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Abstract. We apply the notion of the olloid to show that a certain set

contains no solution of the Erdős-Straus equation.

1. Introduction

The Erdős-Straus equation is an equation of the form

4

n
=

1

x
+

1

y
+

1

z
.

Paul Erdős and Ernst Straus conjectured in 1948 that the Erdős-Straus equation
has solution in the positive integers for all n ≥ 2. This is now known as the Erdős-
Straus conjecture and still remains open. Nevertheless, substantial progress has
been made in studying the conjecture accounting for a vast literature on the topic.
It will be technically expedient to disprove the conjecture by finding a fraction of
the form 4

n that has no three term representation. Computational search along

this line has revealed that the conjecture is true for all positive integers n ≤ 1017

[1]. Effort in studying the conjecture has actually brought to bear various lines of
attacks using certain modular and polynomial identities of the fraction 4

n for all
n ∈ N with n ≥ 2. Another noteworthy approach is to study the conjecture using
the tools of Diophantine analysis, since the Erdős-Straus equation can be recast in
the form of the Diophantine equation 4xyz = n(xy+yz+xz) [5]. The conjecture is
much more tractable along the realms of modular arithmetic; indeed, the conjecture
is solvable modulo prime powers but there appears to be no clear path to piecing
these together to yield a solution to the conjecture. The truth of the conjecture
holds for general congruence classes. In particular, the expansion

4

n
=

1

n
+

1
n+1
3

+
1

n(n+1)
3

holds in 2 (mod 3). A general polynomial identity devised by Mordell is also used to
provide the unit fraction expansion for 4

n in 2 (mod 3) and above, 3 (mod 4), 2 or
3 (mod 5), 3, 5, 6 (mod 7) or 5 (mod 8). With an ongoing search for a solution or
a counter-example, it had been shown that the natural density of counter-examples
- if any - to the Erdős-Straus is zero [3]. The use of modular identities have always
been useful in proving the conjecture in various congruence classes but it certainly
has it’s limitations. It is known that if n ≡ r (mod p) for any prime number p and r
is not congruent to a quadratic residue then the exist a modular identity for 4

n and,
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hence, a three term unit expansion for 4
n in the congruence class r (mod p) exists

[4]. Since 1 is a square, it follows that there is no polynomial identity for 4
n for

n ≡ 1 (mod 3) so that there is no complete covering system of modular identities.
The Erdős-Straus conjecture could easily be proved if there exist a unit fraction
expansion for 4

n in distinct moduli forming a complete covering system, but this
approach seems impossible. The number of solutions to the Erdős-Straus equation
has also been studied and various upper bound for their solution is now known. In
fact, Elsholtz and Tao showed that the average number of solutions to the Erdős-
Straus equation 4

n = 1
x + 1

y + 1
z over the primes grows polylogarithmically in n [2].

In this paper we show that we can avoid the solutions of the Erdős-Straus equation
4
n = 1

x + 1
y + 1

z in certain arithmetic progression. In particular, we obtain the result

Theorem 1.1. Let An := {s ∈ N | n|s} for a fixed n ∈ N with n > 4 and
∑
k

denotes a sum of exactly k terms. Then the equation∑
3

s∈An

1

s
=

4

n

has no solution.

This result is a consequence of the more fundamental result using the notion of
the olloid.

Lemma 1.2 (Expansion principle). Let Fk
s be an s-dimensional olloid of degree

k for a fixed k ∈ N with k > 1. If g : N −→ R+ is a generator with continuous
derivative on [1, s] and decreasing on R+ such that

1− 1

g(s)r
>

s∫
1

g′(t)

g(t)2
dt +

1

g(s)

s∫
1

g′(t)

g(t)2
dt + · · ·+ 1

g(s)r−1

s∫
1

g′(t)

g(t)2
dt

for r ∈ N then g : N −→ R+ is also a generator of the olloid Fk+r
s of degree k + r.

2. The notion of the olloid

In this section we launch the notion of the olloid and prove a fundamental
lemma, which will be relevant for our studies in the sequel.

Definition 2.1. Let Fk
s :=

{
(u1, u2, . . . , us) ∈ Rs |

s∑
i=1

uk
i = 1, k ≥ 1

}
. Then we

call Fk
s an s-dimensional olloid of degree k ≥ 1. We say g : N −→ R is a generator of

the s-dimensional olloid of degree k if there exists some vector (v1, v2, . . . , vs) ∈ Fk
s

such that vi = g(i) for each 1 ≤ i ≤ s.

Question 2.2. Does there exists a fixed generator g : N −→ R with infinitely many
olloids?

