimentally. If αG = 1, then the
four scales in eq-(1.15) coincide with the Planck time, length, momentum and
energy, respectively.

The U(1, 1) group transformation laws of the phase-space coordinatesX,T, P,E
which leave the interval (1.14) invariant are [8]

T ′ = T coshξ + (
ξv X

c2
+

ξa P

b2
)
sinhξ

ξ
(1.16a)

E′ = E coshξ + (−ξa X + ξvP )
sinhξ

ξ
(1.16b)

X ′ = X coshξ + (ξv T − ξa E

b2
)
sinhξ

ξ
(1.16c)

P ′ = P coshξ + (
ξv E

c2
+ ξa T )

sinhξ

ξ
(1.16d)

ξv is the velocity-boost rapidity parameter; ξa is the force (acceleration) boost
rapidity parameter, and ξ is the net effective rapidity parameter of the primed-
reference frame. These parameters ξa, ξv, ξ are defined respectively in terms of
the velocity v = dX/dT and force f = dP/dT (related to acceleration) as

tanh(
ξv
c
) =

v

c
; tanh(

ξa
b
) =

F

Fmax
, ξ =

√
(
ξv
c
)2 + (

ξa
b
)2 (1.17)

The U(3, 1) generators Zab = J[ab] + M(ab) are comprised of the 6 ordinary
Lorentz generators J[ab], and 10 force (acceleration) boost/rotation generators
M(ab) giving a total of 16 generators. The commutation relations are of the
form [J, J ] ∼ J ; [J,M ] ∼ M ; [M,M ] ∼ J [8], [15].

It is straightforwad to verify that the transformations (1.16) leave invariant
the phase space interval c2(dT )2 − (dX)2 + ((dE)2 − c2(dP )2)/b2 but do not
leave separately invariant the proper time interval (dτ)2 = c2dT 2 − dX2, nor
the interval in energy-momentum space 1

b2 [(dE)2−(dP )2]. Only the combination

(dω)2 = (dτ)2
(

1 − F 2

F 2
max

)
(1.17)

is truly left invariant under force (acceleration) boosts (1.16). They also leave
invariant the symplectic 2-form (phase space areas) Ω = − dT ∧ dE+ dX ∧ dP .
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Having reviewed the basics of the Yang algebra and Born Reciprocal Rela-
tivity, we proceed with the outline of this work. Section 2 is devoted to solving
the exact analytical mapping of the (non-canonical) non-commuting xµ, pµ op-
erator variables (associated to an 8D curved phase space) into the canonical
Y A,ΠA operator variables of a flat 12D phase space.

In section 3 we explore the geometrical implications of the classical limit of
this mapping which provides the embedding functions Y A(x, p),ΠA(x, p) of an
8D (classical) curved phase space into a flat 12D (classical) phase space back-
ground. The latter embedding functions determine the functional forms of the
base spacetime metric gµν(x, p), the fiber metric of the vertical space hab(x, p),
and the nonlinear connection Naµ(x, p) associated with the 8D cotangent space
of the 4D spacetime.

In section 4 we review the mathematical tools behind curved phase spaces,
Lagrange-Finsler, and Hamilton-Cartan geometries. This is necessary in order
to answer the key question of whether or not the solutions found for gµν , h

ab, Naµ

as a result of the embedding of the 8D curved phase space into the 12D flat phase
space, also solve the generalized gravitational vacuum field equations in the 8D
cotangent space. We finalize with an Appendix with the calculations involved
in solving the the exact analytical mapping of the xµ, pµ operator variables to
the canonical Y A,ΠA operator ones.

2 Mapping of xµ, pµ to the Y A,ΠA variables in
Flat Phase Space

The Y 5, Y 6,Π5,Π6 canonical coordinates and momenta (operators) in the flat
12-dim phase space are scalars from the point of view of the 8-dim curved
phase space parametrized by the non-canonical coordinates xµ and momenta
pµ. Therefore, Y 5, Y 6,Π5,Π6 must be functions of the Lorentz scalars

x2 = ηµνx
µxν , p2 = ηµνp

µpν , x·p = ηµνx
µpµ, p·x = ηµνp

µxν , µ, ν = 1, 2, 3, 4
(2.1)

Setting α = L−1, β = LP , due to the Born reciprocity principle, one must
have functions f(z1, z2, z3) of the arguments z1, z2, z3 given by the following
combination of Hermitian variables (operators)

z1 ≡ (α2x2 + β2p2), z2 ≡ (x ·p+p ·x), z3 ≡ i (x ·p−p ·x), α = L−1, β = LP

(2.2)
The arguments z1, z2, z3 are invariant under α ↔ β, x ↔ p, and i ↔ −i if one
wishes to implement Born’s reciprocity symmetry. Therefore, one must have
functions of the form

Y 5 = Y 5(z1, z2, z3), Y 6 = Y 6(z1, z2, z3), Π5 = Π5(z1, z2, z3), Π6 = Π6(z1, z2, z3)
(2.3)
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For instance, one could have functions linear in z1, z2, z3 defined as follows

