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As we know increasing the hyperoperator order causes an increase of quantity of directions and 

branches of hyperoperator’s further development. In fact, at 4th order there is associativity 

direction bifurcation. Both of the versions has right to exist, however if it is possible then we 

should clarify what direction to consider as a general, primary, central and what direction to 

consider as a specific, secondary, marginal. 

According to the generally accepted definition, a hyperoperator is the repeated execution of 

operations using one order lower hyperoperator for a sequence of numbers equal to the first 

operand, and in an amount equal to the second operand. At the same time, nothing is said 

about such a defining characteristic as the number of operations executed, because it depends 

on the hyperoperator order. So for summation, the number of successor iterations equals to 

the value of the second operand, for the higher hyperoperators it is 1 less according to the 

general idea of binary operators. 

The consequence of this is some confusion in the verbal description of the actions performed. 

For instance, in order to multiply a number by n this number must be added to itself n number 

of times as people say. Well, let’s multiply a number by 1, as it is suggested we add the number 

to the number only 1 time and we get two times of the number. In order to raise a number to 

power of n this number must be multiplied by itself n number of times as people say. Well, let’s 

raise the number to power of 1, as it is suggested we multiply the number by the number only 1 

time and we get the square of the number. Our vocabulary implicitly requires the resolution of 

this contradiction. 
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Let’s presume that in the general formulation, the number does not need to be added to or 

multiplied by itself, but simply added or multiplied n number of times, where n is the second 

operand of the multiplication or the exponentiation operation respectively. In order to bring 

the sequence into compliance with the new wording, we need to add one more presumably a 

forward operator to one of the sequence ends,. Since the operators are binary adding another 

operator we have to finish what has been started and to add some closing quasi-operand or 

neutral element N to the sequence. Taking into account the obvious fact that the neutral 

element is not surrounded by two operators, as other operands are, we assume by contrast 

that the operator and operand that are close to each other, with the exception of the added 

neutral element, are functionally mutually associated and form one pair. 

An answer to the question of what operand the operator is associated with, either the first (the 

left) or the second (the right) will determine the neutral element position in the sequence, so 

will it be at the beginning (at the left) or at the ending (at the right). 

The generally accepted execution of addition / subtraction and multiplication / division 

operations in the direction from left to right for a sequence of arbitrarily chosen numbers and 

in case of presence of operators of both type in the sequence, the forward: the addition or the 

multiplication, and the inverse: subtraction or division, respectively, predetermines the 

associativity of the binary operator with the second (the right) operand, because only the 

associativity presence and only the presence of the associativity of the operator with its second  

(its right) close operand allows an unlimited rearrangement of pairs (operator and operand) in 

the sequence without a change of the result (see the illustration). As a consequence the neutral 

element position is at the sequence beginning 

(the leftmost). The proposed general approach 

to a hyperoperator is such that in fact each 

numeric element of the sequence, excepting the 

neutral element, is not just a number, but a 

second operand, an addend or a subtrahend to 

something, a multiplier or a divisor of something 

and so no. 

The traditional view on an operator 

commutativity test suggest to do a 

rearrangement of operands separately and 

without operators, which is the same as a 

rearrangement of falsely associative pair of an 

operator and its first operand breaks its real 

associative relation with the second operand and 

therefore causes well known so called non-commutativity of inverse hyperoperators of the first 

and the second order. In some sense their non-commutativity problem is solved. Their 

rearrangement is possible, but only as a rearrangement of separate operations (an operator 

and operand pair) in one piece. We can name this property as conditional commutativity, that 

is a commutativity with a certain condition. 
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The pair of an operator and its second operand represent an operation, which can be 

considered as a capsule, where the operator is responsible for the operation quality property 

(the operation inner logic that depends on the operator order and the operator direction: the 

sole forward, and two versions of inverse) and the second operand is responsible for the 

quantity property of the operation. The operation is a subject of action, and the object is the 

first operand of the operator. Exactly as it is said, as for example, when we multiply a consisting 

of myriads of atoms apple by 3, we image 3 separated identical apples as the operation result 

as consisting of myriads of atoms identical combinations, and not myriads of separated 3-atom 

molecules each having one respective atom of each of 3 apples, and what could be imagined if 

we would multiply a 3 by an apple. And this is despite the fact that the overall quantity of 

atoms in both of variants of the operation result imagination is the same. 

From the school desk we all know well that the result doesn’t depend on places of operands in 

the addition and multiplication operations, neither the numerical quantity nor the value 

measurement. Therefore there is no any use to search for operands’ functional differences, so 

to say, to search for “truth”. But I think that for the purpose of conducting a hyperoperator 

analysis it is needed to be abstracted from this stereotype and to approach critically to 

happening inside a hyperoperation. 

