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Abstract

In this letter a theorem is stated on the reconstruction of the rotation from stresses with
respect to rotated coordinate axes. In most literature a coordinate axis rotation is
defined by an angle. Motivated by practical applications, we define the rotation by a unit
vector expressed in Cartesian coordinates. An example and an application from the
analysis of extreme stresses clarify the theoretical result and demonstrate the practical
potential of the theorem.

A stress state with respect to the axes x and y, is defined by the normal stresses 0y, gy, and the shear stress 7, ,,
see Figure 1. We consider stress states for which it holds that a, # g, V Ty, # 0.

Figure 1: A stress state with respect
to the axes x and y.

The direction of the X-axis as a rotation of the x-axis over a given angle ¢ is defined by the unit vector ez, see
Figure 2.
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Figure 2: The X-axis as a rotation

of the x-axis over a given angle ¢.
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The stress state with respect to the axes X and y, is defined by the normal stresses o, Oy and the shear stress
Tx,y, see Figure 3.
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Figure 3: The stress state with
respect to the axes X and .

The stress state with respect to the axes x and y and the stress state with respect to the axes X and y, are for a
given axis rotation related by Mohr’s formulas:

(af + 05,)/2 = (O’x + ay)/Z

[(gJE - 05,)/2] _ [cos(2<p) —sin(Z(p)] _ [(ax — ay)/Z]

—Tzy sin(2¢p) cos(2¢) —Txy

1 Lemma
Define
[c] L [COS(<P)
s sin(¢)
Then
o] =12, =2 [
ith
wi A=cr(ox—0y) +2°5 Tyy
Proof

Using Mohr’s formulas:

Oz — 0y = (1 +cos(2<p))-(0x—0y)/2 + sin(2¢) - Ty,
=c?- (0, —0y) +2-C 5 Tyy
=(c-(0x—ay)+2-s-1x,y)-c
=1c

Tyy — Tzy = Sin(2¢) - (o, — Jy)/Z + (1 —cos(2¢)) - Tyy
=c-s-(oy—0y)+2-s% 1y,
= (c-(ax—ay)+2-s-rx,y)-s
=1's

O

The following theorem provides the reconstruction of the rotation from stresses with respect to the
rotated axes.



2 Theorem
(1) Let oz F 0y V Tgy F Txy, then

-0 0z — 0

y X y
&x = s8N ° [ ] ”[ - ]”
€x =S8 (Ox y) Ty — Tz / Ty — Ta§

(2) Let oz = 0y N Tgy = Tyy, then

fortye, #0

2T 2T
& = sgn(rx’y) . [ay _xgx] / ”[Gy _xgx]

andfort,, =0

Proof

(1) From A # 0 and the lemma it follows

sgn(o; — 0,) = sgn(d) = =

e~=ﬁ.[2'1—x,y]/||[2-rx,y] —SgH(O’ O') [ — 0y ]/”[ Oz — 0y ]”
=2 |oy— oy 0y — Oy x Y) Txy — Ty Txy — x5

(2) From A = 0 it follows

forty,, #0

sgn( xy)—sgn(rxy) |Tx3;|

c 2-Tyy 215 _ 2Ty, 2Ty,
- 2Ty . [Uy - Ux] / ||[Uy - Ux] B Sgl’l(‘[x,y) - [Uy - Ux] / ||[Uy - Ux]

andfort,, =0 (O’x * O'y)

2Ty
e ==

Cc

A=c (oy—0y)+2:5 Ty, =c-(0x—0y)+25:0

0=C-(crx—ay) =0 c=0

c—cos(<p)—0/\e<—— —] = go—g = s=sin(p)=1

ee =[] = [}



3 Example
Given:

A stress state with respect to the axes x and y, see Figure 4.

0, = +70 N/mm? 10 N/mm?
oy = —10 N/mm?
Txy = —30 N/mm?

YT
- ~ |—=70 N/mm?

— > 30N/mm?

Figure 4: A given stress state with
respect to the axes x and y.

A stress state with respect to the axes X and ¥, see Figure 5.

oz = +78 N/mm? 18 N/mm2

oy = —18 N/mm?
‘\/ < 14 N/mm?