Y 5(x, p) = a1(α
2x2 + β2p2) + b1(x · p) + b∗1(p · x) + c1 (2.4a)

Y 6(x, p) = a2(α
2x2 + β2p2) + b2(x · p) + b∗2(p · x) + c2 (2.4b)

Π5(x, p) = a3(α
2x2 + β2p2) + b3(x · p) + b∗3(p · x) + c3 (2.4c)

Π6(x, p) = a4(α
2x2 + β2p2) + b4(x · p) + b∗4(p · x) + c4. (2.4d)

where ai, bi, ci (i = 1, 2, 3, 4) are judicious numerical (dimensionful) coefficients.
The units of the coefficients in eqs-(2.4a,2b) are those of length, while those in
eqs-(2.4c,2.4d) are those of mass. Note that the bi coefficients in eqs-(2.4) are
complex-valued bi = γi + iδi. The reason is that the combination

bi (x·p) + b∗i (p·x) = γi (x·p+p·x) + i δi (x·p−p·x) = γi z2 + δi z3, i = 1, 2, 3, 4
(2.4e)

ensures that eq-(2.4e) is Hermitian by construction. Eq-(2.4e) is also invariant
under Born’s reciprocity x ↔ p and i ↔ −i. We shall show that eqs-(2.4)
should, in principle, provide satisfactory solutions to the embedding problem
defined below.

The [xµ, pν ] commutator is defined as

[xµ, pν ] = xµ pν − pν xµ = i γµν(x, p) (2.5)

where γµν(x, p) is a second rank tensor, not necessarily symmetric, that we
refrain from identifying it to a metric tensor.

The above commutator can also be expressed in terms of the 6D angular
momenta variables (see eq-(1.8)) as

[xµ, pν ] = i γµν(x, p) = − i αβ J56(x, p) ηµν =

i αβ [ Y 5(x, p) Π6(x, p) − Y 6(x, p) Π5(x, p) ] ηµν , α = L−1, β = LP (2.6)

Therefore, from eqs-(2.5,2.6) one arrives at the following relation, after contract-
ing both equations with ηµν ,

1

4i
ηµν (xµ pν − pν xµ) =

1

4i
(x · p − p · x) =

αβ ( Y 5(x, p) Π6(x, p) − Y 6(x, p) Π5(x, p)) ) = − αβ N (2.7)

Therefore, in this particular case, one finds that the tensor is symmetric γµν(x, p) =
Φ(x, p)ηµν and such that the conformal factor Φ(x, p) is Hermitian and given
by the left hand side of eq-(2.7). The r.h.s of (2.7) is Hermitian because J56

is Hermitian due to the canonical and Hermiticity nature of the 6D variables
: (Y 5Π6)† = Π6Y 5 = Y 5Π6, and (Y 6Π5)† = Π5Y 6 = Y 6Π5 resulting from the
commutators of the 6D canonical variables given by eq-(1.2).
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From eqs-(1.3) one learnt that the 4D operators xµ, pµ admitted a 6D an-
gular momentum realization of the form

xµ = β Jµ5 = − β (Y µ Π5 − Y 5 Πµ), β = LP (2.8)

pµ = α Jµ6 = − α (Y µ Π6 − Y 6 Πµ), α = L−1 (2.9)

From eqs-(2.8, 2.9) one can deduce the relation

J µν = xµ pν − xν pµ = αβ J56 (Y µ Πν − Y ν Πµ) (2.10)

where J56 ≡ N and Jµν are given by eq-(1.4) explicitly in terms of the 6D
canonical variables Y A,ΠB .

One can invert the relations in eqs-(2.8,2.9) as follows. After multiplying
eqs-(2.8 2.9) on the right by Π6,Π5, respectively, and subtracting the top equa-
tion from the bottom one, it yields

β−1 xµ Π6 − α−1 pµ Π5 = Πµ N = N Πµ (2.11a)

due to the canonical nature of the 6D variables Y A,ΠA described by the com-
mutators in eqs-(1.2) and which allows us to re-order the relevant factors due
to the commutativity.

And multiplying eqs-(2.8, 2.9) on the right by Y 6, Y 5, respectively, and
subtracting the top equation from the bottom one, it yields

β−1 xµ Y 6 − α−1 pµ Y 5 = Y µ N = N Y µ (2.11b)

We shall see next that the functional forms of Y 5(x, p), Y 6(x, p),Π5(x, p),
Π6(x, p) provided eqs-(2.4) lead to solutions to eq-(2.7), and which in turn,
yield automatically the solutions to eqs-(2.11a, 2.11b). And, in doing so, one has
found solutions to the embedding problem : Y µ = Y µ(x, p); Πµ = Πµ(x, p), with
N (x, p) ≡ J56(x, p) = −(Y 5Π6−Y 6Π5)(x, p), and where [N , Y µ] = [N ,Πµ] = 0.