It is obvious that the first operand of each binary operator of a sequence of single-order 

operators is not just a number, but it is an operation result where this fist operand is the 

second one in a capsule with its own operator. In order to deal with any first operand in the 

sequence as with an operation object one have to preliminary execute an operation where this 

first operator is the second one, and to repeat this moving back to the causes through the chain 

of operations. Any first operand is the first because it is received as the previously executed 

operation result in the logic of causes and consequences. The chain of ascent to causes is 

ceased by the neutral element that leads the sequence and does not have its own operator. On 

the following example each operation object is placed into a pair of brackets, and each 

operation subject – the operation itself consisting of operator and its second operand is out of 

brackets, but highlighted in color (forward operations in red, inverse operations in blue): 

                                   

where   and   - respectively forward and inverse operators of the 1st or the 2nd order. 

This is also an argument in favor of performing operations in a sequence of single-order 

operators, but of any quality (forward and inverse) in the direction from left to right by default 

as general rule, since, on the contrary, the execution of such operations from right to left, with 

or without any of the options for associating the operand and operator, does not provide the 

possibility of rearrangement either operands or operations while maintaining the calculation 

result for hyperoperator orders up to the second inclusive. Execution from right to left breaks 

the actual relation between the operator and its second operand, replacing the latter with the 

result of the previous calculation, which is equivalent to the “anomaly-producing” technique of 

using parentheses, the expansion of which can cause the operators to be inverted to their 
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opposites. The harmony and beauty of arithmetic operations are violated. In addition, inside 

the brackets, each individual expression must begin with an operation on a neutral element: 

In the case of parentheses, the subjects of a possible permutation are associated pairs 

consisting of operators and parenthesized expressions as the second operand for their 

operators. Carrying out permutations of all expressions in brackets along with their associated 

operators, leads to a visual change in the order of the operands in the sequence to the reverse 

and seems to be like performing a sequence of operations from left to right, however, this does 

not save us from the need to open brackets and from the need to perform operations with 

neutral element, which itself always has the highest execution priority, each time before the 

execution of the next operation in the sequence: 

                                             

Calculating a sequence consisting of operations of the same order and the same quality (either 

forward or inverse) is a specific case relative to the case described above, therefore, the result 

of calculating such a sequence can’t be an argument to justify the arbitrariness of the choice or 

the opposite choice of the direction of performing operations in the sequence in the general 

case. Here it should be stated that the accepted direction of calculation of a power tower from 

right to left, which is the basis of the Tetration operator, violates the general rule. 

A calculation direction of a sequence of single-order operation (the generally accepted is from 

left to right) and positions of the 1st and the 2nd operands (as it is generally accepted the 1st is at 

the left and the 2nd is at the right) are mutually conditioned. So if the calculation would be 

conducted in the direction from right to left then the right operand would be considered as the 

1st, or if the right operator would be the 1st one then the calculation direction would be 

conducted in the direction from right to left. 

Here it is important to follow the uniformity of the direction of calculation for operations of all 

orders, choosing one (the generally accepted) of two for operators of the lower orders the 

chosen one should be applied to operators of the higher orders. As it is above mentioned 

switching the direction means an effective mutual exchange of places for the 1st  and the 2nd 

operands, but since the operands carry completely different functions, the mutual exchange of 

operand places changes the calculation logic completely. For this reason switching the 

calculation direction in a process of the transition from lower to higher operator order is not 

forbidden but requires an explanation of the made decision, a proof of its necessity.  

As it is well known two inverse binary hyperoperators exist for one forward binary 

hyperoperator of nth order, namely those are the hyper-root and the hyper-logarithm. The 

latter of orders below the 3rd are functionally indistinguishable and represent operators of 

subtraction and division for the 1st and the 2nd orders respectively. For the higher orders it is 

possible to methodologically select the primary and the secondary inverse binary 

hyperoperators out of the respective pair. 

The primary inverse binary hyperoperator is that one which operation will bring the result of 

the previous operation conducted with the forward hyperoperator of the same order to its 

initial state using the same length interval measured in operator quality units, because the 
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interval length sameness indicates the “180 degree” opposition of used the primary inverse 

hyperoperator quality unit relative to the quality unit used in forward hyperoperator, and that 

makes the primary hyperoperator to be an exceptional. Being the operation quantity property 

the second operand is responsible for the operation interval length, and this means that the 

second operands of the forward and presumably the primary inverse hyperoperator both have 

to have the same value. In circumstances of performing operations in the direction from left to 

right the hyper-root meets this condition and therefore it is accepted as primary inverse binary 

hyperoperator. Further in the context this inverse hyperoperator is meant as a inverse 

hyperoperator by the default. Below it is also explained why the separation to the primary and 

to the secondary inverse hyperoperators is critical in the scope of the conducted hyperoperator 

analysis. 

The hyper-logarithm does not use the quantity property, but returns it as the operation result. 

