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Abstract 

The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined as 
follows: start with any positive integer n. Then each term is obtained from the previous term as 
follows: if the previous term is even, the next term is one half of the previous term. If the 
previous term is odd, the next term is 3 times the previous term plus 1. The conjecture is that no 
matter what value of n, the sequence will always reach 1.  For example, starting with n = 12, one 
gets the sequence 12, 6, 3, 10, 5, 16, 8, 4, 2, 1. 

As of 2020, the conjecture has been checked by computer for all starting values up to 268 ≈ 
2.95×1020.  The eccentric Hungarian mathematician Paul Erdős claimed that "Mathematics is not 
yet ready for such problems," and referred to the conjecture as "Hopeless. Absolutely hopeless." 

The Collatz Conjecture describes the iterations of integers applied to a very simple function. The 
conjecture specifically states: "Starting from any positive integer n, iterations of the function 
C(n) will eventually reach the number 1. Thereafter iterations will cycle taking successive values 
1, 4, 2, 1, 4, 2, 1 ..." (Lagarias, 2010).  

To define a basic term, an integer n will be defined as odd when n ≡ 1 (mod 2).  Likewise, n 

will be defined as even when n ≡ 0 (mod 2). With those common terms specified, the following 
is the function known as the Collatz function: 

        3n+1 if n is odd 

C(n) =  

         n/2 if n is even 

The Collatz function is named as such with respect to its originator. 

The Collatz conjecture was made in 1937 by Lothar Collatz. Again, as of 2020, the conjecture 
has been checked by computer for all starting values up to 268 ≈ 2.95×1020, but very little 
progress has been made toward proving the conjecture. The author is shocked that such a simple 
proof exists. The author is humbly grateful for this first proof as well, as it came to me in a 
“flash” in such a way as I believe it was given to me (my brothers Ben and Phil will understand 
this). The second proof did not come to me via a “flash” experience, as the first one was. 
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First Proof: 

For the purpose of analysis, a more succinct function describes the same graph with fewer 
iterations, as the odd component of the function, C(n) = 3n + 1, ensures that the following 
iteration will result in an even value. This function, supported by C.J. Everett in "Iteration of the 
number-theoretic function: f(2n) = n, f(2n + 1) = 3n + 1" is as follows: 

 

        (3n + 1)/2 if n is odd 

T(n) = 

        n/2 if n is even 

 

The function T(n) is logically related to C(n) in that the odd component of T(n) = C(C(n)), while 
the even component remains the same. While research is far more common on this version of the 
function than the original, their relation makes the research directly relevant. 

First, we must consider that in the Collatz sequence, an odd number can never converge to one, 
since odd numbers are always increased by 3n + 1. Since even numbers are divided by two, they 
will always decrease as long as the number stays even. By definition, an even number can only 
converge to 1 if the even number is equal to 2 raised to an integer power.  This is because if an 
even number has an odd factor in it, then eventually the number will become odd and then will 
increase by 3n + 1. Stated mathematically, if the even number is e, then: 

Equation 1:    e = 2k, where k is a positive integer, and k ≥ 1. 

Therefore, we have shown that the only way that any positive integer selected to start Collatz 
sequence, the sequence must reach an even number that satisfies Equation 1, otherwise it does 
not converge to 1.  Therefore, an equivalent way of stating how to prove the Collatz Conjecture, 
is to prove that every positive integer selected for the Collatz sequence must converge to an 
even number that satisfies the form of Equation 1, if this is proved then the Collatz 
Conjecture is true.   

Furthermore, we can define the only way an odd number can converge to an even number in the 
form of Equation 1, is if the odd number is equal to n and: 

Equation 2:      2k = 3n + 1 

Let us define 2k = 3n + 1, where k is a positive integer, and k ≥ 1. Also, n is an odd integer, where 
n ≥ 1. Solving for n, 

2k = 3n + 1 

2k – 1 = 3n 

n = (2k – 1)/3, and k is an integer, where k ≥ 1 
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Therefore, the only way an odd number, n, can converge to the format of Equation 1 is if: 

n = (2k – 1)/3 

 

Additionally, we are proposing the following Conjecture:  

Even Number Conjecture: any odd number, n, can only converge to 2k in the Collatz sequence, 
if and only if, k is even.   

Or, in other words, if k is an odd number, then an odd number, n cannot converge to 2k. 