Thus, from eqs-(2.7,2.11) one can construct the maps from the xµ, pµ non-
canonical (operator) variables in 4D to the canonical (operator) variables Y A,ΠA

in 6D. The next step is to take the classical limit in order to find the embeddings
from the 8D (classical) curved phase space into the 12D (classical) flat phase
space given by Y A(x, p),ΠA(x, p) given in terms of the corresponding classical
coordinates (c-numbers) associated with the operator-valued variables.

One can also exploit the fact that the operator variables xµ, pµ, and Y A,ΠA

are Hermitian and rewrite eqs-(211a,2.12b) in commutator form. Taking the
Hermitian conjugates of eqs-(2.11a,2.11b), and then subtracting these conju-
gates from eqs-(2.11a,2.11b), yields the relations

β−1 [ Π6(x, p), xµ ] + α−1 [ pµ, Π5(x, p) ] = 0 (2.12a)

β−1 [ Y 6(x, p), xµ ] + α−1 [ pµ, Y 5(x, p) ] = 0 (2.12b)

Eqs-(2.12) combined with eq-(2.7) define three equations in commutator form
where Y µ and Πµ do not appear explicitly, like they do in eqs-(2.11).
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Let us show how eqs-(2.4) do, in principle, solve the key eq-(2.7). Upon
inserting the expressions provided by eqs-(2.4) directly into eq-(2.7) one ends
up with 13 terms (involving the Lorentz scalars z1, z2, z3 in eq-(2.2)) of the form

constant; z1, z2, z3, z21 , z22 , z23 ,

z1z2, z2z1, z1z3, z3z1, z2z3, z3z2 (2.13a)

As a reminder, because we are dealing with coordinate and momentum oper-
ators, the products do not commute. The left hand side of eq-(2.7) is just
given by − z3

4 . Thus, the only non-zero entry containing the terms (monomials)
described by eq-(2.13a) is the one involving the z3 term with an overall coeffi-
cient of − 1

4 . The remaining 12 terms (monomials) must all cancel and appear
with zero coefficients. Therefore, one finds 13 equations to be obeyed by the
4× 4 = 16 numerical coefficients which appear in eqs-(2.4).

Since the system of equations is underdetermined 13 < 16 one may fix 3 of
the coefficients. Let us impose the following relations

a = a1 = a2 = β2 a3 = β2 a4 (2.13b)

such that one ends with a total of 1+12 = 13 coefficients to be determined given
by a; γi, δi, ci; i = 1, 2, 3, 4. In the Appendix we explicitly write down all the 13
equations in terms of 13 coefficients. After a laborious but straightforward
procedure we find the following family of solutions

Y 5(x, p) = κ1 β z1 + κ2 β z2 + κ3 β z3 + κ4 β (2.14a)

Y 6(x, p) = κ1 β z1 + κ2 β z2 + κ3 β z3 + (κ4 + 1) β (2.14b)

Π5(x, p) = κ1 β−1 z1 + κ2 β−1 z2 +
5

4
κ3 β−1 z3 + κ4 β−1 (2.14c)

Π6(x, p) = κ1 β−1 z1 + κ2 β−1 z2 +
5

4
κ3 β−1 z3 + (κ4 + 1) β−1 (2.14d)

where κ3 = (αβ)−1 and κ1, κ2, κ4 are three arbitrary parameters. This is due to
the nonlinearity of the equations that one is solving. The solutions (2.14) have
the form Y 6 = Y 5 + β; Π5 = Π6 − β−1 such that αβ Y [5 Π6] = − z3

4 as required
by eq-(2.7).

In order to define classical h̄ → 0 limit, one must reinstate h̄ which was set
to unity. Eq-(2.7) in the classical limit becomes

limh̄→0
x · p− p · x

4ih̄
→ 1 ⇒ N → − 1

αβ
(2.15)

as a result of Dirac’s prescription turning commutators into Poisson brackets

limh̄→0
[ x̂µ, p̂ν ]

ih̄
→ { xµ, pν }PB , { x0, p0 }PB = −1, { xi, pj } = δij

(2.16)
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with ηµν = diag(−1,+1,+1,+1). Inserting the classical limit of N into eqs-
(2.11) (where x, p are now c-valued) yield

α xµ Π6 − β pµ Π5 = − Πµ (2.17a)

α xµ Y 6 − β pµ Y 5 = − Y µ (2.17b)

From eq-(2.15) one learns that in the classical limit one obtains

N → − 1

αβ
⇒ Y 5 Π6 − Y 6 Π5 → 1

αβ
(2.18)

The four embedding functions Y 5, Y 6,Π5,Π6, in the classical limit, are func-
tions of the two Lorentz scalars because

z1 → w1 = α2x2 + β2p2; z2 → w2 = 2x · p, z3 → 0 (2.19)

and obey the quadratic constraint equation

Y 5(w1, w2) Π
6(w1, w2) − Y 6(w1, w2) Π

5(w1, w2) =
1

αβ
=

L
LP

(2.20)

