
Page | 1

QuadTree Visualizer
Randeep Kaur Kahlon1, Amey Thakur2 , Hasan Rizvi3, Mega Satish4 , Ajay Davare5

1Assistant Professor, Department of Computer Engineering, University of Mumbai Affiliated Institute

Terna Engineering College, Mumbai, Maharashtra, India

2-5Undergraduate Students, Department of Computer Engineering, University of Mumbai Affiliated Institute

Terna Engineering College, Mumbai, Maharashtra, India

Abstract — We propose to develop a program that can show a

QuadTree view and data model architecture. Nowadays, many

digital map applications have the need to present large quantities

of precise point data on the map. Such data can be weather

information or the population in towns. With the development of

the Internet of Things (IoT), we expect such data will grow at a

rapid pace. However, visualizing and searching in such a

magnitude of data becomes a problem as it takes a huge amount

of time. QuadTrees are data structures that are used to efficiently

store point data in a two-dimensional environment. Each node in

this tree has a maximum of four children. QuadTrees allow us to

visualize the data easily and rapidly compared to other data

structures. This project aims to build an application for

interactively visualizing such data, using a combination of grid-

based clustering and hierarchical clustering, along with QuadTree

spatial indexing. This application illustrates the simulation of the

working of the QuadTree data structure.

Keywords — QuadTree Visualizer, Q-Tree, Data Structure,

Spatial Indexing, Coefficient of Restitution, Collision Detection,

QuadTree Algorithm.

I. INTRODUCTION

The QuadTree is a spatial data structure with a

hierarchical structure. It's a tree with each level corresponding

to a further refinement of the space in question. Though

QuadTrees come in a variety of shapes and sizes, they can be

used in a variety of ways. The concept can be applied to any

dimension, and it is always a recursive subdivision of space that

aids in the storage of information and provides the most vital or

interesting details regarding space. In QuadTrees, we begin by

adding pointers to its root node, which defines all potential

space. The node divides into four child nodes when the number

of points in the node reaches a predetermined maximum

capacity. When any of those nodes has reached its full point

capacity, it splits into four child nodes, and so on. QuadTrees

have a range of applications; from internet services handling

millions of requests every second, image compression, handling

geolocation services, searching for nodes in 2-D areas, collision

detection and more. Collision detection is a crucial feature in

the majority of video games. Detecting when two entities

collide is critical in both 2D and 3D games, since bad collision

detection may lead to some very intriguing effects. Numerous

games need the use of collision detection techniques to identify

whether two objects have interacted, however, these algorithms

are frequently costly procedures that may significantly slow

down a system. In this paper, we will be addressing QuadTrees,

and how we can use them to speed up collision detection by

skipping pairs of objects that are too far apart to collide. We’ll

be writing a general-purpose, scalable and re-usable QuadTree

library in Typescript and importing it into a visualization tool

to depict its internal workings.

This project aims to provide a web application for

visualizing the QuadTree structure. QuadTree. The users

should be able to understand the working of the QuadTree and

experience the simulation provided on the web application. This

Visualizer provides an interactive environment where users can

change configurations of the QuadTree and environment

conditions at runtime.

II. LITERATURE SURVEY

A. Brief History of QuadTree

A QuadTree [1][2][3] is a tree data structure with zero

or four offspring at each node. Its key distinguishing feature is

its method of recursively partitioning a flat 2-D [2] space into

four regions. The data associated with a leaf cell differs

depending on the application, but the leaf cell is a "unit of

relevant spatial information." The subdivided areas or regions

can be square or rectangular or any other form. This data

structure was named a QuadTree by Raphael Finkel and J.L.

Bentley in 1974.

B. Existing Systems

Table 1: Existing Systems

https://orcid.org/0000-0001-5644-1575
https://orcid.org/0000-0002-1844-9557

Page | 2

III. PROPOSED METHODOLOGY

A. Brief History of QuadTree

The QuadTree is a data structure for organizing

objects based on their locations in a two-dimensional space. By

definition, a QuadTree [2] is a tree in which each node has at

most four children. QuadTree implementations ensure that as

points are added to the tree, nodes are rearranged such that none

of them has more than four children. Figure 1 below illustrates

the general concept of QuadTree data structure.

Figure 1: QuadTree Data Structure

The QuadTree partitioning strategy divides space

[1][2] into four quadrants at each level. When a quadrant

contains more than one object, the tree subdivides that region

into four smaller quadrants, adding a level to the tree. A similar

partitioning is also known as a Q-tree. QuadTrees are a way of

partitioning space so that it's easy to traverse and search.

B. Applications of QuadTree

It is used extensively in computer graphics, image

compression and is also used to represent spatial relations.

