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The geometrical optics corresponds to the limiting case
of a very small wavelength of light, λ→ 01, in comparison
with the characteristic dimension of the problem2 or in
other words to each of the other scales present, so that the
waves can be regarded locally as plane waves propagating
through space-time3. In case of a steady (constant or
unchanging in time4, time-independent) monochromatic
wave, the frequency5 is constant and the time dependence
of the eikonal, ψ, a function of space-time, is given by
a term −fθt (or we can write ∂ψ/∂t = −fθ) where fθ
denotes (angular) frequency2. So, ψ is a large quantity
due to a very small wavelength. Let us introduce ψ1

which is also called eikonal2. The relation between ψ1

and ψ can be expressed as2

ψ1 =
c

fθ
ψ + ct (1)

where the eikonal, ψ1, is a function of coordinates (space)
only2, ”a length”, a real scalar function6 and c is the
speed of light in vacuum. We consider that we need to
replace ψ to ψ1 because here we concern with a steady
monochromatic wave only.

In a 1-dimensional space, the equation of ray propaga-
tion in a transparent medium7 can be written as2,8–10

|~∇ψ1(x)| = |~n(x)| = n(x), x ∈ Ω ⊂ R1 (2)

subject to ψ1(x)|∂Ω = 0 (the solution, ψ1(x), at the
boundary, ∂Ω, is equal to zero), Ω is an open set9,
bounded11, with suitably smooth (well-behaved) boundary9

in a 1-dimensional Euclidean space, R1, |.| denotes the
Euclidean norm, a distance function10, in 1-dimensional

Euclidean space, ~∇ denotes the gradient, n(x) is the re-
fractive index, a real scalar function with positive val-
ues, the slowness (speed−1) at x where x lies inside Ω9.
The function n(x) is typically supplied as known input,
given, and we seek the solution, ψ1(x), the shortest time
needed to travel from x to the boundary, ∂Ω9. Because
ψ1 is a function of coordinates only, then the refrac-
tive index is also a function of coordinates only (i.e. a
smooth continuous function of the position13). Eq.(2)
is called the eikonal equation2,8, i.e. a type of the first
order non-linear partial differential equation9,14,15. The
eikonal equation is an approximated version of the wave

equation16, a typical example of steady-state Hamil-
ton–Jacobi equations17,18. The eikonal equation can
be derived from the Fermat’s principle19, the Euler-
Lagrange equation19 and Maxwell equations8,9,20. The
Hamilton-Jacobi equations are a type of non-linear hyper-
bolic partial differential equations21 and Maxwell equa-
tions can be formulated as a hyperbolic system of par-
tial differential equations22. So, we consider the eikonal
equation as the (first order non-linear) hyperbolic partial
differential equation. The analysis of a partial differen-
tial equation for a steady state is very important, e.g.
in the Atiyah-Singer index theorem (an effort for find-
ing the existence and uniqueness of solutions to linear
partial differential equations of elliptic type23 on closed
manifold24,25). Why is the eikonal equation (2) a non-
linear equation? We consider the eikonal equation (2)
as a non-linear26 equation because there exists the Eu-
clidean norm, |.|, in the eq.(2). The Euclidean norm has
a non-linear property, |~v + ~w| ≤ |~v|+ |~w|27, where ~v and
~w are vectors.

In a (1 + 1)-dimensional space-time, the gradient op-

erator, ~∇, in eq.(2) is replaced by the covariant four-
gradient, ∂µ. So, eq.(2) becomes

||∂µψ1(x)|| = n(x) (3)

where µ runs from 1 to 1+1 by considering that the
time derivative of ψ1 is equal to zero. We consider that
the eikonal equation (3) describes the propagation of
wavefronts (field discontinuities) in a (1+1)-dimensional
Minkowskian space-time28, a flat space-time. We see
from eq.(3), the zeroth rank tensor (a scalar) of the re-
fractive index describes an isotropic linear optics29. It
means that a flat space-time descibes an isotropic linear
optics30. But, the refractive index can also be a second
rank tensor which describes that the electric field compo-
nent along one axis may be affected by the electric field
component along another axis31. The second rank ten-
sor of the refractive index describes an anisotropic linear
optics29.

In a (1 + 1)-dimensional Minkowskian space-time and
related to the gauge theory, a four-vector potential (a
combination of an electric scalar potential and a mag-
netic vector potential32,33) of the geometrical optics is
replaced by a four-vector field34 or the gauge poten-



tial3,35–38 (which makes the related field tensor invariant
under the gauge transformation) as written below

~Bµ = ~aµ e
iψ (4)

where ψ(x, t), as we mentioned, is the eikonal (a real
phase3) and ~aµ(x, t) is a complex amplitude3, a slowly
varying function of coordinate and time2. We see from
eq.(4), eiψ is a scalar function (more precisely, a com-

plex scalar function, dimensionless), ~Bµ is a complex3,39

quantity (a complex four-vector field). ~Bµ as ~aµ, can
be interpreted as the oscillating variable40, the displace-
ment from an equilibrium41, a position at infinity where
the gauge potential is assumed equal to zero.

The treatment of the geometrical optics as an Abelian
U(1) local gauge theory has a consequence that the gauge
potential of the geometrical optics and the Maxwell’s the-
ory are the same, i.e. both are the Abelian U(1) gauge po-

tential, ~B
U(1)
µ . In other words, the related field strength

of the geometrical optics and the Maxwell’s theory are, in
principle, the same. So, we can rewrite eq.(4) as

~B U(1)
µ = ~aµ e

iψ (5)

Eq.(5) expresses the Abelian U(1) gauge potential of the
geometrical optics in a (1 + 1)-dimensional Minkowskian
space-time. Eq.(5) can be written as3

~BU(1)
µ ~aµ = ~aµ ~a

µ eiψ = (a · a) eiψ = a2 eiψ = eiψ (6)

where ~aµ is a complex conjugate of ~aµ, and a is a scalar
amplitude3 which we can take its value as 1.