The classical limit of the equations involving the commutators (2.12) is

β−1 { Π6(w1, w2), xµ }PB + α−1 [{ pµ, Π5(w1, w2) }PB = 0 (2.21a)

β−1 { Y 6(w1, w2), xµ }PB + α−1 { pµ, Y 5(w1, w2) }PB = 0 (2.21b)

There are some subtleties with these eqs-(2.17) and eqs-(2.21) worth men-
tioning. Note that in the quantum case, eqs-(2.11) are “equivalent” to eqs-(2.12)
because the latter were obtained from the former via the process of taking the
Hermitian conjugation. Whereas, in the classical case, the algebraic eqs-(2.17)
do not lead to the differential eqs-(2.21) involving the Poisson brackets.

Because the variable z3 → 0 decouples in the classical limit, there are only
1 + 4 + 4 = 9 parameters left over in eqs-(2.4) given by a; γi; ci; i = 1, 2, 3, 4.
The monomials appearing in eq-(2.20) are now of the form

constant, w1, w2, w2
1, w2

2, w1w2 (2.22)

leading to 6 equations. Thus one has 9 parameters to obey 6 equations. Once
again, one ends with an under determined systems of equations.

On the other hand, because eqs-(2.17) do not lead to eqs-(2.21), there is no
guarantee that the solutions of the type given by eqs-(2.4) are going to solve the
algebraic eq-(2.20), and the two extra differential eqs-(2.21a,2.21b) involving
the Poisson brackets.

Furthermore, there is also a caveat worth mentioning when one takes the
classical limit. Upon restoring h̄ which was set to unity in the terms γiz2 → γi

h̄ z2
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of eqs-(2.4e), in order to match units, one can see that these terms are singular
in the h̄ → 0 limit. Whereas the terms δi

h̄ z3 → −4δi are well behaved and yield
constants.

For these reasons we shall just adhere to the following prescription in finding
the classical limit of the embedding functions Y A(x, p),ΠA(x, p). Having found
the solutions for the 13 coefficients a = a1 = a2 = β2a3 = β2a4; γi, δi, ci; i =
1, 2, 3, 4 in the quantum case, we simply drop the singular 1

h̄z2 terms, and set
the 1

h̄z3 terms to constants in the explicit solutions for Y 5, Y 6,Π5,Π6 given by
eqs-(2.14).

Or one could set the arbitrary constant κ2 to zero κ2 = 0 so that 1
h̄κ2z2 is

no longer singular. In this case there is no need to drop the z2 terms. And
finally, one can obtain the explicit solutions for Y µ,Πµ of eqs-(2.17), and given
in terms of the functions Y 5(w1, w2), Y

6(w1, w2),Π
5(w1, w2),Π

6(w1, w2) found
in eqs-(2.14), and xµ, pµ.

Consequently, this latter prescription will render eqs-(2.17) in the following
form

α xµ Π6(w1, w2) − β pµ Π5(w1, w2) = − Πµ (2.23a)

α xµ Y 6(w1, w2) − β pµ Y 5(w1, w2) = − Y µ (2.23b)

with w1 = α2x2+β2p2, w2 = 2x ·p, and Y 5, Y 6,Π5,Π6 given by eqs-(2.14) after
setting the z3

h̄ terms to constants. Next we shall study the implications of the
(classical) embedding solutions found in this section.

3 Embedding a 8D curved phase space into a
12D flat phase space

The previous section involved the use of coordinates and momenta operators.
In this section we shall deal with classical variables (c-numbers) x, p. A more
rigorous notation in the previous section would have been to assign “hats” to
operators x̂µ, p̂µ; Ŷ A, Π̂A. For the sake of simplicity we avoided it in order to
follow the notation used by the authors [5].

The geometry of the cotangent bundle of spacetime (phase space) can be best
explored within the context of Lagrange-Finsler, Hamilton-Cartan geometry
[16], [17]. The line element in the 8D curved phase space is

(ds)2 = gµν(x, p) dx
µdxν + hab(x, p) (dpa+Naµ(x, p)dx

µ) (dpb+Nbν(x, p)dx
ν)

(3.1)
where gµν(x, p), h

ab(x, p) are the base spacetime and internal space metrics,
respectively, with a, b = 1, 2, 3, 4, µ, ν = 1, 2, 3, 4, and Naµ(x, p) is the nonlinear
connection.
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One should note that the metric tensor gµν is not the vertical Hessian of
the square of a Finsler function, and hab is not the inverse of gµν . hab repre-
sents, physically, the cotangent bundle’s internal-space metric tensor which is
independent from the base-spacetime metric tensor gµν . The number of total
components of gµν , h

ab, Naµ is 10 + 10 + 16 = 36 = (8× 9)/2).
The generalized (vacuum) gravitational field equations associated with the

geometry of the 8D cotangent bundle [18] differ considerably from the the stan-
dard (vacuum) Einstein field equations in 8D based on Riemannian geometry.
Thus, for instance, by using a base-spacetime gµν metric to be independent from
the internal-space metric hab, and a nonlinear connection Nµa, it might avoid
the reduction of the solutions of the generalized gravitational field equations
to the standard Schwarzschild (Tangherlini) solutions when radial symmetry is
imposed.

