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ABSTRACT  
 

HexCycleSpanner (HCS) is a novel tool designed to achieve an elementary cycle refinement 

operation (ECRO) that is used to tighten a Directed Hamiltonian Circuit (dHC) - to be used 

iteratively as an extremely powerful technique to transform any given dHC to an optimum 

Shortest Directed Hamiltonian Circuit (sdHC).  Application to solving Asymmetric Travelling 

Salesman Problem (aTSP) is quite evident.  ECRO uses a HCS to achieve an exchange of an 

outgoing arc-triplet of the given dHC with a corresponding incoming arc-triplet from outside the 

given dHC, thus resulting in a reconstructed transformed permuted dHC, while retaining the 

original direction/orientation of the given dHC.  Effectively, the removal of the outgoing arc-

triplet separates the given dHC into three cut-segments that are again rejoined by the incoming 

arc-triplet resulting in the reconstructed transformed permuted dHC wherein the original 

orientation of the dHC is retained - as defined by the orientation of the three cut-segments.  This 

ECRO is analogous to the simplex pivot operation of Linear Programming wherein an exchange 

of the outgoing basic variable row with the incoming nonbasic variable column is performed to 

transform a given simplex tableaux representation into another equivalent simplex tableau 

representation that may be closer to the optimum tableaux.  

 

The concept of HexCycleSpanner can be generalized and extended to include incoming directed 

paths rather than incoming arcs to give rise to what may be called a CycleExpander (CyExp) that 

may be used as an effective tool to construct a Directed Hamiltonian Circuit.  
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INTRODUCTION  
 

The earliest avatars of Hamiltonian Path and Hamiltonian Circuit can be traced all the way back 

to the earliest times of human intellectual endeavors, referring to the classic idea of the Knight’s 

tours on a chess board.  Shortest (minimum weight) Hamiltonian Circuit (sHC) solves the 

Travelling Salesman Problem (TSP) by their very definition.  TSP is one of the most widely 

studied combinatorial optimization problems, for which any improved solution algorithm is 

considered to be a critical achievement in terms of the computational complexity associated with 

such problems.  

 

Hamiltonian paths and Hamiltonian circuits have been extensively studied and reported because 

of its wide spread applications in various practical problem domains.  Although various reports 

can be found in literature about the necessary conditions for Hamiltonicity and similarly on the 

sufficient conditions, there has not been any report of a strong/tight necessary & sufficient 

condition thereof.  A necessary condition for a connected graph G(V,E) with |V| = n ≥ 3 vertices 

to be Hamiltonian is established by Dirac’s (1952) theorem which states that the minimum vertex 

degree be at least equal to n/2 that is half the number of vertices n.  However, this turns out to be 

very weak necessary condition.  Chvatal & Erdos (1972) gives sufficient conditions for Hamilton 

Path and/or Hamiltonian Circuit, using the concepts of stability number (maximum stable set or 

maximum independent set), connectivity and bridges; later generalized by Kouider (1994).  A 

theorem of Bondy & Chvatal (1976) gives the necessary & sufficient condition for Hamiltonicity 

of a simple graph, using the concept of the closure of a graph, although its utility seems to be 

somewhat limited except for theoretical analyses.  Gould (1991, 2003, 2014) gives an excellent 

survey of the developments in terms of the Hamiltonian problem on undirected graphs.  
 

In the case of directed graphs, Bondy & Murty (2008) mentions that Redei (1934) showed, by 

induction arguments on the number of vertices, that every tournament has a directed Hamiltonian 

Path.  But every tournament need not be Hamiltonian, as for example a transitive tournament.  

Camio (1959) proved that every nontrivial strong tournament has a directed Hamiltonian Circuit.  

Chen & Manalastas (1983) showed that every finite strongly connected digraph of stability 2 has 

a Hamiltonian path; for which Bondy (1995) gives a short and elegant proof.  Using the concept 

of directed ear decomposition Knuth (1974) shows that every strong digraph admits a coherent 

feedback arc set.  Equivalently, Bessy & Thomasse (2003, 2004) showed that every stong digraph 

admits a coherent cyclic order.  Sebo (2007), Iwata & Matsuda (2007) report results related to the 

existence of coherent cyclic order in strong digraphs.   

 

However there has neither been any report regarding any tight necessary & sufficient conditions 

for the existence of Hamiltonicity nor has there been any computationally efficient algorithms 

reported for determining Hamiltonicity in case of general networks (directed graphs/multigraphs).  