The hyper-logarithm could be primary inverse operator in case if in the forward operator 

operands would exchange their places what exactly happens at the opposite direction of the 

operations calculation. The power tower calculation from right to left is performed as if the 

operands of the exponentiation operator exchanged their places however it is false according 

to the exponentiation operator definition. There is a contradiction. Down below it is 

demonstrated how the hyper-logarithm plays the primary inverse operator role in case of 

performing operations in the direction from right to left. 

The forward binary hyperoperator is a sequence consisting of equal to the defined 

hyperoperator second operand absolute value quantity of operations which are performed by 

binary hyperoperators of one order lower than the defined hyperoperator and started by a 

neutral element of one order lower than the defined hyperoperator which takes place of the 

first operand of the first operation of the sequence and where copies of the defined 

hyperoperator first operand take places of all second operands of those operations and where 

hyperoperator quality (forward or inverse) depends on the defined hyperoperator second 

operand arithmetical sign as follows: if the sign is positive then the quality is forward else the 

quality is inverse. The hyperoperator general definition is following: 

HO(–1,n,a,b) := HO|b|(S(b), n – 1, .. HO2(S(b), n – 1, HO1(S(b), n – 1, N(n – 1, a), a), a) .. ,a), 

(50.1)  

HO(–1,n,a,b) := HOb(1, n – 1, .. HO2(1, n – 1, HO1(1, n – 1, N(n – 1, a), a), a) .. ,a) at b ≥ 0, 

(50.2), 

HO(–1,n,a,b) := HO-b(–1, n – 1, .. HO2(–1, n – 1, HO1(–1, n – 1, N(n – 1, a), a), a) ..,a) at b ≤ 0, 

(50.3) 

a↑(n)b = N(n – 1, a)↑(n – 1)a1
↑(n – 1)a2  ... 

 ↑(n – 1)ab   at b ≥ 0,  a1= a2 = a3 = .. = an = a     (51.1) 

a↑(n)b = N(n – 1, a)↓(n – 1)a1
↓(n – 1)a2

 ... ↓(n – 1)a-b   at b ≤ 0,   a1= a2 = a3 = .. = an = a     (51.2) 
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where HO(d, n, a, b) – hyperoperator; d – hyperoperator quality (forward or inverse), accepted 

following values: +1 – for the forward, –1 – for the inverse; n – hyperoperator order, a natural 

positive number which is above zero; a - the 1st hyperoperator operand; b – the 2nd 

hyperoperator operand; N(n, a) – neutral element of nth order for number a; S(x) -  sign 

function that return 1 in case  if x is a positive and returns –1 in case if x is a negative; HOi(d, n, 

a, b)i – hyperoperator of ith calculating iteration; a↑(n)b – forward hyperoperator of nth order; 

a↓(n)b  - inverse hyperoperator of nth order. 

If the second operand is positive then the forward hyperoperator of the lower order is applied, 

otherwise the inverse hyperoperator of the lower order is applied. Operations quantity is equal 

to the second operand absolute value. 

The usage of inverse hyperoperators of lower order in the hyperoperator general definition 

reveals an obvious but critical dependence of the latter to the primary inverse hyperoperator 

choice and therefore justifies the decision to conserve the sequence calculation direction in the 

transition from lower to higher orders of the hyperoperators. 

In the specific 0th order hyperoperator (successor/predecessor) definition the second operand 

is ignored (the operator is unary) and the quality of the hyperoperator (forward or inverse) and 

therefore the operator result is defined by d value:  

HO(d,0,a,b) := a + d.    (52) 

The neutral element is a function of the first sequence operation where the neutral element is 

the first operand, more precisely this is a function of the operator order n and the second 

operator operand a. Therefore in a sequence of single-order operations the 1st operation 

determines its fist operand – the neutral element: 

N(n, a) a b c d.   (53) 

In this case, the first operation in the sequence, the one performed on the neutral element, is 

what we mean by the operation using the unary operator. Thus, we can conclude that the 

neutral element is a function of a unary operation. The value of the neutral element does not 

depend on the quality of the operator (forward /inverse ). 

The neutral element function is defined as a single inverse binary operation of nth order where 

both operands are value a: 

N(n, a) = HO(–1, n, a, a) if n > 0,    (54) 

where N(n, a) – neutral element function; n –hyperoperator order; a – arbitrary real number; 

HO(–1, n, a, b) – inverse binary hyperoperator of nth order. 

It is obvious that a neutral element value does not depend on the operation quality (forward or 

inverse) and this is fundamental. 
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Table of neutral element N for number “a” depending on hyperoperation order “n” 

Hyperoperation 
order, n 

Forward hyperoperator | 
Inverse hyperoperator 

Operation for 
searching N 

Result of N  or 
Equation for N 

0 Successor | Predecessor - N = a 

1 Addition | Subtraction a – a 0 

2 Multiplication | Division a / a 1 

3 Exponentiation | Root extraction   
 

 N =   
 

 

4 Acceleration | Deceleration     N =   
       

 

The exception is the way of getting a neutral element for the zero order hyperoperator 

(Successor/ Predecessor). Due to the fact those are atomic operators the whole math is built on 

and also due to the fact those are not a binary operator, not having their second operands 

which determine the quantity property in general, the neutral element value is just the original 

number a - the sole hyperoperator operand. 