Visualizing data points with a QuadTree [3] and checking and

detecting collisions. The computer issue of identifying the

collision of two or more bodies is known as collision detection.

Collision detection [5] is a basic problem in computational

geometry that has applications in a wide range of computer

domains. Figure 2 shows the use case of Quadtree Visualizer.

Figure 2: QuadTree Visualizer

QuadTrees are also implemented for spatial indexing

[3] while searching a particular point or location in a map.

QuadTrees are very efficient as they can sparse through the

maps very easily and quickly compared to other methods.

Figure 3 shows the use case of QuadTree Spatial Indexing.

Figure 3: QuadTree Spatial Indexing

QuadTrees, for example, can handle a sparse Mario

level a billion tiles across, where one of the tiles contains the

finishing spot. A QuadTree will split the arrival spot into

different cells and still use gigantic cells for the empty spaces.

Figure 4 shows the use case of QuadTree in Gaming.

Figure 4: QuadTree in Gaming

A. Some possible use cases of QuadTree

1. Hit detection:

For example, as seen in the maps above, there are a lot

of points in space. If we wish to discover an arbitrary point P,

we can do it inside that set of points. This quickly turns into a

frantic process. We could check each and every single point to

P, but when there are 1000 points yet none of them are P, we

will have to do 1000 comparisons to figure out which point is

P.

Page | 3

Alternatively, we may get a very rapid lookup by

retaining a matrix (a 2D array) of Booleans for each and every

conceivable point in this space. However, suppose the area

occupied by these points is 1 million × 1 million so we need to

keep 1,000,000,000,000 variables.

A QuadTree would seem to be a better choice in this

scenario. To find P, the QuadTree [1] will determine which

quadrant it is in. Then it will determine which quadrant within

that quadrant it is in. Even if there are 1000 points in the space,

it will only have to execute this seven times for a 100x100 space

(provided points can have numerical value only). Once it's

found that rectangle node, it just needs to test whether any of

the four-leaf equals P.

2. Sparse Data using QuadTree:

QuadTrees are ideal for sparse data to search for a

particular point. By only performing computations between

items in comparable nodes/quads, QuadTrees aid in obtaining

knowledge about which collisions in an environment are worth

investigating.

QuadTree nodes split into four evenly-sized leaf nodes

when the number of objects inside them reaches a certain

capacity. Objects are inserted into a fresh QuadTree every

iteration, which places each object in its deepest possible

node.The QuadTree algorithm improves upon the naive T(n) =

θ(n2) algorithm and achieves T(n) = O(n2), T(n) = Ω(nlog(n)).

Inadvertently, QuadTrees depending on pixels are a sort of trie.

B. Limitations of QuadTree

The fundamental drawback of QuadTrees is that

comparing two pictures [4] that vary only in rotations or

translation is nearly difficult. This is due to the fact that the

QuadTree depiction of such pictures will be so distinct. The

picture rotation methods offered are limited to revolutions of 90

degrees. There is no alternative rotation available, thus there is

no translation facility. Figure 5.1 shows the original image and

Figure 5.2 shows the rotated images. As we can see, it is not

possible to compare two images that are different in terms of

rotation.

(5.1) First Image (5.2) Rotated Image

Figure 5: Image Translation in QuadTree

C. Types of QuadTree

There are three types of QuadTrees:

1. Point QuadTree

2. Edge QuadTree

3. Polygonal Map QuadTree.

Some characteristics are shared by all QuadTrees:

- They break space down into flexible cells.

- There is a maximum capacity for each cell (or

bucket). When the bucket reaches its full

capacity, it separates.

- The QuadTree's spatial decomposition is

followed by the tree directory.

D. Working of QuadTree

The Figure 6 below depicts how a QuadTree [7] alters

as a result of insertion of a point E:

1. Make four boxes out of the current two-

dimensional space.

2. If a box includes one or more points, make a child

object that stores the box's two-dimensional

space.

3. Do not generate a child for a box that does not

contain any points.

4. Repeat with each of the children.

Figure 6: Working of QuadTree

E. Algorithm

Three types of nodes are used in quadtree:

1. Point node: It is used to represent a point. It is

always a leaf node.

2. Empty node: It is used as a leaf node to represent

that no point exists in the region it represents.

3. Region node: This is always an internal node. It is

used to represent a region. A region node always

has 4 children nodes that can either be a point

node or an empty node.

Page | 4

a. Insertion in QuadTree

Insertion: A recursive function for

storing a point in a QuadTree.

1. As the current node, begin with the

root node.

2. If the specified point is not within

the boundary indicated by the

current node, the insertion should be

terminated with an error.