Proof: 

If k is an odd number, then k = 2y + 1, where y is an integer, where y ≥ 1 

Then, n = (2k – 1)/3 = (2(2y+1) – 1)/3 

n = (2(2y+1)  – 1)/3 

3n = 22y+1 – 1 

n = (22y+1 – 1)/3 

3n + 1 = 2(2y+1)  

(3n + 1) = 2(2y+1) = 2122y = 2*22y 

(3n + 1)/2 = 2y 

 

However, by the Collatz sequence and Equation 1 and Equation 2, we know that that 3n + 1 can 
only converge to 1 if 2k = 3n + 1.  Therefore, since when k is in the form of an odd number 
where, k = 2y + 1, where y is an integer, where y ≥ 1, then: 

(3n + 1)/2 = 2y 

But since we know IAW Equation 2, to converge to 1, is if the odd number is equal to n and: 

2k = 3n + 1 

Therefore, 2y = (3n + 1)/2 is not in the form of 3n + 1, the odd number n cannot converge to 1 
IAW Equation 2.  Therefore, we have proven that an odd number n, cannot converge to 1 if the 
exponent for 2k is odd, that is if k = odd = 2y + 1.  Therefore, we have proven the Even Number 
Conjecture, that is any odd number, n, can only converge to 2k in the Collatz sequence, if and 
only if, k is even. Additionally, we conducted extensive experimental analysis in Excel to 
demonstrate that k must be even for 3n + 1 to converge to 1. In Table 1, page 7, below every time 
n = (2k-1)/3 converges to 1, k is even. We demonstrated this for up to k = 500, this was the limit 
for conducting the calculations in Excel with enough accuracy. Although we are only showing 
inn Table 1 calculations for k being even up to 48, we also conducted the calculations for k being 
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odd, and in all cases n = (2k-1)/3 did not equal to odd integers, many were not even integers, but 
had many decimal places. 

If k is an odd integer, then 3k + 1 is even, so 3k + 1 = 2ak′ with k′ odd and a ≥ 1. 

The Collatz Conjecture can be stated as: using the reduced Collatz function C(n) = 
(3n+1)/2k where 2k is the largest power of 2 that divides 3n + 1, any odd integer n will eventually 
reach 1 in j iterations such that Cj(n) = 1. 

Now we must determine the lower limit that the Collatz function C(n) = (3n+1)/2k converges to. 

We know from Equation 2 on page 2 that: 

n = (2k-1)/3 

Therefore, substituting for n we have: (3n+1)/2k = (3((2k-1)/3) +1)/2k = ((2k-1) + 1)/2k  

= 2k/2k = 1. Therefore, the Collatz function converges to 1. 

Let's suppose there are a finite number of even numbers of form 2k. Let N be the largest number 
of form 2k. Therefore, N = 2k, now let m = 2*2k = 2k+1, therefore, m = 2k+1 > 2k. Since m = 2k+1, 
then, m > N. But, m = 2k+1 > N. Because 2k+1 is of the same form as 2k, then m is of the same 
form as N, so m > N which contradicts our assumption that N is the largest number of form 2k. So 
there is no largest number of form 2k. Thus, there are an infinite number of numbers of form 2k. 

In the same way we can prove there are an infinite number of numbers of form 22y. Suppose 
there are a finite number of even numbers of form 22y. Let N be the largest number of form 22y. 
Therefore, N = 22y, now let m = 22*22y = 22(y+1), therefore, m = 22(y+1) > 22y. Since m = 22(y+1), 
then, m > N. But, m = 22(y+1) > N. Because 22(y+1) is of the same form as 22y, then m is of the 
same form as N, so m > N which contradicts our assumption that N is the largest number of form 
22y. So there is no largest number of form 22y. Thus, there are an infinite number of numbers of 
form 22y. This means that no matter how large Collatz function gets there is always a greater 
number of form 22y for the odd Collatz function to converge on to so it will converge to 1. By 
proving its infinitude, we have shown there is always another larger number of form 22y for the 
odd Collatz function to converge on, but we still need to show that it will definitely converge on 
a number of form 22y. It’s not enough to show that there is always a number of form 22y 
available. 

Another way to prove the Collatz conjecture is to show that all other numbers can be created by 
working backwards to 1, however, we will still include our above proofs at the end of this 
strategy. 

Even numbers can easily be ignored, they will (in a cycle) always get divided down to an odd 
number. Because every even number is an odd number multiplied by a power of two, unless it is 
of form 2k and then it will converge to 1 rapidly like a hailstone. I use this analogy because the 



5 
 

Collatz conjecture is often referred to as the sequence of numbers referred to as the hailstone 
sequence or hailstone numbers (because the values are usually subject to multiple descents and 
rapid ascents like hailstones in a cloud. 

For example, 80 comes down to 80     40     20     10     5. Because of this we can just focus on 
the odd numbers in the 3n + 1 problem. 