For example, in [12] we studied a scalar-gravity model in curved phase spaces.
After a very laborious procedure, the variation of the action S with respect to
the fundamental fields

δS
δgµν

= 0,
δS
δhab

= 0,
δS

δNµa
= 0,

δS
δΦ

= 0 (3.2)

leads to the very complicated field equations which differ considerably from
the Einstein field equations. Exact nontrivial analytical solutions for the base-
spacetime gµν , the internal-space metric hab components, the nonlinear connec-
tion Nia, and the scalar field Φ were found that obey the generalized gravita-
tional field equations, in addition to satisfying the zero torsion conditions for
all of the torsion components. See [12] for details.

The embedding of the 8D curved phase space into the 12-dim flat phase
space is described by equating the 8D line interval ds2 in (3.1) with the 12D
one ds2 = ηABdZ

AdZB . After doing so, given ZA ≡ (Y A,ΠA) one learns that

gµν + hab Naµ Nbν = ηAB
∂ZA

∂xµ

∂ZA

∂xν
(3.3)

hab = ηAB
∂ZA

∂pa

∂ZA

∂pb
(3.4)

hab Nbµ = ηAB
∂ZA

∂pa

∂ZA

∂xµ
A,B = 1, 2, · · · , 5, 6 (3.5)

Eqs-(3.3-3.5) determine the functional form of gµν , h
ab, Naµ after one inserts

the functional forms of the embedding functions ZA(x, p) = Y A(x, p),ΠA(x, p)
found in the previous section, and by making the following replacement pµ → pa.
We explained at the end of section 2 how the x·p, p·x terms could decouple in the
classical limit, by removing the singular terms z2

h̄ , the z3
h̄ become constants, and

leaving only the terms w1 = α2x2 + β2p2. Thus, after making the replacement
pµ → pa one has ηµνp

µpν → ηabpapb, and such that the indices will now match
those appearing in eqs-(3.3-3.5).
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Also, it is very important to emphasize that the base spacetime metric
gµν(x, p) in eqs-(3.1,3.2,3.3) is not the same as the tensor γµν(x, p) appear-
ing in the definition of the commutator [xµ, pν ] = iγµν(x, p) = iΦ(x, p)ηµν . It
would be a remarkable coincidence if their functional form turned out to be the
same.

The (classical) embedding functions ZA(x, p) = Y A(x, p),ΠA(x, p) obtained
in the previous section determine the functional form of gµν , h

ab, Naµ in eqs-(3.3-
3.5). The key question is whether or not the solutions found in eqs-(3.3-3.5) for
gµν , h

ab, Naµ also solve the vacuum field equations. And if not, can one find
the appropriate field/matter sources which are consistent with these solutions
?. Namely, can one find the matter/field configurations which source the fields
gµν , h

ab, Naµ, and which in turn, originated from solving the embedding eqs-
(2.7-2.11) that emerged from the Yang noncommutative algebra in phase space,
and then, by inserting these solutions into eqs-(3.3-3.5).

It is natural to assume that quantum matter/fields could be the source of
the noncommutativity of the spacetime coordinates and momenta. After all,
quantum fields live in spacetime. If this were not the case, what then is the
source of this phase space noncommutativity ? Is it space-time foam, dark
matter, dark energy ? .... If one expects to have a space-time-matter unification
then one has that matter curves space-time, and space-time back-reacts on
matter curving momentum space, “curving matter”. To tackle these questions
we devote the whole of next section.

4 Curved Phase Space and Lagrange-Finsler,
Hamilton-Cartan Geometry

In this section we begin with a review of our work in [12]. We deem it to be very
useful for the non-expert reader in order to grasp the essentials of the ample
literature on the geometry of Lagrange-Finsler, Hamilton-Cartan spaces and
higher order (jet bundles) generalizations, see [16], [17], and references therein.
Let us begin with the Sasaki-Finsler metric of the cotangent space of a d-dim
manifold T ∗Md, and which is given by the following metric in block diagonal
form

(dω)2 = gij(x
k, pa) dx

id xj + hab(xk, pc) δpa δpb =

gij(x
k, pa) dx

id xj + hab(x
k, pc) δp

a δpb (4.1)

The range of the base manifold indices is i, j, k = 0, 1, 2, 3, .....d − 1; whereas
the range of the fiber indices is a, b, c = 0, 1, 2, 3, .....d− 1. The standard coordi-
nate basis frame has been replaced by the following anholonomic non-coordinate
basis frame comprised of the following elongated and ordinary derivatives, re-
spectively,