3. Determine the best child node to

store the point.

4. If the child node is empty, it should

be replaced with a point node that

represents the point. Insertion

should be stopped.

5. Replace the child node with a region

code if it is a point node. For the

point that was just replaced, use

insert. Set the current node to be the

region's freshly generated node.

6. Set the specified child node as the

current node if it is a region node.

Proceed to step 2.

b. Search in QuadTree

Search: This is a boolean function that

determines whether or not a point exists in 2D

space.

1. As the current node, begin with the

root node.

2. If the specified point is not within

the boundary indicated by the

current node, the search should be

terminated with an error.

3. Determine the best child node to

hold the point in.

4. Return FALSE if the child node is

empty.

5. Return TRUE if the child node is a

point node and matches the

specified point, else return FALSE.

6. Set the current node as the child

region node if the child node is a

region node. Proceed to step 2.

c. Complexity

1. Time complexity:

- Find: O(log2N)

- Insert: O(log2N)

- Search: O(log2N)

2. Space complexity:

- O(k log2N), where k is the

count of points in the space and

Space is of dimension N x M, N

>= M

F. Collision in QuadTree

Because the data points in the visualizer are always

shifting, collisions are unavoidable. Collision [5] is the meeting

of two bodies, in this case data points in the shape of circles.

The QuadTree visualization is built on top of a 2D Collision

System with a restitution coefficient that can be adjusted to

differentiate between elastic and inelastic impacts. Collision

detection is a costly activity. One method for speeding up

collision detection is to use QuadTrees

G. Coefficient of Restitution

The coefficient of restitution [6] is the ratio of the final

velocity to the starting velocity of two objects after they collide.

The restitution coefficient, written as 'e,' is a unitless quantity

with values ranging from 0 to 1.

The coefficient of restitution is a quantity that

represents the nature of the colliding materials. The coefficient

of restitution informs about the elasticity of the collision. A

fully elastic collision is one in which there is no loss of total

kinetic energy. The greatest coefficient of restitution for this

sort of collision is e = 1. A fully inelastic collision is one in

which all of the kinetic energy is wasted. They have a restitution

coefficient of e = 0. The majority of real-life crashes occur in

the middle. The Coefficient of Restitution mathematical

formula is as follows:

Coefficient of Restitution (e) =

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝑺𝒑𝒆𝒆𝒅 𝑨𝒇𝒕𝒆𝒓 𝑪𝒐𝒍𝒍𝒊𝒔𝒊𝒐𝒏

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝑺𝒑𝒆𝒆𝒅 𝑩𝒆𝒇𝒐𝒓𝒆 𝑪𝒐𝒍𝒍𝒊𝒔𝒊𝒐𝒏

You can see from the following equation that you

always divide the smaller number by a larger number. As a

result, the restitution coefficient is always positive.

Page | 5

H. Workflow of QuadTree

Figure 7 illustrates the workflow of the QuadTree

application. Next.js is responsible for both client and server-

side scripting.

Figure 7: Workflow of QuadTree

I. Model Architecture

An architectural model is a simplified representation

of a system. It is an estimate that captures the various system

characteristics. It is a generalized form that has all of the

system's critical elements. The process of modelling

architecture entails determining the system's features and

expressing them as models so that the system may be

understood. Architecture models make it possible to see

information about the system represented by the model. Figure

8 depicts the web application's model architecture.

Figure 8: Model Architecture of QuadTree

IV. DESIGN

A. Experimental Setup

- Since we are using Next.js in our project, we first

need to have Node.js.

- The web application works on

http://localhost:3000.

- To run the application locally, we need to install

the packages required using the npm command:

npm install package.json

- Figure 9 shows the command prompt with the

packages installed using the npm install

commands.

Figure 9: Command: npm install package.json

- After installing all the dependencies, we then run

the command: npm run dev.

- After we run the command: npm run dev. It will

run the developer server.

- Figure 10 depicts the compilation and running of

the server. The server is working on

http://localhost:3000.

Figure 10: Compilation & Server Hosting

http://localhost:3000/
http://localhost:3000/

Page | 6

V. RESULTS

A. Homepage

Figure 11 illustrates the homepage of the web

application. Here we can visualize a QuadTree with the data

points and the different divisions of the QuadTree.

Figure 11: Homepage

B. Clear QuadTree

Figure 12 shows a clean QuadTree without the data

points. Since there are no points, we can see only the square.

Figure 12: Clear QuadTree

C. Spawn Bodies

Figure 13 depicts the spawn circles in the QuadTree.

Here we can see the clear division of the QuadTree.