The numbers that we need to focus on are the odd numbers defined as: 
 

2n +1, where n = 0, 1, 2, 3, 4 … 

Now we will split these numbers into three equal groups: 

a = 6n + 1 

b = 6n + 3 

c = 6n + 5 

We can show that these groups all uniquely contain the odd numbers, as shown below: 

a[1,7,13,19,27...] 

b[3,9,15,21,29...] 

c[5,11,17,23,31...] 

Going a single "Collatz" step back from an odd number means multiplying by 2, this creates new 
even numbers: 

a1 =12n + 2 

b1 = 12n + 6 

c1 = 12n + 10 

To take the above numbers to the odd predecessors at this point in the Collatz sequence we 
would subtract 1 and then divide by 3 (reverse of 3n + 1) 

a1 − 1 and b1 − 1  are not divisible by three and have no odd predecessor at this depth. 
c1 − 1 is divisible by three and it creates a pattern: 4n + 3 

This implies that from every number in the form 6n + 5, going one step back in the Collatz 
sequence, we can generate all 4n + 3 formed numbers. 

When multiplying a1, b1 and c1 again by two (going a deeper step back) we get: 

a2 = 24n + 4 

b2 = 24n + 12 

c2 = 24n +20 
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b2 − 1 and c2 − 1 are not divisible by three thus, they have no odd predecessor at this depth. 
a2 − 1 is divisible, and reveals pattern: 8n + 1. 

Because b is in the form 6n +3 it is a special case, because multiplying by two will never result 
in a number that minus one is divisible by three. This is because 6n +3 is already divisible by 3 
so subtracting 1 from it will never be divisible by 3. This means that odd numbers of 
form +3 have no 6n + 3 odd numbers preceding them. 

This allows us to focus completely on 6n + 1 and 6n + 5 form numbers. 

For a and c we can come up with the following equations due to our proof of the Even Number 
Conjecture, that is, any odd number, n, can only converge to 2k in the Collatz sequence, if and 
only if, k is even. That is, k = 2y.  

 

𝑎𝑎 =
22𝑦𝑦(6𝑛𝑛 + 1) − 1

3
 

 

𝑐𝑐 =
22𝑦𝑦−1(6𝑛𝑛 + 5) − 1

3
 

 

The depth of y determines how deep we travel backwards (multiplying by two). The values 
for y from the equations are: 

y a c 
1 8𝑛𝑛 + 1 4𝑛𝑛 + 3 
2 32𝑛𝑛 + 5 16𝑛𝑛 + 13 
3 128𝑛𝑛 + 21 64𝑛𝑛 + 53 
4 512𝑛𝑛 + 1 256𝑛𝑛 + 213 
5 … … 

 

Now all the odd numbers that could be in a repeating cycle, we now have a method to calculate 
all their preceding odd numbers at different depths of y. 

At a depth of y =1 we get the following information as mentioned above: 6𝑛𝑛 + 1 and 6𝑛𝑛 + 5 
numbers will generate patterns: 8𝑛𝑛 + 1 and 4𝑛𝑛 + 3, respectively. 
 

This means all numbers in the forms: 8n + 1, 8n + 3, and 8n + 7 can be generated. After y = 1 we 
just miss the numbers in the form 8n + 5. 

Next we look at y = 2, the new additions are: 32n + 5 and 16n + 13. Scaling everything to 32n we 
can see that we can now form all odd numbers except in the form 32n + 2. 
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One level deeper again and the patterns added are: 128n + 21 and 64n + 53. This means that we 
can now form all odd numbers except those in the form 128n + 85. 

If this process is repeated, we can see that all odd numbers can be generated starting from 
just 6𝑛𝑛 + 1 and 6𝑛𝑛 + 5. 

We can easily see that if n = 0, then 6𝑛𝑛 + 1 converges to 1 at its smallest value, verifying the 
Collatz Conjecture for 6𝑛𝑛 + 1. When n = 0, we see that 6𝑛𝑛 + 5 converges to 5, we can easily 
verify that 5 will always converge to 1 by the following: 

The number 5 takes 6 sequences to reach 1: 5, 16, 8, 4, 2, 1. This easily confirms that 6𝑛𝑛 + 5 
always converges to 1, which confirms all odd numbers converge to 1, which is sufficient to 
prove the Collatz Conjecture. 