δi = δ/δxi = ∂xi + Nia ∂a = ∂xi + Nia ∂pa ; ∂a ≡ ∂pa =
∂

∂pa
(4.2)
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The signature is chosen to be Lorentzian (−,+,+,+, · · · ,+) for both gij and
hab. It is important to emphasize that one does not have a theory with two times
because the energy coordinate is not time. One should note the key position of
the indices that allows us to distinguish between derivatives with respect to xi

and those with respect to pa. The dual basis of (δi = δ/δxi; ∂a = ∂/∂pa) is

dxi, δpa = dpa − Nja dxj , δpa = dpa − Na
j dxj (4.3)

where the N -coefficients define a nonlinear connection, N–connection structure.
An N-linear connection D on T ∗M allows to construct covariant derivatives

which are compatible with the structure induced by the nonlinear connection
and that preserve the horizontal-vertical split of the cotangent bundle. Thus,
an N-linear connection D on T ∗M can be uniquely represented in the adapted
basis in the following form

Dδj (δi) = Hk
ij δk; Dδj (∂

a) = − Ha
bj ∂b; (4.4a)

D∂a(δi) = Cka
i δk; D∂a(∂b) = − Cba

c ∂c (4.4b)

where Hk
ij(x, p), H

a
bj(x, p), C

ka
i (x, p), Cba

c (x, p) are the connection coefficients.
Our notation for the derivatives is

∂a = ∂/∂pa, ∂i = ∂xi , δi = δ/δxi = ∂xi + Nia ∂a (4.4c)

The N-connection structures can be naturally defined on (pseudo) Rieman-
nian spacetimes and one can relate them with some anholonomic frame fields
(vielbeins) satisfying the relations δαδβ − δβδα = W γ

αβδγ . The only nontrivial
(nonvanishing) nonholonomy coefficients are

Wija = Rija; W a
jb = ∂aNjb = − W a

j b (4.5a)

and
Rija = δjNia − δiNja (4.5b)

is the nonlinear connection curvature (N-curvature).
Imposing a zero nonmetricity condition of gij(x, p), h

ab(x, p) along the hori-
zontal and vertical directions, respectively, gives

Digjk = δi ggk −H l
ij glk −H l

ik gjl = 0, (4.6a)

Dahbc = ∂a hbc + Cab
d hdc + Cac

d hbd = 0 (4.6b)

Performig a cyclic permutation of the indices in eqs-(6a,6b), followed by lin-
ear combination of the equations obtained yields the irreducible (horizontal,
vertical) h-v-components for the connection coefficients

Hi
jk =

1

2
gin (δkgnj + δjgnk − δngjk) (4.7)

Cab
c = − 1

2
hcd

(
∂bhad + ∂ahbd − ∂dhab

)
(4.8)
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The additional conditions Dih
ab = 0, Dagij = 0, yield the mixed compo-

nents of the connection coefficients

Hb
ja = ∂bNja +

1

2
hbc

(
δjhac − had ∂dNjc − hcd ∂dNja

)
(4.9)

and

Cja
i =

1

2
gjk ∂agik (4.10)

For any N-linear connectionD with the above coefficients the torsion 2-forms
are

Ωi =
1

2
T i
jk dxj ∧ dxk + Cia

j dxj ∧ δpa (4.11a)

Ωa =
1

2
Rjka dxj ∧ dxk + P b

aj dxj ∧ δpb +
1

2
Sbc
a δpb ∧ δpc (4.11b)

and the curvature 2-forms are

Ωi
j =

1

2
Ri

jkm dxk ∧ dxm + P ia
jk dxk ∧ δpa +

1

2
Siab
j δpa ∧ δpb (4.12)

Ωa
b =

1

2
Ra

bkm dxk ∧ dxm + P ac
bk dxk ∧ δpc +

1

2
Sacd
b δpc ∧ δpd (4.13)

where one must recall that the dual basis of δi = δ/δxi, ∂a = ∂/∂pa is given by
dxi, δpa = dpa −Njadx

j .
The distinguished torsion tensors are given by

T i
jk = Hi

jk − Hi
kj ; Sab

c = Cab
c − Cba

c ; T ia
j = Cia

j = − T ia
j

P a
b j = Ha

bj − ∂aNjb, P a
b j = − P a

bj

Rija =
δNja

δxi
− δNia

δxj
(4.14)

And the distinguished tensors of the curvature are

Ri
kjh = δhH

i
kj − δjH

i
kh + H l

kj Hi
lh − H l

kh Hi
lj − Cia

k Rjha (4.15)

P ab
cj = ∂a Hb

cj + Cad
c P b

dj −
(
δj Cab

c + Hb
dj Cda

c + Ha
dj Cbd

c − Hd
cj Cab

d

)
(4.16)

P ak
ij = ∂a Hk

ij + Cal
i T k

lj −
(
δj Cak

i + Ha
bj Cbk

i + Hk
lj Cal

i − H l
ij Cak

l

)
(4.17)
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Sabc
d = ∂c Cab

d − ∂b Cac
d + Ceb

d Cac
e − Cec

d Cab
e ; (4.18)