It is obvious the hyper-root is used for a neutral element obtaining. If the sequence calculation 

direction would be from right to left then it would be fairly to use the hyper-logarithm for the 

purpose and in this case the neutral element would be always 1 for hyperoperator orders 

above 1. In my opinion this invariant can’t be a reason to use the hyper-logarithm as basic 

inverse hyperoperator because it doesn’t propagate to hyperoperator orders below 2 therefore 

is not a general. 

Despite the fact the neutral element is an operation function and depends on the operation 

second operand, nevertheless a neutral element value could be an invariant for a definite or 

indefinite sequence of single order operations with arbitrary operator quality (forward or 

inverse) and arbitrary second operands. There is unconditional neutral element invariance for 

hyperoperator orders up to 2 inclusively. In fact for the 0th order it is the original number a, and 

for the 1st and 2nd orders it’s even a constant (see the table). 

If we approach mathematically rigorous, then the result of calculating the neutral element of 

the first order using zero as an operand has an undefined value, it can be any finite number. If 

you do not approach strictly and consider the division operator as a ratio, implying that the 

ratio of two equal values equals to one, then you can take 1 as a neutral element in this case, 

especially since 1 belongs to the set of numbers of possible results of dividing zero by zero. You 

can also consider a definition of the neutral element through the limit:  The non-rigorous 

approach has wider practical application, in particular, the postulate used in the definition of 

the product operator is consistent with it that the product of the zero number of multipliers is 

equal to 1, otherwise it would be impossible to formulate the multiplical concept. 

A consequence of the forward hyperoperator definition is that the latter returns a neutral 

element value if its second operand b equals to 0:  

HO(1, n, a, 0) = N(n – 1, a).    (55) 

Non-rigorously 00 = 1, since the neutral element of the 2nd order is a constant and equals to 1.  
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The inverse binary hyperoperator (the hyper-root) is defined recurrently through the solution 

of the equation to determine the forward hyperoperator, but with a mutual change of places of 

the returned result of the hyperoperation and its second operand in this equation as follows: 

x  = HO(–1 , n, a, b),    (56.1) 

a = HO|b|(S(b), n – 1, .. HO2(S(b), n – 1, HO1(S(b), n – 1, N(n – 1, x), x), x) .. , x) if b ≠ 0,    (56.2) 

a = HOb(1, n – 1, .. HO2(1, n – 1, HO1(1, n – 1, N(n – 1, x), x), x) .. , x) at b > 0,    (56.3) 

a = HO-b(–1, n – 1, .. HO2(–1, n – 1, HO1(–1, n – 1, N(n – 1, x), x), x) .. , x) at b < 0,    (56.4) 

x  = a↓(n)b,    (57.1) 

a = N(n – 1, x)↑(n–1)x1
↑(n–1)x2  ... 

 ↑(n–1)xb   at b > 0,   x1= x2 = x3 = .. = xn = x       (57.2) 

a = N(n – 1, x)↓(n–1)x1
↓(n–1)x2

 ... ↓(n–1)x-b   at b < 0,   x1= x2 = x3 = .. = xn = x        (57.3) 

where x – pointer to return value of the inverse binary hyperoperator. 

The hyper-root also can be expressed compactly through the forward hyperoperator of the 

same order with substitution in place of the first operand of the forward hyperoperator: 

a = HO(1, n, HO(–1, n, a, b), b).    (58) 

In general it is not allowed to supply 0 as the second operand to a inverse hyperoperator other 

than the inverse hyperoperator of the 1st order (the subtraction) . Obviously, as an exception, 

only zero can be allowed to divide by zero, but rigorously the result of this operation can be any 

number, as can be seen from the following equation derived from the previous: 

0 = N(1, x).    (59.1) 

Also, as an exception, it is possible to extract the root of zero degree only from 1, and the result 

of this operation can also be any number, but except for zero with a rigor, like the previous: 

1 = N(2, x).    (59.2) 

There is another general recurrent and at the same time explicit solution for the hyper-root, 

which, on the contrary, is not applicable to defining the operator as a sequence of operations 

with left associativity in the general case, but is applicable for it as a sequence with  right 

associativity where the hyper-root is not a main inverse hyperoperator: 

x  = HO(–1, n, a, b),    (60.1) 

x = HO(–1, n – 1, a, HO(1, n, x, b – 1)) if n ≥ 2,      (60.2) 

In the sequence of single-order 

operations of mixed quality 
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(forward /inverse ) with identical operands “a” (with an exception of the neutral element as 

the 1st operand of the 1st operation) the conditional commutativity is possible, which is 

observed regardless of the hyperoperation order (see fig.). At the same time, this rule checks 

the correctness of the choice of internal logic of the inverse hyperoperator as opposition of the 

forward, and what fundamentally distinguishes the inverse hyperoperator (the hyper-root) 

from an alternative (the hyper-logarithm). 