Remark 2.3. While it may be difficult to provide a general answer to question
2.2, we can in fact provide an answer by imposition certain conditions for which
the generator of the olloid must satisfy. In particular, we launch a basic and a
fundamental principle relevant for our studies in the sequel.
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Lemma 2.4 (Expansion principle). Let Fk
s be an s-dimensional olloid of degree

k ≥ 1 for a fixed k ∈ N. If g : N −→ R+ is a generator with continuous derivative
on [1, s] and decreasing on R+ such that

1− 1

g(s)r
>

s∫
1

g′(t)

g(t)2
dt +

1

g(s)

s∫
1

g′(t)

g(t)2
dt + · · ·+ 1

g(s)r−1

s∫
1

g′(t)

g(t)2
dt

for r ∈ N then g : N −→ R+ is also a generator of the olloid Fk+r
s of degree k + r.

Proof. Suppose g : N −→ R+ is a generator of the olloid Fk
s with continuous

derivative on [1, s]. Then there exists a vector (v1, v2, . . . , vs) ∈ Fk
s such that vi =

g(i) for each 1 ≤ i ≤ s, so that we can write

s∑
i=1

g(i)k = 1.

Let us assume to the contrary that there exists no r ∈ N such that g : N −→ R+

is a generator of the olloid Fk+r
s . By applying the summation by parts, we obtain

the inequality

1

g(s)

s∑
i=1

g(i)k+1 ≥ 1−
s∫

1

g′(t)

g(t)2
dt(2.1)

by using the inequality

s∑
i=1

g(i)k+1 <

s∑
i=1

g(i)k = 1.

By applying summation by parts on the left side of (2.1) and using the contrary
assumption, we obtain further the inequality

1

g(s)2

s∑
i=1

g(i)k+2 ≥ 1−
s∫

1

g′(t)

g(t)2
dt− 1

g(s)

s∫
1

g′(t)

g(t)2
dt.(2.2)

By induction we can write the inequality as

1

g(s)r

s∑
i=1

g(i)k+r ≥ 1−
s∫

1

g′(t)

g(t)2
dt− 1

g(s)

s∫
1

g′(t)

g(t)2
dt− · · · − 1

g(s)r−1

s∫
1

g′(t)

g(t)2
dt

for any r ≥ 2 with r ∈ N. Since g : N −→ R+ is decreasing, it follows that

1−
s∫

1

g′(t)

g(t)2
dt− 1

g(s)

s∫
1

g′(t)

g(t)2
dt− · · · − 1

g(s)r−1

s∫
1

g′(t)

g(t)2
dt > 1

and using the requirement

1− 1

g(s)r
>

s∫
1

g′(t)

g(t)2
dt +

1

g(s)

s∫
1

g′(t)

g(t)2
dt + · · ·+ 1

g(s)r−1

s∫
1

g′(t)

g(t)2
dt
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for r ∈ N, we have the inequality

1 =

s∑
i=1

g(i)k

≥
s∑

i=1

g(i)k+r > 1

which is absurd. This completes the proof of the Lemma. �

Lemma 2.4 - albeit fundamental - is ultimately useful for our study of variants
and possibly extensions of the Erdős-Straus equation. It can be seen as a tool for
extending the solution of equations of the form

s∑
i=1

g(i)k = 1

for k > 1 - under the presumption that it exists - to the solution of equations of
the form

s∑
i=1

g(i)k+r = 1

for a fixed r ∈ N under some special requirements of the generator g : N −→ R.

3. Application to solutions of the Erdős-Straus equation

In this section we apply the notion of the olloid to study the non-existence of
solutions of the Erdős-Straus equation in certain arithmetic progression. This is an
outgrowth of Lemma 2.4.

Theorem 3.1. Let An := {s ∈ N | n|s} for a fixed n ∈ N with n > 4 and
∑
k

denotes a sum of exactly k terms. Then the equation∑
3

s∈An

1

s
=

4

n

has no solution.

Proof. Let us assume to the contrary that the equation∑
3

s∈An

1

s
=

4

n

has a solution. The equation above can be recast in the form∑
3

s∈An

n

4s
= 1

for n > 4. Let us take the generator g(s) = n
4s for a fixed n > 4, then we note that

g(s) is decreasing on [1, u] and has continuous derivative on [1, u] for all u > 1. We
note that

1− 1

g(u)
= 1− 4u

n
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and
u∫

1

g′(t)

g(t)2
dt =

4

n
− 4u

n

so that if

1− 4u

n
≤ 4

n
− 4u

n
with the choice r = 1 in the proof of Lemma 2.4 then n ≤ 4, violating the inequality
n > 4. Appealing to Lemma 2.4 then the equation∑

3
s∈An

n2

16s2
= 1

also has a solution, which further be rewritten in the form∑
3

s∈An

1
4s2

n

=
4

n
.(3.1)

By iterating the argument on (3.1) in the sense of Lemma 2.4, it must be that the
equation ∑

3
s∈An

1

s
=

4

n

for each n > 4 with n ∈ N has infinitely many solutions. This is impossible, thereby
ending the proof. �
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