Tzy = +14 N/mm?
/\‘ 78 N/mm?

Figure 5: The stress state with
respect to the axes X and J.

Using the theorem for the reconstruction of the rotation, see Figure 6:

0z — O 0z — O
y %~ Oy

€x = s8N0z — O [ - ]”[ - ]”
gn(oz = 0y) Txy — Txy Txy — Txy

sgn(78 — —10) - [2830—_—12]/ ” 2830—_—12]” — sgn(88) +88]/||[+88]”
A
[+2] Yé"
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Figure 6: The unit vector e, and
the reconstructed unit vector ez.



Extreme stress states:

Omin < 0% < Omax
Omin < 03 < Omax
Tmin < TJ‘ZJ/ < Tmax
Let
gy + oy, Ox — 0y 2 2
O = —2 , R = (—2 ) + (Tx,y)
Then
Omin = O;m — R Omax = 0m + R
Tmin = —R Tmax = TR

For the extreme normal stresses the following properties hold:
O% = Omax < 05 = Onmin
0% = Omin < 0y = Omax
0% = Omax = Tzy =0

O% = Omin = Tf)j} =0

For the extreme shear stresses the following properties hold:

4 Application from the analysis of extreme stresses

For the stress state displayed in Figure 4, we have

o, = crx;-cry _ (+70);(—10) — 30 N/mm?

2 2

Ro= (252) + ()" = (210 1 (<3002 = 50 N/mm?

=0, + R =30+ 50 = +80 N/mm?

O-max
Omin = Om — R =30 — 50 = —20 N/mm?

Tmax = TR = +50 N/mm?

Tmin = —R = —50 N/mm?



Reconstruction of the unit vector e; for the maximal normal stress 0y = 0,4y, See Figure 7.

Using the theorem for (a%, T,z‘j,) = (Omax 0):

Oz — Oy Oz — Oy
e = sgn(ox = 0) o o0 |/ ||[e,s s
= & ( xy ) Txy — Tzy / Txy — Tzy

—-10

30 — 0 S

= sgn(80 — —10) - [8_03; :100]/ ” [8_0 -30 —30

e sl
Sy /
~_ }L

T g0 N/mm?

Figure 7: The stress state with 03 = Oppqy-

]” = sgn(+90) - [

Reconstruction of the unit vector e; for the minimal normal stress 03 = 03,5, see Figure 8.

Using the theorem for (o, T,g,j,) = (Opmin, 0):

0z — O 0z — O
y %~ Oy
€x = s8N0z — O [ - ]”[ - ]”
gn(oz = 0y) Txy Tf,f// Txy — Txy

= sgn(—20 — —10) - [_20 N _30] / ” [_20 N _1()] ” = sgn(—10) - [:ég] / ” [:;8] ”

~30— ~30—0
= -1 [/ 20 N/mm?
=75 : 80 N/rii x/

;J —

/

Figure 8: The stress state with 0z = Opyip-



Reconstruction of the unit vector e; for the maximal shear stress Tz 3 = Typqy, See Figure 9.

Using the theorem for (O’x Tz5) = (Om) Tmax):

Oz — Oy ] ”[ Oz — Oy ]”

ex=sgn(oz—ay) [0 1,

Txy = Txy
= sgn(30 = -10)-[ 7 30 — +50]/”[ 30—+50”| = sgn(+40)- [+ ]/||[+40”|

-7 5]

1 30 N/mm?
V5 -2

E

30 N/mm2

Figure 9: The stress state with Tz 5 = Tpyqy-

Reconstruction of the unit vector ez for the minimal shear stress Tz 5 = Tjp;p, see Figure 10.

Using the theorem for (0',?, T,ZJ,) = (O, Tmin):

ex = sgn(ax Uy) [rxy Ty 37] ” [T:f, : 2’,37] ”
= sgn(30 — —10) - [ 30 — ]/ ”[ 30 1;)0] ” = sgn(+40) - [138] / ” [Igg] ”
=[] /[ -

- [ A\y/\/ f\/ o
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Figure 10: The stress state with Tz 5 = Tpyp.
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