Checking equality of the left and right sequences, depending on the direction of the calculation 

(the associativity direction): 

                           

                        
 

 
 
      

 
 - left associativity,             

                        
 

     
 

  – right associativity,             

where   - root extraction,    - exponentiation. 

But if  represents a logarithm then  the equality is not respected for the left associativity and 

is respected for the right associativity: 

                            
        

   - left associativity,          

                         
          – right associativity.             

For any hyperoperator order observance of this equality, checked by a permutation of mixed 

(forward or inverse) operations performed with one operand a depends on the choice of the 

main inverse hyperoperator, which in turn is predetermined by the direction of calculation the 

sequence.  

As a consequence of the method of determining the neutral element the hyperoperator of the 

2nd order and above returns its first operand as the result in case if the second operand equals 

to 1: 

HO(d, n, a, 1)  = HO(–d, n, a, 1) = HO1(1, n – 1, N(n – 1, a), a) = a if n ≥ 2.    (62) 

The last statement is valid regardless to the hyperoperator quality (forward or inverse), 

because interchanged in the hyperoperator definition equation, the result of the hyperoperator 

and its second operand a are equal to each other based on the last equation. 

Due to the binaryity of hyperoperators, a remarkable common property of all forward 

hyperoperators is the return of 4 if both of its operands are equal to 2, which is observed 

regardless of hyperoperator order, but with the exception of the hyperoperator of the 0th order 

due to its non-binarity: 

HO(1, n, 2, 2)  = HO(1, n – 1, 2, 2) =  4 if n ≥ 1.     (63) 

Another interesting observable property of forward hyperoperators of the 4th and higher orders 

is that they tend to 1 when the second operand tends to –∞: 
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HO(1, n, a, –∞)  = 1 if n ≥ 4.     (64) 

Results of inverse hyperoperators of the 4th and higher orders belong to the set of 

transcendental numbers according to the set definition. In general a inverse hyperoperator 

result belongs to the set of countable numbers since the set of such numbers is a result of 

combining numbers of two countable sets to replace the first and second operands of the 

inverse hyperoperator respectively. According to the hyperoperator order, its result can be 

attributed to a countable subset of the corresponding order if its same result cannot be 

obtained by hyperoperators of lower orders. So the integer numbers as result of the 

subtraction are countable of the 1st order, the rational numbers as result of the division are 

countable of the 2nd order, the results of the root extracting, while being algebraic, are 

countable of the 3rd order, the results of the deceleration are countable of the 4th order, and so 

on. Despite the fact that results of the deceleration and results of the root extracting are 

irrational and for someone may seem similar, they are different in their essence. Just as a 

rational number cannot be represented through an integer, and an algebraic irrational cannot 

be represented as a fraction of rational numbers, the result of the deceleration cannot be 

represented as an algebraic number root of an algebraic number. As far as integers differ from 

rational ones, so rational ones differ from algebraic irrational ones, so far the latter differ from 

the result of the deceleration; they all differ from each other in just one hyperoperator order. 

But a common property of all countable numbers of the 2nd and higher orders is their non-

integrity, which automatically means the practical inaccuracy of the value that algebraically 

obtained only by means of passage to the limit when the number of recursions of the inverse 

hyperoperator, with the use of which these numbers are obtained, tends to infinity. 

The hyper-logarithm can be expressed recurrently and compactly through the forward 

hyperoperator: 

с = HO(1, n, a, HL(n, a, с)),    (65) 

where HL(n,a,с) – base a hyper-logarithm of nth order. 

As it is seen unlike the solution for the inverse hyperoperator in the solution for the hyper-

logarithm, the latter is substituted for the second operand of the forward hyperoperator, which 

determines its applicability as the main inverse hyperoperator when calculating the sequence 

from right to left. 

It is not possible to express the hyper-logarithm not compactly, namely, in the form of an 

equation for the sequence of hyperoperations of the lowest order as it is possible for the 

inverse hyperoperator since such operations quantity cannot be non-integer. This logical 

obstacle discredits the hyper-logarithm as the alternative main inverse hyperoperator, 

therefore it discredits the direction of performing operations in sequence from right to left (the 

right associativity) for which the hyper-logarithm would have to be such. 