 

Here we will see how an elementary cycle refinement operation (ECRO) is developed as a novel 

method to tighten a given Directed Hamiltonian Circuit (dHC) using a HexCycleSpanner (HCS) 

designed as a tool for the purpose - to be used iteratively as a computationally efficient algorithm 

to determine the shortest directed Hamiltonian circuit (dHC) and thus solve the asymmetric 

travelling salesman problem (aTSP).  Also explained herein is the novel concept of a 

CycleExpander (CyExp) that can be applied in the construction of a dHC.   
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HEX-CYCLE-SPANNER  
 

A HexCycleSpanner (HCS) designed as a tool for the purpose of defining an elementary cycle 

refinement operation (ECRO) that transforms a given Directed Hamiltonian Circuit (dHC) into 

another one with improved properties - for example with reduced weight / length - is a 6-cycle 

(HCS is not a directed circuit) with six arcs and having some special characteristic features : it 

forms a cycle of six directed arcs, three alternating arcs oriented in one way and belonging to the 

given dHC whereas the other three alternating arcs directed in the opposite sense and belonging 

outside of the given dHC.  An ECRO uses a HCS to achieve an exchange of judiciously chosen 

outgoing arc-triplet with a corresponding incoming arc-triplet, resulting in a reconstructed 

transformed permuted dHC.  The HCS effectively cuts the given dHC into three cut-segments by 

removing outgoing arc-triplet and rejoins the three cut-segments using the incoming arc-triplet - 

in such a way that the resulting reconstructed transformed permuted dHC has exactly the same 

orientation as the original orientation of the given dHC - the original cycle orientation being 

defined by the orientation of the three cut-segments of the given dHC.  Note that one canNOT 

achieve such an orientation-retaining transformation by cutting the given dHC into two pieces - 

three cut-segments is the minimum requirement to retain the original orientation in the 

transformed dHC.  Thus an ECRO achieves an exchange between the outgoing arc-triplet and the 

incoming arc-triplet - this arc-triplet-pair forms the required HexCycleSpanner - that is a 6-cycle 

wherein the outgoing & incoming arcs are in alternating positions and in opposing orientation 

with respect to one another.  

 

 

STANDARD TEMPLATE FOR A GENERIC HEX-CYCLE-SPANNER  
 

Effective application of ECRO requires an efficient method of finding an appropriate HCS from 

among the various possible choices.  To facilitate the search for an appropriate HCS it is essential 

to develop a standard template for a generic HCS.  For this purpose, consider a 9-cycle dHC 

(1,2,3,4,5,6,7,8,9) with outgoing arc-triplet (9,1) (3,4) & (6,7) and incoming arc-triplet (9,4) (6,1) 

& (3,7) so that the given dHC gets cut into three cut-segments (1,2,3) (4,5,6) & (7,8,9) by the 

removal of the three outgoing arcs and these three cut-segments get rejoined by the three 

incoming arcs, resulting in a reconstructed transformed permuted 9-cycle dHC (1,2,3,7,8,9,4,5,6) 

wherein the original orientation of the given 9-cycle dHC is retained - as defined by the 

orientation of the three cut-segments (1,2,3) (4,5,6) & (7,8,9).  

 

Here, the HCS is the 6-cycle (9,1,6,7,3,4) - wherein the three outgoing arcs and the three 

incoming arcs are positioned mutually adjacent to one another - each outgoing arc is flanked by 

two incoming arcs on either end and each incoming arc is flanked by two outgoing arc on either 

end - the incoming arc-triplet oriented in the opposite sense relative to the orientation of the 

outgoing arc-triplet.  Each outgoing arc of a given dHC has a one-to-one correspondence with a 

directed path from its tail-end to its head-end, containing the corresponding cut-segment of the 

given dHC flanked on either end by the same two incoming arcs that are adjacent to that outgoing 

arc, thus defining the cut-segment associated with this outgoing arc - this is an essential 

characteristic of a HCS.  