Using Euler’s formula, eq.(6) can be written as

cosψ + i sinψ = ~BU(1)
µ ~aµ (7)

Eq.(7) shows us that ~B
U(1)
µ ~aµ is a complex scalar func-

tion. To simplify the problem, we take the real part of
(7) only, we obtain

cosψ = Re ( ~BU(1)
µ ~aµ) (8)

where ψ in eq.(8), i.e. a real phase (”a gauge”) is an
angle. This angle has value

ψ = arccos
[
Re
(
~BU(1)
µ ~aµ

)]
(9)

By substituting eq.(9) into eq.(1), we obtain

ψ1 =
c

fθ
arccos

[
Re
(
~BU(1)
µ ~aµ

)]
+ ct (10)

and by substituting eq.(10) into the eikonal equation (3),
we obtain∣∣∣∣∣∣∣∣∂ν { c

fθ
arccos

[
Re
(
~BU(1)
µ ~aµ

)]
+ ct

}∣∣∣∣∣∣∣∣ = n (11)

where n is a dimensionless quantity, a real scalar function
of 1-coordinate which ”lives” in a (1 + 1)-dimensional
Minkowskian space-time.

Let us formulate the eikonal equation (11) in (1+1)-
dimensional curved space-time using null geodesic with
the simplest metric, i.e. the Schwarzschild metric. Light
propagating through curved space-time (gravitational
lensing) behaves as if it were traversing an inhomoge-
neous medium45. Why do we treat the geometrical optics
as an Abelian U(1) local gauge theory in curved space-
time? It is because of the eikonal equation can be derived,
as we mentioned, from Maxwell equations46, the classical
limit of quantum electrodynamics (QED)47 where QED is
an Abelian U(1) local gauge theory and the non-vacuum
(with charge, with current) Maxwell equations are nor-
mally formulated in the local coordinates of curved space-
time. Another reason why the geometrical optics is an
Abelian (commutative) is that the eikonal equation can
be derived from the steady state Hamilton-Jacobi equa-
tion. The Hamilton-Jacobi equation, roughly speaking,
can be derived using a canonical transformation i.e. a
special case of a symplectomorphism or symplectic map.
The symplectic map is an isomorphism in the category
of symplectic manifolds18. This isomorphism preserves
commutativity18.

Assume that space is vacuum and centrally symmet-
ric2. We consider vacuum here is the same as empty
space, Rµν = 048, where empty means that there is no
matter present and no physical fields, except the gravita-
tional field which does not disturb the emptyness (other
fields than the gravitational field do)48. As a consequence
that space is vacuum i.e. outside49 of the masses produc-
ing the gravitational field and centrally symmetric (due
to spherical masses), the gravitational field is automat-
ically static2. In other words, the static centrally sym-
metric gravitational field produced by a spherically sym-
metric body at rest48. This static spherically symmetric
gravitational field is described by the Schwarzschild met-
ric2,48,50–52 below

ds2 = g00(r) c2dt2 − grr(r) dr2

=

(
1− 2GM

c2r

)
c2dt2 −

(
1− 2GM

c2r

)−1

dr2 (12)

where 2GM/c2 = rs is the Schwarzschild radius, M is
the mass of the central body (a constant of integration48,
a number53,54) that is producing the gravitational field48,
G is the gravitational constant, c is the speed of light,
r is the spatial (radial) coordinate (measured as the cir-
cumference, divided by 2π, of a sphere centered around
the massive body52). Eq.(12) is also known as the
Schwarzschild solution48. The Schwarzschild solution, as
the Schwarzschild metric, holds outside the surface of
the body that is producing the gravitational field, where
there is no matter48.

The world line corresponding to the propagation of light
is described by a null geodesic as below

ds2 = 0 (13)

where a null geodesic is the track of a null vector48. We
consider a null geodesic as a consequence of an infinites-
imal proper time interval vanishes, dτ = 0.
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By substituting eq.(13) into eq.(12), using relations
dr/dt = v, c/v = n, and rearrange the terms, we ob-
tain the space dependent refractive index, n(r), related
to the mass of the central body that is producing the
gravitational field, M , as below50,55

n =

(
1− 2G

c2r
M

)−1

(14)

It means that in curved space-time indicated by the
Schwarzschild metric, the refractive index can be related
to (as a consequence of null geodesic or the Schwarzschild
metric is equal to zero) mass42 or metric tensor43. The
metric tensor is the field, the gravitational field, describes
the varying geometry of space-time44.

By substituting eq.(14) into eq.(11), we obtain the
eikonal equation in (1+1)-dimensional curved space-time
as below∣∣∣∣∣∣∣∣∂ν { c

fθ
arccos

[
Re
(
~BU(1)
µ ~aµ

)]
+ ct

}∣∣∣∣∣∣∣∣
=

(
1− 2G

c2r
M

)−1

(15)

As we mentioned, the analysis of a partial differential
equation for steady state is very important for finding
the existence and uniqueness of solutions to partial dif-
ferential equations (PDEs). Related to the existence and
uniqueness of solutions to PDEs, does eq.(15) have a so-
lution? In general, what are the characteristics of a par-
tial diferential equation which has a solution? What is a
consequence if we treat the eikonal in eq.(15), as a com-
plex scalar function? Roughly speaking, does a solution of
a (complex) eikonal equation generate a non-trivial topo-
logical configurations6,56?
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