 

Second Proof: 

The Collatz function for the 3n + 1 problem can also be defined as follows: 

3n + 1 = (2k) *x with x = 2j+1 for some positive integers, j ≥ 0 and k ≥ 1. That is 3n + 1 = (2k) * 
(2j+1), where (2j+1) represents the odd factor left after conducting the 3n + 1 Collatz rule on the 
odd number. The only way the odd number will converge to 1 is if j = 0, which would reduce 3n 
+ 1 = (2k) * (2j+1) to 3n + 1 = (2k) * (1) = 2k. This only happens when there is no odd factor left 
after conducting the 3n + 1 Collatz rule on an odd number. 

 

Proof:  To prove the Collatz Conjecture we must prove that j will eventually converge to zero, 
which will remove the odd factor from the denominator. Let’s start with our Collatz equation: 

3n + 1 = (2k) * (2j+1), with j ≥ 0 

We must prove that j will always converge to zero.  

Now we must determine the lower limit that the Collatz function converges to:  

 

C(n) = (3n+1)/(2k)*(2j+1)  

 

We know from Equation 2 on page 2 that: 

n = (2k-1)/3 
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Therefore, substituting for n we have:  

C(n) = (3n+1)/(2k)*(2j+1) = (3((2k-1)/3) +1)/(2k)*(2j+1) =  

= ((2k-1) + 1)/(2k)*(2j+1) = 2k/(2k)*(2j+1)  = 1/(2j+1) , therefore,  

C(n) = 1/(2j+1)  

Our above Collatz sequence, 1/(2j+1) is bounded above because 1/(2j+1) ≤ 1 for all positive 
integers j. It is also bounded below because 1/(2j+1) ≥ 0 for all positive integers j. 
Therefore, 1/(2j+1) is a bounded sequence.  

Because a sequence is a function whose domain is the set of positive integers, we can use 
properties of limits of functions to determine whether a sequence converges. For example, 
consider a sequence an and a related function f defined on all positive real numbers such that f(n) 
= an for all integers n ≥ 1. Since the domain of the sequence is a subset of the domain of f, if the 

lim
𝑥𝑥→∞

 𝑓𝑓(𝑥𝑥) exists, then the sequence converges and has the same limit. For example, consider the 
sequence 1/(2j+1) and the related function f (x) = 1/(2x+1). Since the function f defined on all 
real numbers x ≥ 0 satisfies f (x) = 1/(2x+1) → 0 as x → ∞, the sequence 1/(2j+1) must satisfy 
1/(2j+1) → 0, as j → ∞. 

However, we are expecting the Collatz function to converges to 1, rather than 0. It is important to 
recognize that this notation does not imply the limit of the sequence 1/(2j+1) exists, but that it 
infinitesimally approaches 0. However, the sequence is, in fact, divergent. Remember the 
sequence’s lower limit is bounded below because 1/(2x+1) ≥ 0 for all real numbers x ≥ 0. It is the 
fact that x ≥ 0, for all x = positive real numbers, that allows the limit to approach 0. However, the 
Collatz sequence, 1/(2j+1) also has an upper bound because 1/(2j+1) ≤ 1 for all positive 
integers j. Since the Collatz sequence can only be positive integers because of the     

 

        (3n + 1)/2 if n is odd 

T(n) = 

        n/2 if n is even 

process, the Collatz sequence can only result in a positive integer, it cannot result in a fraction. 
For Collatz sequence to approach 0, there would have to be an infinite number of infinitesimally 
small fractions for the Collatz sequence to approach 0, which is impossible for the Collatz 
sequence. Therefore, since the Collatz sequence has an upper limit of 1 and a lower limit of 0, 
the Collatz sequence can only converge to 1, since if it is < 1, then the Collatz sequence is not an 
integer. This also proves that j will eventually converge to zero. For 1/(2j+1) = 1, then j = 0. 
Thus, we have proven the Collatz Conjecture. 
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Table 1. 

k 2k n  = (2k-1)/3 
2 4 1.00 
4 16 5.00 
6 64 21.00 
8 256 85.00 

10 1024 341.00 
12 4096 1365.00 
14 16384 5461.00 
16 65536 21845.00 
18 262144 87381.00 
20 1048576 349525.00 
22 4194304 1398101.00 
24 16777216 5592405.00 
26 67108864 22369621.00 
28 268435456 89478485.00 
30 1073741824 357913941.00 
32 4294967296 1431655765.00 
34 17179869184 5726623061.00 
36 68719476736 22906492245.00 
38 2.74878E+11 91625968981.00 
40 1.09951E+12 366503875925.00 
42 4.39805E+12 1466015503701.00 
44 1.75922E+13 5864062014805.00 
46 7.03687E+13 23456248059221.00 
48 2.81475E+14 93824992236885.00 

 

 

 