 

Note that each of the interior nodes of these three cut-segments - represented by the nodes 2, 5, 8 

of the given dHC - can in fact represent a directed path joining the end nodes of the 

corresponding cut-segment, so that this template becomes a generic template applicable to any 

given dHC in general.  
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As said earlier, an outgoing (ogArc) arc o91 is flanked by two incoming arcs, one is an incoming 

(tailLink) arc i94 incident on the tail-end of ogArc o91 and points to the starting node of a cut-

segment cs456 whereas the other is an incoming (headLink) arc i61 incident on the head-end of 

ogArc o91 and links to the terminal node of this cut-segment cs456 - forming a directed path 

i94cs456i61 from the tail-end of ogArc o91 to the head-end of the o91 passing through (1) 

tailLink i94 (2) cut-segment cs456 (3) headLink i61 - thus establishing a one-to-one 

correspondence between the outgoing arc o91 and the cut-segment cs456 - this cut-segment itself 

being flanked by these two incoming arcs, one being the tailLink and the other being the 

headLink forming the directed path i94cs456i61.  Observe similar association in case of the 

second outgoing arc ogArc o34 with the tailLink i37 the cut-segment cs789 and the headLink i94 

to form the directed path i37cs789i94 and also in case of the third outgoing arc ogArc o67 with 

the tailLink i61 the cut-segment cs123 and the headLink i37 to form the directed path 

i61cs123i37.  See that the role of an incoming arc being either a tailLink or a headLink is relative 

to the specific outgoing arc ogArc and not a permanent / static role.  Note that each of the three 

outgoing arcs get flanked by the very same two incoming arcs that flank the corresponding cut-

segment to form the directed path from its tail-end to its head-end – this is an essential 

characteristic of a HCS.  

 

 

FINDING A HEX-CYCLE-SPANNER FOR A dHC  

 
Figure-1 gives the node arc incidence matrix for a generic 9-cycle dHC.  Find an outgoing arc 

j1=(i9,i1) which is flanked on each end by two incoming arcs, j10=(i9,i4) at the tail-end and 

j11=(i6,i1) at the head-end, both being oriented in the opposite sense to that of this outgoing arc, 

and the farther end i4 & i6 of these two incoming arcs define a cut-segment (i4,i5,i6) of the given 

dHC that has a one-to-one correspondence with the outgoing arc (i9,i1); the ends of this cut-

segment being adjacent to another two outgoing arcs, j4=(i3,i4) and j7=(i6,i7) that are joined by 

an incoming arc j12=(i3,i7).  This set of three outgoing arcs (i9,i1) (i3,i4) & (i6,i7) along with the 

corresponding three incoming arcs (i9,i4) (i6,i1) & (i3,i7) form a 6-cycle HCS (i9,i1,i6,i7,i3,i4).  

Of course, for each possible choice of an outgoing arc, there may be several choices of incoming 

arcs and therefore several possible choices of HCS that may be found, and the one that best 

satisfies the requirements, say for example reducing the overall weight/length of the dHC needs 

to be chosen for performing the desired elementary cycle refinement operation.  This process of 

selecting the matching pairs of outgoing & incoming arc-triplets is analogous to the selection of a 

matching pair of pivot row (outgoing basic variable) & pivot column (incoming nonbasic 

variable) in simplex pivot selection for linear programming problems.  

 

 

↓ j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 

i1 − +         −  

i2  − +          

i3   − +        + 

i4    − +     −   

i5     − +       

i6      − +    +  

i7       − +    − 

i8        − +    

i9 +        − +   

 

Figure-1: Node Arc incidence matrix with cycle orientation indicated by ordering of nodes  
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↓ i1 i2 i3 i4 i5 i6 i7 i8 i9 

i1 + 1w2        

i2  + 2w3       

i3   + 3w4   3w7   

i4    + 4w5     

i5     + 5w6    

i6 6w1     + 6w7   

i7       + 7w8  

i8        + 8w9 

i9 9w1   9w4     + 

 

Figure-2: Node Node Adjacency Matrix with Weights  

 

 

Note that the evaluation of a potential candidate (i9,i1) as an outgoing arc includes the 

confirmation of the existence of corresponding adjacent arcs (i9,i4) & (i6,i1) which are 

themselves adjacent to two outgoing arcs (i3,i4) & (i6,i7) and also an incoming arc (i3,i7) such 

that the given dHC gets cut into three segments (i1,i2,i3) (i4,i5,i6) & (i7,i8,i9) by the removal of 

the outgoing arc-triplet (i9,i1) (i3,i4) & (i6,i7) and these three segments again get rejoined by the 

incoming arc-triplet (i9,i4) (i6,i1) & (i3,i7) thus resulting in the reconstructed transformed 

permuted dHC (i1,i2,i3,i7,i8,i9,i4,i5,i6).  In this case, the effective reduction in the overall 

weight/length indicated by (6w1 + 3w7 + 9w4) < (9w1 + 3w4 + 6w7) justifies the ECRO defined 

by this exchange of the outgoing arc-triplet (i9,i1) (i3,i4) & (i6,i7) with the incoming arc-triplet 

(i6,i1) (i3,i7) & (i9,i4) as shown in Figure-2.  