 

Table of forward hyperoperator results for different argument values  
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Hyperoperator 
own name 

Addition/ 
Subtraction 

Multiplication
/ Division 

Raising to 
power / Root 

extracting 

Acceleration/
Deceleration 

The 
hyperoper
ator of 5

th
 

order 

Tetration 

Hyperoperator 
order 

1 2 3 4 5 - 

HO(1,n,a, –∞) –∞ –∞ 0 1 1 ? 

HO(1,n,a, 0) a 0 1   
 

     1 

HO(1,n,a, 1) a + 1 a a a a a 

HO(1,n,2, 2) 4 4 4 4 4 4 
 

Hyperoperator synonyms can be defined in order to shorten the notation: 

H(n, a, b) = HO(1,n,a,b),    (66.1) 

HR(n, a, b) =  HO(–1,n,a,b).     (66.2) 

The hyper-power function is a hyper-function that represents a single forward binary 

hyperoperator, where the function argument takes place of the hyperoperator 1st operand and 

an arbitrary real number takes place of the hyperoperator 2nd operand: 

y = H(n, x, a).     (67.1) 

The hyper-exponential function is a hyper-function that represents a single forward binary 

hyperoperator, where the function argument takes place of the hyperoperator 2nd operand and 

an arbitrary real number takes place of the hyperoperator 1st operand: 

y = H(n, a, x).     (67.2) 

The hyper-root function is a hyper-function that represents a single inverse binary 

hyperoperator, where the function argument takes place of the hyperoperator 1st operand and 

an arbitrary real number takes place of the hyperoperator 2nd operand: 

y = HR(n, x, a).     (67.3) 

The hyper-logarithmic function is a hyper-function that represents a hyper-logarithm, where 

the base is an arbitrary positive real number: 

y = HL(n, a, x).     (67.4) 

A function built on the basis of a binary hyperoperator, but in which an arbitrary constant and a 

function argument are interchanged as the first and second operands of a binary operator, can 

be called “flipped” in relation to the function where the mutual change of places is not 

performed. Strictly speaking, this definition is relative. But with regard to the conducted 

hyperoperator analysis and the analysis of functions which are built with the use of the 

hyperoperators, we can agree that we will consider the function flipped, where the place of the 

first operand - the object of the operation is occupied by an arbitrary constant, and the place of 

the second operand, which is responsible for the quantitative change of the object of the 

operation, is occupied by the argument of the function. This way the hyper-exponential 
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function is the flipped hyper-power function. The 1st operand of the hyperoperator - forward 

with respect to the hyper-logarithm, takes the place of an arbitrary constant in the hyper-

logarithm itself, but not the argument of the function, for this reason the hyper-logarithm is not 

referred to flipped functions. 

Having three binary hyperoperators (one forward and two inverse) it is possible to compile 

three hyper-functions and to compile a one flipped function out of each of them three, all 

together six hyper-functions of nth order can be compiled. Therefore it is possible to define two 

more hyper-functions except those above mentioned. I don’t know generalizing names of those 

functions, but we can refer them to flipped inverse hyper-functions and name them as follows:  

The flipped hyper-root function:  

y = HR(n, a, x).     (67.5) 

The flipped hyper-logarithmic function:  

y = HL(n, x, a).     (67.6) 

The hyper-function table for hyperoperator orders from 1st to 3rd 

Function 
group 

Generalizing 
function name 

Generalizing 
definition 

Specific definition depending on the order 

1 2 3 

Forward 
functions 

Hyper-power H(n, x, a) x + a 
  

a + x 

x ⋅ a 
  

a ⋅ x 

   

Hyper-exponential H(n, a, x)    

Inverse 
functions 

Hyper-root HR(n, x, a) 
x – a x / a 

  
 

    
 
   

Hyper-logarithmic HL(n, a, x)       

Flipped  
inverse 

functions 

Flipped hyper-root HR(n, a, x) 

a – x a / x 

  
 

    
 
   

Flipped hyper-
logarithmic 

HL(n, x, a)       
 

     
 

 

The three groups of hyper-functions are formed by their growth rate characteristic at arbitrary 

constant above 1 and positive argument and also by the fact that for hyperoperator orders 

below the 3rd functions of one formed group are functionally identical. 

For forward functions their growth rate is not less than the y=x growth rate, for inverse 

functions their growth rate is not higher than the y=x growth rate, and for flipped inverse 

functions their growth is negative.  

All hyper-function are different in their math essence, however for the 1st and 2nd 

hyperoperator orders functions that belongs to one group are functionally identical and return 

identical results for respective orders. Also the forward hyper-function of the 1st and 2nd orders 

are identical to the inverse hyper-functions of respective orders with the only difference that 
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for inverse hyper-functions an arbitrary constant is opposite to that for forward hyper-functions 

with respect to the value of the neutral element for the corresponding order. 

Despite the fact that all hyper-functions of the 1st and 2nd orders, except for the function y=a/x, 

are linear, I did not combine them into one group, since they have essential differences. 