Figure 13: Spawn Bodies

D. Random Bodies

Figure 14.1 & Figure 14.2 show the random bodies

generated randomly in the QuadTree.

Figure 14.1: Random Bodies

Figure 14.2: Random Bodies

Page | 7

E. Random & Spawn Bodies

Figure 15.1 & 15.2 Figure shows the combination of

both random and spawn bodies in the QuadTree.

Figure 15.1: Random & Spawn Bodies

Figure 15.2: Random & Spawn Bodies

F. Control Panel

Figure 16 illustrates the control panel. The control

panel here is used to simulate different environments in the

QuadTree such as types of bodies, the coefficient of restitution

and the frames per second of the movement of the bodies.

Figure 16: Control Panel

Page | 8

VI. FUTURE SCOPE

Since QuadTrees are a type of tree data structure in

which each internal node has exactly four children, they are

most often used to partition a two-dimensional space by

recursively subdividing it into four quadrants or areas. The

areas can be rectangular, square, or any other form. The

QuadTree is used as a utility as part of the Maps SDK for iOS

Utility Library. They’ve also been heavily used in image

compression algorithms and higher-level design of 8-bit games

like Mario.

Eventually, we believe that QuadTrees can be used for

memory management in a big and hierarchical database. It is

one of the most crucial places we can use the QuadTree and it

can be used to access varied data points and make searching

efficient and fast.

Further work in this project can be to let the user

visualize their own QuadTree using their own dataset. Users

will have to give a dataset for the input and the visualizer will

create a QuadTree based on the given dataset. Additional

features could be added here such as the different color and

shapes for different data points. Moreover, this project can be

implemented as part of bigger projects such as Geolocation,

Collision Detection Systems.

VII. CONCLUSION

We explored a type of tree data structure named

QuadTree, that can be used to represent 2-D spaces. In this

process, we learnt how/why they are used in a range of

applications from scaling up internet services to handle millions

of requests per minute to their ever-present use in geolocation-

based services like Maps and how we can build

applications/libraries to implement the same in our

apps/services. It can be concluded QuadTrees are extremely

powerful data structures that are still heavily under-utilized in

both the industry and community applications. By the time of

completion of this project we’ve learned to develop scalable

and reusable codebases for large projects, understood the

fundamentals of API build and interaction and understood

function in a time-bound manner and collaborate at scale across

various tasks and disciplines.

REFERENCES

[1] “An effective way to represent quadtrees”, Communications of the ACM,

Volume 25, Issue 12, Dec 1982 pp 905–910, doi:10.1145/358728.358741.
[2] Q. Cai and Y. Zhou, “A quadtree-based hierarchical clustering method

for visualizing large point dataset”, 2016 Sixth International Conference

on Information Science and Technology (ICIST), 2016, pp. 372-375,

DOI: 10.1109/ICIST.2016.7483441.
[3] “Optimal quadtree construction algorithms” Computer Vision, Graphics,

and Image Processing, Volume 37, Issue 3, March 1987, pp 402–419,

doi:10.1016/0734-189X(87)90045-4
[4] Sullivan, Gary J., and Richard L. Baker. "Efficient quadtree coding of

images and video." IEEE Transactions on image processing 3, no. 3

(1994): 327-331
[5] Berg, Mark de, Marcel Roeloffzen, and Bettina Speckmann. "Kinetic

compressed quadtrees in the black-box model with applications to

collision detection for low-density scenes." In European Symposium on

Algorithms, pp. 383-394. Springer, Berlin, Heidelberg, 2012.
[6] Sharma, Praveen K., and Harish N. Dixit. "Energetics of a bouncing drop:

Coefficient of restitution, bubble entrapment, and escape." Physics of

Fluids 32, no. 11 (2020): 112107.
[7] Mathew, Reji, and David S. Taubman. "Quad-tree motion modeling with

leaf merging." IEEE Transactions on Circuits and Systems for Video

Technology 20, no. 10 (2010): 1331-1345.
[8] Tilkov, Stefan, and Steve Vinoski. "Node. js: Using JavaScript to build

high-performance network programs." IEEE Internet Computing 14, no.

6 (2010): 80-83.
[9] Fenton, Steve, Fenton, and Spearing. “Pro TypeScript.” Apress, 2014
[10] Cantelon, Mike, Marc Harter, T. J. Holowaychuk, and Nathan Rajlich.

“Node. js in action.” Greenwich: Manning, 2014.
[11] Wieruch, Robin. “The road to react: Your journey to master plain yet

pragmatic react. js.” Robin Wieruch, 2017.
[12] Thakkar, Mohit. "Next. js." In Building React Apps with Server-Side

Rendering, pp. 93-137. Apress, Berkeley, CA, 2022