Sibc
j = ∂cCbi

j − ∂bCci
j + Cbh

j Cci
h − Cch

j Cbi
h (4.19)

Ra
bjk = δkH

a
bj − δjH

a
bk + Hc

bj Ha
ck − Hc

bk Ha
cj − Cca

b Rjkc (4.20)

Adopting the units where h̄ = c = G = 1 such that the Planck mass and
length squared are respectively M2

P = 1, L2
P = 1; given gAB ≡ gij , hab, and the

definitions ∂AΦ(x, p) ≡ δiΦ(x, p), ∂aΦ(x, p), where the ordinary ∂a and elon-
gated derivatives δi defined by eq-(4.2) act on Φ(x, p), one may construct the
simplest gravity-scalar field action of the form1

S = SG + SM =
1

2κ

∫
d4x d4p

√
|det gAB |

(
gij R(ij) + hab S(ab)

)
−

∫
d4x d4p

√
|det gAB |

(
1

2
gAB ∂AΦ ∂BΦ + V (Φ)

)
(4.21)

The determinant factorizes det(gAB) = det(gij)det(hab) in an anhololomic basis
adapted to the nonlinear connection (the metric assumes the block diagonal
form (1)). κ is the gravitational coupling constant. If the phase space action
action (4.21) is dimensionless, after reintroducing the physical constants that
were set to unity, gives κ = 8π → (8πG/c4)(Mpc)

4.
After a very laborious procedure the authors [18] have shown that variation

of the action (4.21)

δS
δgij

= 0,
δS
δhab

= 0,
δS
δNia

= 0,
δS
δΦ

= 0 (4.22)

leads to the following field equations

R(ij)(x, p) − 1

2
gij(x, p) (R+ S) + Rk(ia Cka

j) = Tij (4.23)

S(ab)(x, p) − 1

2
hab(x, p) (R+ S) = Tab (4.24)

gik ∂aHj
kj − gkl ∂aHi

kl = T ia (4.25)

where

Rkh = Ri
kjh δji , R = gkh R(kh) Sac = Sabc

d δdb , S = hac S(ac) (4.26)

after symmetrizing the indices accordingly and denoted by (). The components
of the stress energy tensor are defined as

1d4x d4p = dx0 ∧ dx1 ∧ · · · ∧ δp0 ∧ δp1 ∧ · · · = dx0 ∧ dx1 ∧ · · · ∧ dp0 ∧ dp1 ∧ · · ·
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Tij = − 2√
|detGAB |

δ(
√
|detGAB |LM )

δgij
, Tab = − 2√

|detGAB |
δ(
√
|detGAB |LM )

δhab

(4.27)

T ia = − 2√
|detGAB |

δ(
√
|detGAB |LM )

δNia
(4.28)

and given by

Tij = (δiΦ(x, p)) (δjΦ(x, p)) − gij

(
1

2
gAB(∂AΦ(x, p)) (∂BΦ(x, p)) + V (Φ)

)
(4.29)

Tab = (∂aΦ(x, p)) (∂bΦ(x, p))− hab

(
1

2
gAB(∂AΦ(x, p)) (∂BΦ(x, p)) + V (Φ)

)
(4.30)

T ia = gij δjΦ(x, p) ∂
aΦ(x, p) (4.31)

One must include also the equation of motion for the scalar field Φ(x, p),
which is a generalization of the d’Alambert equation,

gij DiDjΦ + hab DaDbΦ − ∂V (Φ)

∂Φ
= 0 (4.32)

DiDjΦ = δiδjΦ − Hk
ij δkΦ, DaDbΦ = ∂a∂bΦ − Cc

ab ∂cΦ (4.33)

The system of coupled nonlinear differential equations (4.23,4.24,4.25,4.32)
leading to the solutions for gij(x, p), hab(x, p), Nai(x, p),Φ(x, p) are highly non-
trivial. The scalar field Φ(x, p) curves both spacetime and momentum space.
The equations have almost a similar form to the Einstein gravitational field
equation with the difference of the extra term Rk(ia Cka

j) in eq-(4.23).

We found exact solutions to eqs-(4.23-4.25) in [12] when Φ = constant,
yielding the following 8D line interval, after reinstating the Planck length β =
LP (that were set to unity) in order to match units,

(ds)2 = − (dt)2 + e2Hot ((dx)2 + (dy)2 + (dz)2) −

β4 [ (dE)2 + e2β
2HoE ((dpx)

2 + (dpy)
2 + (dpz)

2 ] +

β2 e−2β2HoE N(t)2 (dt)2 − 2β3 e−2β2HoE N(t) dt dpx, β2 = L2
P (4.34)

Note the off-diagonal piece −2β3e−2β2HoEN(t)dtdpx above implying a mixing
of coordinates and momenta. N(t) was an arbitrary function chosen judiciously
so that N(t = 0) ̸= ∞, N(t = ∞) = 0. N(t) has units of mass.