 

A word of caution.  In the process of finding a matching pair of an outgoing arc-triplet with an 

incoming arc-triplet, if one is not careful to keep a watch on the relative positioning of the three 

outgoing arcs and the corresponding three incoming arcs in relation to the orientation of the given 

dHC, it is easy to get into a situation where the three cut-segments when rejoined to yield a 

reconstructed transformed permuted dHC may possibly end up being three mutually arc-disjoint 

cycles rather than a single dHC.  For example, in the above case of a given dHC with a 9-cycle, if 

the three outgoing arcs (i9,i1) (i3,i4) & (i6,i7) are matched with the correspond incoming arcs 

(i9,i7) (i3,i1) & (i6,i4) the result is three mutually arc-disjoint 3-cycles (i1,i2,i3) (i4,i5,i6) & 

(i7,i8,i9) which is an unintended result.  

 

To overcome this problem, or rather to prevent such an unacceptable situation, it is recommended 

to emphasize the fact that each of the three outgoing arcs, flanked in-between two incoming arcs, 

has a one-to-one correspondence with a directed path from its tail-end to its head-end, wherein 

the first and the last arcs are the two incoming arcs flanking that outgoing arc and the thus flanked 

segment of the directed path is indeed the cut-segment of the dHC corresponding to this outgoing 

arc.  The outgoing arc (i9,i1) associated with the directed path (i9,(i4,i5,i6),i1) which holds the 

segment (i4,i5,i6) flanked by the very same two end arcs (i9,i4) & (i6,i1) that are flanking the 

outgoing arc (i9,i1).  This is an essential characteristic of a HCS.  

 

Now we can see that the earlier situation with the outgoing arc (i9,i1) flanked by the incoming 

arcs (i9,i7) and (i3,i1) defines a cut-segment (i3,i4,i5,i6,i7) which along with these two incoming 

arcs flanking this outgoing arc doesn’t result in a directed path from the tail-end i9 to the head-

end i1; whereas this cut-segment again gets cut by the removal of its two end arcs (i3,i4) & (i6,i7) 
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as outgoing arcs thus shrinking the cut-segment to (i4,i5,i6) while having no linking arcs between 

this cut-segment and the other two cut-segments (i1,i2,i3) & (i7,i8,i9) thus resulting in three 

mutually arc-disjoint cycles.  

 

 

CYCLE-EXPANDER  
 

The concept of HexCycleSpanner can be generalized and extended to define a CycleExpander 

(CyExp) by allowing incoming directed paths instead of incoming arcs in the definition of a 

HexCycleSpanner.  This will enable a CyExp to be used as an effective tool in expanding a given 

directed circuit to include more and more nodes so as to result in the construction of a Directed 

Hamiltonian Circuit.  

 

 

CYCLE-EXPANDER  AND  HEX-CYCLE-SPANNER  TO  SOLVE  ATSP  
 

The above concepts of CycleExpander (CyExp) and HexCycleSpanner (HCS) can directly be 

applied in the construction of a dHC and on which ECRO can be performed using HCS in 

achieving further improvements in the dHC to determine the optimum/shortest directed 

Hamiltonian circuit thus solving the Asymmetric Travelling Salesman Problem - even for general 

networks / directed multigraphs.  

 

We recommend that the Painted Network Algorithm (Rockafellar, 1998) be adapted for the 

application of CyExp and HCS to develop a computational efficient solution strategy for aTSP.  

Appropriate fine-tuning of the algorithm with the use of CyExp and HCS for the purpose of 

solving aTSP can result in extraordinary gains in terms of improved computational complexity.  

 

It is suggested that an Ear Decomposition (Ban-Jensen & Gutin, 2009) be performed on the given 

network (directed graph / multigraph) and the maximal available circuit may preferably be chosen 

as a good starting point to apply the CyExp for constructing a dHC which can then be further  

refined/improved through ECRO by the application of HCS.  
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