Table of returning values of the hyper-exponential function in base 2: y = H(n, 2, x)                  

for different hyperoperator orders “n” and argument values “x” 

N 
X 

–∞ –2 –1 0 1 2 3 4 

1 –∞ 0 1 2 3 4 5 6 

2 –∞ -4 -2 0 2 4 6 8 

3 0 ¼ ½ 1 2 4 8 16 

4 1    
  

  =   
 

 
1.09050773 

   
  

  =   
 

 
1.18920712 

  
  

 
1.41421356 

2 4 4
2
 = 2

4
 = 16 16

2
 = 2

8 
= 256 

5 1           
  

 
 

  

1.28486975 

       
 

 

 

1.37997040 

    
 

  
1.55961047 

2 4 4
4
 = 2

8
 = 256 256

256 
= 2

2048
 

Tetration ? –∞ 0 1 2 4 2
4
 = 16 2

16
 = 65536

 

 

With argument growth step equal to 1 each next value of the hyper-exponential function in 

base 2 is 2 raised to power of the previous function value for the 4th hyperoperator order, is the 

previous function value raised to power of the previous function value for the 5th 

hyperoperator order, and is the previous function value raised to power of 2 for the Tetration 

based hyper-function (see table). Based on this pattern, and by the criterion of growth rate I 

would attribute the Tetration to an order of 4½ as growing faster than the 4th order hyper-

function, and slower than the 5th order hyper-function. 

An interesting pattern of hyper-exponential functions in base 2 is also observed. The value of 

the hyper-function with an argument equal to 4 is equal to the value with an argument equal to 

3, but for a hyper-function of one order up than the one under consideration, which is valid 

starting from the first order of the hyperoperator: 

H(n, 2, 4) = H(n + 1, 2, 3) if n ≥ 1.     (68) 

There is such a family of analytically defined functions that not the functions themselves, not 

one of their derivatives (the first, the second, and further without a restriction) do not have 

extrema and points of discontinuity for any values of the argument within the boundaries of its 

definition. For them, the values of functions and all their derivatives are either equal to zero, or 

are constant, or only decrease, or only increase. Unfortunately, I do not know the name of the 

family of such functions and if there is no known name then it could be a family of perfectly 

monotonous functions. This family includes hyper-exponential, hyper-logarithmic (the list is 

inclusive). The remaining analytically defined functions, by definition, have this characteristic in 

the interval of the argument between their own points of discontinuity and extremum points 

and such points for all their derivatives. These functions include all hyperoperator based 
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functions, elliptical, trigonometric, inverse trigonometric, hyperbolic and many other functions. 

In the latter it is appropriate to talk about perfectly monotonous function scopes.  

Different from all the other hyper-exponential functions in base 2, the hyper-exponential 

function built on the basis of Tetration passes through points: (–1,0); (0,1); (1,2) (see table) 

which a straight line can be drawn through. Consequently, in the interval of the argument from 

–1 to 1, the hypothetical hyper-exponential generalization function for a non-integer argument 

built on the basis of the operator Tetration has extrema of the derivative, so the function is not 

perfectly monotonous. Also the function obviously has a break at argument value of -2, and it is 

not known whether it has a definition for its argument to the left of this point. These 

circumstances are signs that this function is not hyper-exponential. Moreover, it has 

coincidences with two other hyper-exponential functions at three points of the argument: 0,1,2 

with the hyper-exponential function of 3rd order – the Exponent and 1,2,3 with the hyper-

exponential function of 4th order - the Accelent (see table), which would be an anomaly for a 

hyper-exponential function. At the same time, there are no three points of argument at which 

any hyper-exponential function built on basis of hyperoperator with left associativity, including 

Exponent and Accelent, would coincide at any combinations of power base applied and 

especially for Exponent and Accelent arbitrary multiplier applied for each of functions 

separately. All this discredits the right associativity with the use of which the Tetration operator 

is defined. 

Computing the power tower from right to left is tantamount to applying parentheses that 

separate the second operand from its operator in sequence, which leads to an "anomaly" in the 

result, where normal result means the result obtained according to the definition for the 

hyperoperator, that is, with the so-called left associativity or the direction of evaluation from 

left to right. 