One of the salient features of the phase space metric (4.34) is that it captures
both the very early inflationary (t ∼ 0, E ∼ ∞), and very-late-times (t ∼
∞, E ∼ 0) de Sitter phases of the four-dim Universe. More general solutions
are required to explain the evolution of the Universe. For example, solutions of
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the form Φ(t) ̸= constant, and V (Φ) = V (t) such that the variable exponent
2
∫
H(t)dt associated to the Hubble function H(t) leads to an early inflationary

phase with a large exponential factor, and a constant factor Ho at very late
times. Ideally one would hope to recover the inflationary, radiation, matter and
dark energy eras of the evolution of the Universe.

Inspired by the de Sitter like solutions in (4.34), one may search for confor-
mally flat solutions of the form

gij(x
i, pa) = G(xi, pa) ηij , hab(xi, pa) = H(xi, pa) η

ab (4.35a)

and where the ansatz for the nonlinear connection is chosen to be of the form

Nai(x
i, pa) =

∂Na(x
i, pa)

∂xi
(4.35b)

Even further, given x2 ≡ ηijx
ixj ; p2 ≡ ηabpapb, a Killing-symmetry reduc-

tion of eqs-(4.35) can be chosen to be given by

gij = G(x2, p2) ηij , hab = H(x2, p2) ηab, Nai =
∂Na(x

2, p2)

∂xi
(4.36)

and it will simplify matters even further. We gave already in the prior sections
the reasons why the x · p, p · x terms in eqs-(2.4) could decouple in the classical
limit leaving only the α2x2, β2p2 ones which are compatible with the Killing-
symmetry reduction.

To conclude this final section, first of all, before focusing in Killing-symmetry
reductions, it remains to be seen whether or not the ansatz in eqs-(4.35) yields
solutions to the generalized gravitational field equations (4.23-4.25), with the
stress energy tensors given by eqs-(4.29-4.31), and the equation of motion for
the scalar field given by (4.32). Namely, whether or not one can find consistent
solutions in terms of the functions G(xi, pa), H(xi, pa), Na(x

i, pa). This partic-
ular 8D curved phase space geometry requires the above 1+1+4 = 6 functions
to satisfy a large number of equations. This is left for future calculations, at
the moment is beyond our computational capabilities.

APPENDIX

In this Appendix we provide solutions to eq-(2.7). Inserting the ansatz
provided by eqs-(2.4a-2.4e) into eq-(2.7), assembling the monomials accordingly
to eq-(2.13a), and after imposing the relations (2.13b), one arrives at the 13
equations

− 1

4
= δ1 c4 + δ4 c1 − δ2 c3 − δ3 c2 (A.1)

a c4 + β−2 a c1 − a c3 − β−2 a c2 = 0 (A.2)
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γ1 c4 + γ4 c1 − γ2 c3 − γ3 c2 = 0 (A.3)

a2β−2 − a2β−2 = 0, a γ4 − a γ3 = 0 (A.4)

a δ4 − a δ3 = 0, γ1 δ4 − γ2 δ3 = 0 (A.5)

β−2 a γ1 − β−2 a γ2 = 0, γ1 γ4 − γ2 γ3 = 0. (A.6)

β−2 a δ1 − β−2 a δ2 = 0, γ4 δ1 − γ3 δ2 = 0 (A.7)

δ1 δ4 − δ2 δ3 = 0, c1 c4 − c2 c3 = 0 (A.8)

After some algebra one finds the following relations among the coefficients

γ1 = γ2, γ3 = γ4, δ1 = δ2, δ3 = δ4. (A.9)

γ4 = β−2 γ1, γ3 = β−2 γ2, c4 = β−2 c2, c3 = β−2 c1 (A.10)

such that
c1 − c2 ̸= 0, c3 − c4 ̸= 0 (A.11)

and

−1

4
= (c1 − c2) (δ3 − β−2 δ1) (A.12)

Finally one finds the family of solutions in eqs-(2.14)

Y 5(x, p) = κ1 β z1 + κ2 β z2 + κ3 β z3 + κ4 β (2.14a)

Y 6(x, p) = κ1 β z1 + κ2 β z2 + κ3 β z3 + (κ4 + 1) β (2.14b)

Π5(x, p) = κ1 β−1 z1 + κ2 β−1 z2 +
5

4
κ3 β−1 z3 + κ4 β−1 (2.14c)

Π6(x, p) = κ1 β−1 z1 + κ2 β−1 z2 +
5

4
κ3 β−1 z3 + (κ4 + 1) β−1 (2.14d)

where κ3 = (αβ)−1 and κ1, κ2, κ4 are three arbitrary parameters. The solutions
(2.14) have the form Y 6 = Y 5 + β; Π5 = Π6 − β−1 such that αβ Y [5 Π6] = − z3

4
as required by eq-(2.7).
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