I do not know what argument exactly determined the choice of right associativity in the 

Tetration operator. If the reason was the presumption that a higher-order operator should not 

be compactly described in terms of lower-order operators, that convenience of compact 

notation as a reason we introduce new operators into use, then I can comment that objective 

reality exists independently on our subjective idea of it, and mathematics exists independently 

on our way of describing it. Apparently, the hyperoperator of the third order – the raising to a 

power - is a rather “powerful” tool that has a special feature - the ability to compactly describe 

an operator of one order higher than itself. By the way, in English terminology it is called 

“power”. But apparently the latter was not taken into account. On my opinion, the 

hyperoperator of the 5th order can no longer be described compactly in terms of the 

exponentiation. Obviously, here comes the limit of the "power" of the latter. 
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Arguments of choice the sequence computation direction in the hyperoperator definition 

From left to right From right to left 

Geometrical growth of presumable hyper-exponential 
function of the 4th order formulated on a basis of the 4th 
order hyperoperator defined as a power tower with the left 
associativity coincides with the function itself (argument of 
necessity) 

For the order of hyperoperators 
above the 1st, the neutral 
element obtained by means of 
the hyper-logarithm as the main 
inverse hyperoperator for the 
direction of calculation from 
right to left is equal to one. The 
argument is dubious, because it 
simultaneously points to 
imperfection 

Proven left-to-right directionality for hyperoperators of 
order below the third, and consistency in the choice of the 
computation direction when moving from lower to higher 
orders of hyperoperators, without the need to redefine 
them (argument of consistency) 

Similarly to the forward hyperoperator and being the main 
inverse hyperoperator for the direction of calculation from 
left to right, the hyper-root through its second operand 
receives a quantitative characteristic of the operation, 
which results in the possibility of obtaining a hyper-root by 
means of a recursive equation consisting of a sequence of 
lower-order hyperoperators, which is impossible for a 
hyper-logarithm (argument of preservation of 
hyperoperators properties) 

The impossibility of compact 
notation for a higher-order 
operator using lower-order 
operators as the basis for 
introducing a next-order 
operator. (argument of 
convenience) 

Hyper-exponential functions of different orders, formulated 
on a basis of forward hyperoperators defined with left 
associativity, never coincide with each other at three points 
of the argument. They are  perfectly monotonic functions 
over the entire interval of the argument definition 
(argument of perfection). 

The existence of explicit 
recurrent solution for the hyper-
root which is however not the 
main inverse hyperoperator for 
the right associativity 

 

It is not proposed herein to change the existing power tower calculation rule implying right 

associativity, therefore it is not proposed to redefine Tetration, Pentation, Hexation, etc. But it 

is proposed to recognize the legitimacy of the hyperoperator definition as a sequence of 

operations with left associativity, with the status of the main hyperoperator definition  assigned 

to it, and to separate the hyperoperators thus obtained into a separate set. It is also proposed 

to use own names of hyperoperators defined according to the proposed rule. So for the 4th 

order they are "Acceleration" and "Deceleration" as forward and inverse hyperoperators, 

respectively. 

In order to distinguish the above-described hyperoperators defined with left associativity from 

those defined with right associativity, it is proposed to introduce a separate general shortened 

arrow notation for hyperoperators defined with left associativity, orders higher than 3rd, as 

follows from the table below. 
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Arrow notation of hyperoperators defined using left associativity 

Hyperoperator quality 
Hyperoperator order, n 

4 5 6 

H(n,a,b) a↗b a↗↗b a↗↗↗b 

HR(n,a,b) a b a  b a   b 

HL(n,a,с) с↖a с↖↖a с↖↖↖a 
 

Sequences of operators are composed and calculated from left to right with the priority of 

computing a sequence of operations of a higher order over a sequence of operations of a lower 

order and with equal priority of operators of the same order, regardless of their quality. There 

are 3 equivalent entries of one example down below: 

 ↗↗ ↗↗↗
     ↖↖↖  

 ↖↖
 ↗↗↗ 

↗ ↗↗
             

  ↗↗
    ↗↗↗       ↖↖↖    

  ↖↖
  ↗↗↗  

 ↗
  ↗↗  

            

H(4, HR(4, H(5, e, HL(6, HR(6, H(6, a, b), c), d)), HL(5, H(6, g, i), f)), H(5, j, k)), 

(69.3) 

The unary operator is essentially a binary operator with a neutral element as the first operand - 

the object of the operation, since there is an obvious circumstance: the operation cannot be 

performed on anything. If a direct operation is meant, then for the sake of brevity, it is 

customary not to indicate this operator, which, without assessing the correctness of the rule 

itself, probably caused the aforementioned confusion in the definition of the hyperoperator. If 

the inverse operator is meant, then it must be indicated, but again, for the sake of brevity, if 

possible, without indicating the neutral element. However, since the inverse second-order 

unary hyperoperator (unary division operator) is not used, one has to write its full binary form 

with a neutral element: 1/a. I personally had to explicitly use this form of notation, doing so for 

the sake of readability of the program code, when in set of code rows it is required to follow 

the sequence of certain operations without regard to their quality (quality of forward or inverse 

action) but keeping the same order of operands. As a result of this technique, the expression 

looked like this: y=1/a*b/с, although in my opinion the expression in the form y=/a*b/с is also 

well readable and intuitive as everyone understands which neutral element is meant by default 

in a factorial case. Also, a stand-alone /a or :a could be read as the reciprocal of a, in the same 

way that –a is considered as the opposite of a. 
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